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Outline

This lecture

• Finite difference / finite volume methods

• Godunov’s method

• High resolution methods (limiters)

• Two-dimensional methods

• Seismic example
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Upwind method for advection

Scalar advection:

qt + uqx = 0, u > 0

As finite difference method:(
Qn+1

i −Qn
i

∆t

)
+ u

(
Qn

i −Qn
i−1

∆x

)
= 0

Gives the explicit method:

Qn+1
i = Qn

i −
u∆t
∆x

(Qn
i −Qn

i−1).

Stable provided CFL condition satisfied:

0 ≤ u∆t
∆x
≤ 1

and first order accurate on smooth data.
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The CFL Condition (Courant-Friedrichs-Lewy)

Domain of dependence: The solution q(X,T ) depends on the
data q(x, 0) over some set of x values, x ∈ D(X,T ).

Advection: q(X,T ) = q(X −uT, 0) and so D(X,T ) = {X −uT}.

The CFL Condition: A numerical method can be convergent
only if its numerical domain of dependence contains the true
domain of dependence of the PDE, at least in the limit as ∆t
and ∆x go to zero.

Note: Necessary but not sufficient for stability!
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Numerical domain of dependence

With a 3-point explicit method:

On a finer grid with ∆t/∆x fixed:
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The CFL Condition

For the method to be stable, the numerical domain of
dependence must include the true domain of dependence.

For advection, the solution is constant along characteristics,

q(x, t) = q(x− ut, 0)

For a 3-point method, CFL condition requires
∣∣u∆t

∆x

∣∣ ≤ 1.

If this is violated:
True solution is determined
by data at a point x − ut that
is ignored by the numerical
method, even as the grid is
refined.
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Stencil CFL Condition

0 ≤ u∆t
∆x
≤ 1

−1 ≤ u∆t
∆x
≤ 0

−1 ≤ u∆t
∆x
≤ 1

0 ≤ u∆t
∆x
≤ 2

−∞ <
u∆t
∆x

<∞
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Finite differences vs. finite volumes

Finite difference Methods

• Pointwise values Qn
i ≈ q(xi, tn)

• Approximate derivatives by finite differences
• Assumes smoothness

Finite volume Methods

• Approximate cell averages: Qn
i ≈

1
∆x

∫ xi+1/2

xi−1/2

q(x, tn) dx

• Integral form of conservation law,

∂

∂t

∫ xi+1/2

xi−1/2

q(x, t) dx = f(q(xi−1/2, t))− f(q(xi+1/2, t))

leads to conservation law qt + fx = 0 but also directly to
numerical method.
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Finite volume method

Qn
i ≈ 1

h

∫ xi+1/2

xi−1/2
q(x, tn) dx

Integral form:

∂

∂t

∫ xi+1/2

xi−1/2

q(x, t) dx = f(q(xi−1/2, t))− f(q(xi+1/2, t))

Integrate from tn to tn+1 =⇒

∫
q(x, tn+1) dx =

∫
q(x, tn) dx+

∫ tn+1

tn

f(q(xi−1/2, t))−f(q(xi+1/2, t)) dt

Numerical method: Qn+1
i = Qn

i −
∆t
∆x

(Fn
i+1/2 − Fn

i−1/2)

Numerical flux: Fn
i−1/2 ≈

1
∆t

∫ tn+1

tn

f(q(xi−1/2, t)) dt.
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Upwind method for advection

Flux: f(q) = uq

Numerical flux: Fn
i−1/2 ≈

1
∆t

∫ tn+1

tn

f(q(xi−1/2, t)) dt.

If q(x, tn) is piecewise constant in each cell, then

Fn
i−1/2 =

{
uQn

i−1 if u > 0,
uQn

i if u < 0.

This gives the upwind method:

Qn+1
i = Qn

i −
u∆t
∆x

(Qn
i −Qn

i−1) if u > 0

Qn+1
i = Qn

i −
u∆t
∆x

(Qn
i+1 −Qn

i ) if u < 0
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Upwind for advection as a finite volume method

Qn+1
i = Qn

i −
∆t
∆x

(Fn
i+1/2 − Fn

i−1/2)

Advection equation: f(q) = uq

Fi−1/2 ≈
1

∆t

∫ tn+1

tn

uq(xi−1/2, t) dt.

First order upwind:

Fi−1/2 = u+Qn
i−1 + u−Qn

i

Qn+1
i = Qn

i −
∆t
∆x

(u+(Qn
i −Qn

i−1) + u−(Qn
i+1 −Qn

i )).

where u+ = max(u, 0), u− = min(u, 0).
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Generalize upwind to a linear system?

Consider qt +Aqx = 0. Eigenvalues are wave speeds.

Upwind method if all λp > 0:

Qn+1
i = Qn

i −
∆t
∆x

(AQn
i −AQn

i−1)

Upwind method if all λp < 0:

Qn+1
i = Qn

i −
∆t
∆x

(AQn
i+1 −AQn

i )

What if some eigenvalues of each sign?

Diagonalize and apply scalar upwind to each wave family.

Easier ways to accomplish this!
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Lax-Wendroff method

Second-order accuracy?

Taylor series:

q(x, t+ ∆t) = q(x, t) + ∆tqt(x, t) +
1
2

∆t2qtt(x, t) + · · ·

From qt = −Aqx we find qtt = A2qxx.

q(x, t+ ∆t) = q(x, t)−∆tAqx(x, t) +
1
2

∆t2A2qxx(x, t) + · · ·

Replace qx and qxx by centered differences:

Qn+1
i = Qn

i −
∆t

2∆x
A(Qn

i+1−Qn
i−1)+

1
2

∆t2

∆x2
A2(Qn

i−1−2Qn
i +Qn

i+1)

Second order of smooth solutions but very dispersive!

Discontinuities or steep gradients =⇒ nonphysical oscillations.
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Advection example

Some examples solving the advection equation
with periodic boundary conditions

Using Clawpack and various numerical methods...

www.clawpack.org/g2s3/claw-apps/advection-1d-
3/README.html
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Godunov’s Method for qt + f(q)x = 0

1. Solve Riemann problems at all interfaces, yielding waves
Wp

i−1/2 and speeds sp
i−1/2, for p = 1, 2, . . . , m.

Riemann problem: Original equation with piecewise constant
data.
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Godunov’s Method for qt + f(q)x = 0

Then either:

1. Compute new cell averages by integrating over cell at tn+1,

2. Compute fluxes at interfaces and flux-difference:

Qn+1
i = Qni −

∆t
∆x

[Fni+1/2 − Fni−1/2]

3. Update cell averages by contributions from all waves entering cell:

Qn+1
i = Qni −

∆t
∆x

[A+∆Qi−1/2 +A−∆Qi+1/2]

where A±∆Qi−1/2 =
m∑
i=1

(spi−1/2)±Wp
i−1/2.
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Godunov’s method with flux differencing

Qn
i defines a piecewise constant function

q̃n(x, tn) = Qn
i for xi−1/2 < x < xi+1/2

Discontinuities at cell interfaces =⇒ Riemann problems.

tn

tn+1

Qn
i

Qn+1
i

q̃n(xi−1/2, t) ≡ q∨
|
(Qi−1, Qi) for t > tn.

Fn
i−1/2 =

1
∆t

∫ tn+1

tn

f(q∨
|
(Qn

i−1, Q
n
i )) dt = f(q∨

|
(Qn

i−1, Q
n
i )).
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Wave-propagation viewpoint

For linear system qt +Aqx = 0, the Riemann solution consists of

wavesWp propagating at constant speed λp.
λ2∆t

W1
i−1/2

W1
i+1/2

W2
i−1/2

W3
i−1/2

Qi −Qi−1 =
m∑

p=1

αp
i−1/2r

p ≡
m∑

p=1

Wp
i−1/2.

Qn+1
i = Qn

i −
∆t
∆x
[
λ2W2

i−1/2 + λ3W3
i−1/2 + λ1W1

i+1/2

]
.
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First-order REA Algorithm

1 Reconstruct a piecewise constant function q̃n(x, tn)
defined for all x, from the cell averages Qn

i .

q̃n(x, tn) = Qn
i for all x ∈ Ci.

2 Evolve the hyperbolic equation exactly (or approximately)
with this initial data to obtain q̃n(x, tn+1) a time ∆t later.

3 Average this function over each grid cell to obtain new cell
averages

Qn+1
i =

1
∆x

∫
Ci
q̃n(x, tn+1) dx.

R.J. LeVeque, University of Washington Gene Golub SIAM Summer School 2012



Godunov’s method for advection

Qn
i defines a piecewise constant function

q̃n(x, tn) = Qn
i for xi−1/2 < x < xi+1/2

Discontinuities at cell interfaces =⇒ Riemann problems.
u > 0 u < 0

xi−1/2 xi+1/2

Qn
i

Qn
i−1

Qn
i+1

tn

tn+1

Wi−1/2

xi−1/2 xi+1/2

Qn
i

Qn
i−1

Qn
i+1

tn

tn+1

Wi−1/2
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First-order REA Algorithm

Cell averages and piecewise constant reconstruction:

After evolution:
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Cell update

The cell average is modified by

u∆t · (Qn
i−1 −Qn

i )
∆x

So we obtain the upwind method

Qn+1
i = Qn

i −
u∆t
∆x

(Qn
i −Qn

i−1).
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Upwind wave-propagation algorithm

Qn+1
i = Qn

i −
∆t
∆x

 m∑
p=1

(λp)+Wp
i−1/2 +

m∑
p=1

(λp)−Wp
i+1/2


or

Qn+1
i = Qn

i −
∆t
∆x

[
A+∆Qi−1/2 +A−∆Qi+1/2

]
.

where the fluctuations are defined by

A−∆Qi−1/2 =
m∑

p=1

(λp)−Wp
i−1/2, left-going

A+∆Qi−1/2 =
m∑

p=1

(λp)+Wp
i−1/2, right-going
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Upwind wave-propagation algorithm

Qn+1
i = Qn

i −
∆t
∆x

 m∑
p=1

(sp
i−1/2)+Wp

i−1/2 +
m∑

p=1

(sp
i+1/2)−Wp

i+1/2


where

s+ = max(s, 0), s− = min(s, 0).

Note: Requires only waves and speeds.

Applicable also to hyperbolic problems not in conservation form.

For qt + f(q)x = 0, conservative if waves chosen properly,
e.g. using Roe-average of Jacobians.

Great for general software, but only first-order accurate (upwind
method for linear systems).
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Second-order REA Algorithm

1 Reconstruct a piecewise linear function q̃n(x, tn) defined
for all x, from the cell averages Qn

i .

q̃n(x, tn) = Qn
i + σn

i (x− xi) for all x ∈ Ci.

2 Evolve the hyperbolic equation exactly (or approximately)
with this initial data to obtain q̃n(x, tn+1) a time ∆t later.

3 Average this function over each grid cell to obtain new cell
averages

Qn+1
i =

1
∆x

∫
Ci
q̃n(x, tn+1) dx.
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Second-order REA Algorithm

Cell averages and piecewise linear reconstruction:

After evolution:
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Choice of slopes

Q̃n(x, tn) = Qn
i + σn

i (x− xi) for xi−1/2 ≤ x < xi+1/2.

Applying REA algorithm gives:

Qn+1
i = Qn

i −
u∆t
∆x

(Qn
i −Qn

i−1)− 1
2
u∆t
∆x

(∆x− ū∆t) (σn
i − σn

i−1)

Choice of slopes:

Centered slope: σn
i =

Qn
i+1 −Qn

i−1

2∆x
(Fromm)

Upwind slope: σn
i =

Qn
i −Qn

i−1

∆x
(Beam-Warming)

Downwind slope: σn
i =

Qn
i+1 −Qn

i

∆x
(Lax-Wendroff)
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Oscillations

Any of these slope choices will give oscillations near
discontinuities.

Ex: Lax-Wendroff:
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High-resolution methods

Want to use slope where solution is smooth for “second-order”
accuracy.

Where solution is not smooth, adding slope corrections gives
oscillations.

Limit the slope based on the behavior of the solution.

σn
i =

(
Qn

i+1 −Qn
i

∆x

)
Φn

i .

Φ = 1 =⇒ Lax-Wendroff,

Φ = 0 =⇒ upwind.
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Minmod slope

minmod(a, b) =


a if |a| < |b| and ab > 0
b if |b| < |a| and ab > 0
0 if ab ≤ 0

Slope:

σn
i = minmod((Qn

i −Qn
i−1)/∆x, (Qn

i+1 −Qn
i )/∆x)

=
(
Qn

i+1 −Qn
i

∆x

)
Φ(θn

i )

where

θn
i =

Qn
i −Qn

i−1

Qn
i+1 −Qn

i

Φ(θ) = minmod(θ, 1)

R.J. LeVeque, University of Washington Gene Golub SIAM Summer School 2012



Piecewise linear reconstructions

Lax-Wendroff reconstruction:

Minmod reconstruction:
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Some popular limiters

Linear methods:

upwind : φ(θ) = 0
Lax-Wendroff : φ(θ) = 1

Beam-Warming : φ(θ) = θ

Fromm : φ(θ) =
1
2

(1 + θ)

High-resolution limiters:

minmod : φ(θ) = minmod(1, θ)
superbee : φ(θ) = max(0, min(1, 2θ), min(2, θ))

MC : φ(θ) = max(0, min((1 + θ)/2, 2, 2θ))

van Leer : φ(θ) =
θ + |θ|
1 + |θ|
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Slope limiters and flux limiters

Slope limiter formulation for advection:

Q̃n(x, tn) = Qn
i + σn

i (x− xi) for xi−1/2 ≤ x < xi+1/2.

Applying REA algorithm gives:

Qn+1
i = Qn

i −
u∆t
∆x

(Qn
i −Qn

i−1)− 1
2
u∆t
∆x

(∆x− ū∆t) (σn
i − σn

i−1)

Flux limiter formulation:

Qn+1
i = Qn

i −
∆t
∆x

(Fn
i+1/2 − Fn

i−1/2)

with flux

Fn
i−1/2 = uQn

i−1 +
1
2
u(∆x− u∆t)σn

i−1.
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Wave limiters

LetWi−1/2 = Qn
i −Qn

i−1.

Upwind: Qn+1
i = Qn

i − u∆t
∆xWi−1/2.

Lax-Wendroff:

Qn+1
i = Qn

i −
u∆t
∆x
Wi−1/2 −

∆t
∆x

(F̃i+1/2 − F̃i−1/2)

F̃i−1/2 =
1
2

(
1−

∣∣∣∣u∆t
∆x

∣∣∣∣) |u|Wi−1/2

High-resolution method:

F̃i−1/2 =
1
2

(
1−

∣∣∣∣u∆t
∆x

∣∣∣∣) |u|W̃i−1/2

where W̃i−1/2 = Φi−1/2Wi−1/2.
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2d finite volume method for qt + f(q)x + g(q)y = 0

Evolution of total mass due to fluxes through cell edges:

d

dt

∫∫
Cij

q(x, y, t) dx dy =
∫ yj+1/2

yj−1/2

f(q(xi+1/2, y, t) dy

−
∫ yj+1/2

yj−1/2

f(q(xi−1/2, y, t) dy

+
∫ xi+1/2

xi−1/2

g(q(x, yj+1/2, t) dx

−
∫ xi+1/2

xi−1/2

g(q(x, yj−1/2, t) dx.

Suggests:

∆x∆yQn+1
ij −∆x∆yQnij

∆t
= −∆y[Fni+1/2,j − Fni−1/2,j ]

−∆x[Gni,j+1/2 −Gni,j−1/2],
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2d finite volume method for qt + f(q)x + g(q)y = 0

∆x∆yQn+1
ij = ∆x∆yQn

ij −∆t∆y[Fn
i+1/2,j − Fn

i−1/2,j ]

−∆t∆x[Gn
i,j+1/2 −Gn

i,j−1/2],

Where we define numerical fluxes:

Fni−1/2,j ≈
1

∆t∆y

∫ tn+1

tn

∫ yj+1/2

yj−1/2

f(q(xi−1/2, y, t)) dy dt,

Gni,j−1/2 ≈
1

∆t∆x

∫ tn+1

tn

∫ xi+1/2

xi−1/2

g(q(x, yj−1/2, t)) dx dt.

Rewrite by dividing by ∆x∆y:

Qn+1
ij = Qnij −

∆t
∆x

[Fni+1/2,j − Fni−1/2,j ]

− ∆t
∆y

[Gni,j+1/2 −Gni,j−1/2].
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2d finite volume method

Qn+1
ij = Qnij −

∆t
∆x

[Fni+1/2,j − Fni−1/2,j ]

− ∆t
∆y

[Gni,j+1/2 −Gni,j−1/2].

Fluctuation form:

Qn+1
ij = Qij −

∆t
∆x

(A+∆Qi−1/2,j +A−∆Qi+1/2,j)

− ∆t
∆y

(B+∆Qi,j−1/2 + B−∆Qi,j+1/2)

− ∆t
∆x

(F̃i+1/2,j − F̃i−1/2,j)−
∆t
∆y

(G̃i,j+1/2 − G̃i,j−1/2).

The F̃ and G̃ are correction fluxes to go beyond Godunov’s
upwind method.

Incorporate approximations to second derivative terms in each
direction (qxx and qyy) and mixed term qxy.
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Advection: Donor Cell Upwind

With no correction fluxes, Godunov’s method for advection is

Donor Cell Upwind:

Qn+1
ij = Qij −

∆t
∆x

[u+(Qij −Qi−1,j) + u−(Qi+1,j −Qij)]

− ∆t
∆y

[v+(Qij −Qi,j−1) + v−(Qi,j+1 −Qij)].

Stable only if
∣∣u∆t

∆x

∣∣+
∣∣∣v∆t

∆y

∣∣∣ ≤ 1.
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Advection: Corner Transport Upwind (CTU)

Correction fluxes can be added to advect waves correctly.

Corner Transport Upwind:

Stable for max
(∣∣u∆t

∆x

∣∣ , ∣∣∣v∆t
∆y

∣∣∣) ≤ 1.
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Advection: Corner Transport Upwind (CTU)

Need to transport triangular region from cell (i, j) to (i, j + 1):

Area =
1
2

(u∆t)(v∆t) =⇒
( 1

2uv(∆t)2

∆x∆y

)
(Qij −Qi−1,j).

Accomplished by correction flux:

G̃i,j+1/2 = −1
2

∆t
∆x

uv(Qij −Qi−1,j)

∆t
∆y (G̃i,j+1/2 − G̃i,j−1/2) gives approximation to 1

2∆t2uvqxy .

∆t
∆x (F̃i+1/2,j − F̃i−1/2,j) gives similar approximation.
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Wave propagation algorithm for qt + Aqx +Bqy = 0

Decompose A = A+ +A− and B = B+ +B−.

For ∆Q = Qij −Qi−1,j :
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Equations of linear elasticity

σ11
t − (λ+ 2µ)ux − λvy = 0

σ22
t − λux − (λ+ 2µ)vy = 0

σ12
t − µ(vx + uy) = 0

ρut − σ11
x − σ12

y = 0

ρvt − σ12
x − σ22

y = 0

q =


σ11

σ22

σ12

u
v


where λ(x, y) and µ(x, y) are Lamé parameters.

This has the form qt +Aqx +Bqy = 0.

The matrix (A cos θ +B sin θ) has eigenvalues −cp, −cs, 0, cs, cp

where the P-wave speed and S-wave speed are cp =
√

λ+2µ
ρ , cs =

√
µ
ρ
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Elastic waves

P-waves S-waves
cpt cst
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Seismic waves in layered earth

Layers 1 and 3: ρ = 2, λ = 1, µ = 1, cp ≈ 1.2, cs ≈ 0.7

Layer 2: ρ = 5, λ = 10, µ = 5, cp = 2.0, cs = 1

Impulse at top surface at t = 0.

Solved on uniform Cartesian grid (600× 300).

Cell average of material parameters used in each finite volume
cell.

Extrapolation at computational boundaries.
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Seismic wave in layered medium

Red = div(u) [P-waves], Blue = curl(u) [S-waves]
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Red = div(u) [P-waves], Blue = curl(u) [S-waves]
Four levels with refinement factors 4, 4, 4

High-resolution wave propagation algorithms from CLAWPACK
(www.clawpack.org)
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Extra Material

You might want to work through

the following slides on your own!
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TVD Methods

Total variation:
TV (Q) =

∑
i

|Qi −Qi−1|

For a function, TV (q) =
∫
|qx(x)| dx.

A method is Total Variation Diminishing (TVD) if

TV (Qn+1) ≤ TV (Qn).

If Qn is monotone, then so is Qn+1.

No spurious oscillations generated.

Gives a form of stability useful for proving convergence,
also for nonlinear scalar conservation laws.
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TVD REA Algorithm

1 Reconstruct a piecewise linear function q̃n(x, tn) defined
for all x, from the cell averages Qn

i .

q̃n(x, tn) = Qn
i + σn

i (x− xi) for all x ∈ Ci

with the property that TV (q̃n) ≤ TV (Qn).

2 Evolve the hyperbolic equation exactly (or approximately)
with this initial data to obtain q̃n(x, tn+1) a time k later.

3 Average this function over each grid cell to obtain new cell
averages

Qn+1
i =

1
∆x

∫
Ci
q̃n(x, tn+1) dx.

Note: Steps 2 and 3 are always TVD.
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Godunov (upwind) on acoustics

tn

tn+1

Qn
i

Qn+1
i

Data at time tn : q̃n(x, tn) = Qn
i for xi−1/2 < x < xi+1/2

Solving Riemann problems for small ∆t gives solution:

q̃n(x, tn+1) =


Q∗i−1/2 if xi−1/2 − c∆t < x < xi−1/2 + c∆t,
Qn

i if xi−1/2 + c∆t < x < xi+1/2 − c∆t,
Q∗i+1/2 if xi+1/2 − c∆t < x < xi+1/2 + c∆t,

So computing cell average gives:

Qn+1
i =

1
∆x

[
c∆tQ∗i−1/2 + (∆x− 2c∆t)Qn

i + c∆tQ∗i+1/2

]
.
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Godunov (upwind) on acoustics

Qn+1
i =

1
∆x

[
c∆tQ∗i−1/2 + (∆x− 2c∆t)Qn

i + c∆tQ∗i+1/2

]
.

Solve Riemann problems:

Qn
i −Qn

i−1 = ∆Qi−1/2 =W1
i−1/2 +W2

i−1/2 = α1
i−1/2r

1 + α2
i−1/2r

2,

Qn
i+1 −Qn

i = ∆Qi+1/2 =W1
i+1/2 +W2

i+1/2 = α1
i+1/2r

1 + α2
i+1/2r

2,

The intermediate states are:

Q∗i−1/2 = Qn
i −W2

i−1/2, Q∗i+1/2 = Qn
i +W1

i+1/2,

So,

Qn+1
i =

1
∆x

[
c∆t(Qni −W2

i−1/2) + (∆x− 2c∆t)Qni + c∆t(Qni +W1
i+1/2)

]
= Qni −

c∆t
∆x
W2
i−1/2 +

c∆t
∆x
W1
i+1/2.
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Godunov (upwind) on acoustics

Solve Riemann problems:

Qn
i −Qn

i−1 = ∆Qi−1/2 =W1
i−1/2 +W2

i−1/2 = α1
i−1/2r

1 + α2
i−1/2r

2,

Qn
i+1 −Qn

i = ∆Qi+1/2 =W1
i+1/2 +W2

i+1/2 = α1
i+1/2r

1 + α2
i+1/2r

2,

The waves are determined by solving for α from Rα = ∆Q:

A =
[

0 K
1/ρ 0

]
, R =

[
−Z Z

1 1

]
, R−1 =

1
2Z

[
−1 Z

1 Z

]
.

So

∆Q =
[

∆p
∆u

]
= α1

[
−Z

1

]
+ α2

[
Z
1

]
with

α1 =
1

2Z
(−∆p+ Z∆u), α2 =

1
2Z

(∆p+ Z∆u).
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CLAWPACK Riemann solver

The hyperbolic problem is specified by the Riemann solver
• Input: Values of q in each grid cell

• Output: Solution to Riemann problem at each interface.
• WavesWp ∈ lRm, p = 1, 2, . . . , Mw

• Speeds sp ∈ lR, p = 1, 2, . . . , Mw,

• Fluctuations A−∆Q, A+∆Q ∈ lRm

Note: Number of waves Mw often equal to m (length of q),
but could be different (e.g. HLL solver has 2 waves).

Fluctuations:

A−∆Q = Contribution to cell average to left,
A+∆Q = Contribution to cell average to right

For conservation law, A−∆Q+A+∆Q = f(Qr)− f(Ql)
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CLAWPACK Riemann solver

Inputs to rp1 subroutine:

ql(i,1:m) = Value of q at left edge of ith cell,

qr(i,1:m) = Value of q at right edge of ith cell,

Warning: The Riemann problem at the interface between cells
i− 1 and i has left state qr(i-1,:) and right state ql(i,:).

rp1 is normally called with ql = qr = q,
but designed to allow other methods:
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Wave propagation algorithms in 2D

Clawpack requires:

Normal Riemann solver rpn2.f
Solves 1d Riemann problem qt +Aqx = 0
Decomposes ∆Q = Qij −Qi−1,j into A+∆Q and A−∆Q.
For qt +Aqx +Bqy = 0, split using eigenvalues, vectors:

A = RΛR−1 =⇒ A− = RΛ−R−1, A+ = RΛ+R−1

Input parameter ixy determines if it’s in x or y direction.
In latter case splitting is done using B instead of A.
This is all that’s required for dimensional splitting.

Transverse Riemann solver rpt2.f
Decomposes A+∆Q into B−A+∆Q and B+A+∆Q by splitting
this vector into eigenvectors of B.

(Or splits vector into eigenvectors of A if ixy=2.)
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