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Outline

• Shallow water equations with topography

• Approximate Riemann solvers

• f-wave formulation of wave-propagation method.

• Well-balanced methods to preserve ocean-at-rest.

• Dry state Riemann solvers
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Great Tohoku Tsunami, 11 March 2011

Modeling and Simulating Tsunamis with an Eye to Hazard
Mitigation, RJL and J. Behrens, SIAM News, May, 2011
http://www.siam.org/news/news.php?id=1882
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Shallow water equations

h(x, t) = depth
u(x, t) = velocity (depth averaged, varies only with x)

Conservation of mass and momentum hu gives system of two
equations.

mass flux = hu,
momentum flux = (hu)u+ p where p = hydrostatic pressure

ht + (hu)x = 0

(hu)t +
(
hu2 +

1
2
gh2

)
x

= 0

Jacobian matrix:

f ′(q) =
[

0 1
gh− u2 2u

]
, λ = u±

√
gh.
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Shallow water equations

Hydrostatic pressure:

Pressure at depth z > 0 below the surface is gz from weight of
water above.

Depth-averaged pressure is

p =
∫ h

0
gz dz

=
1
2
gz2

∣∣∣∣h
0

=
1
2
gh2.
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The Riemann problem
Dam break problem for shallow water equations

ht + (hu)x = 0

(hu)t +
(
hu2 +

1
2
gh2
)
x

= 0
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Riemann solution for the SW equations in x-t plane

Similarity solution:
Solution is constant on any ray: q(x, t) = Q(x/t)

Riemann solution can be calculated for many problems.
Linear: Eigenvector decomposition. Nonlinear: more difficult.

In practice “approximate Riemann solvers” used numerically.
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An isolated shock

If an isolated shock with left and right states ql and qr is
propagating at speed s

then the Rankine-Hugoniot condition must be satisfied:

f(qr)− f(ql) = s(qr − ql)

For a system q ∈ lRm this can only hold for certain pairs ql, qr:

For a linear system, f(qr)− f(ql) = Aqr −Aql = A(qr − ql).
So qr − ql must be an eigenvector of f ′(q) = A.

A ∈ lRm×m =⇒ there will be m rays through ql in state space
in the eigen-directions, and qr must lie on one of these.

For a nonlinear system, there will be m curves through ql called
the Hugoniot loci.
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Riemann solution for the SW equations in x-t plane

Nonlinear Riemann solution: If we know the 1-wave is a
rarefaction wave, 2-wave is a shock,
Can find h∗ by solving:

ul + 2(
√
ghl −

√
gh∗) = ur + (h∗ − hr)

√
g

2

(
1
h∗

+
1
h r

)
.

Expensive to do at every cell interface!
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HLL Solver

Harten – Lax – van Leer (1983): Use only 2 waves with
s1 =minimum characteristic speed
s2 =maximum characteristic speed

W1 = Q∗ −Q`, W2 = Qr −Q∗

Conservation implies unique value for middle state Q∗:

s1W1 + s2W2 = f(Qr)− f(Q`)

=⇒ Q∗ =
f(Qr)− f(Q`)− s2Qr + s1Q`

s1 − s2
.

Choice of speeds:
• Max and min of expected speeds over entire problem,
• Max and min of eigenvalues of f ′(Q`) and f ′(Qr).
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HLLE Solver

Einfeldt: Choice of speeds for gas dynamics (or shallow water)
that guarantees positivity.

Based on characteristic speeds and Roe averages:

s1
i−1/2 = min

p
(min(λp

i , λ̂
p
i−1/2)),

s2
i−1/2 = max

p
(max(λp

i+1, λ̂
p
i−1/2)).

where

λp
i is the pth eigenvalue of the Jacobian f ′(Qi),

λ̂p
i−1/2 is the pth eigenvalue using Roe average f ′(Q̂i−1/2)
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Approximate Riemann Solvers

Approximate true Riemann solution by set of waves consisting
of finite jumps propagating at constant speeds.

Local linearization:

Replace qt + f(q)x = 0 by

qt + Âqx = 0,

where Â = Â(ql, qr) ≈ f ′(qave).

Then decompose

qr − ql = α1r̂1 + · · ·αmr̂m

to obtain wavesWp = αpr̂p with speeds sp = λ̂p.
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Approximate Riemann Solvers

How to use?

One approach: determine Q∗ = state along x/t = 0,

Q∗ = Qi−1 +
∑

p:sp<0

Wp, Fi−1/2 = f(Q∗),

A−∆Q = Fi−1/2 − f(Qi−1), A+∆Q = f(Qi)− Fi−1/2.

Wave-propagation algorithm uses:

A−∆Q =
∑

p:sp<0

spWp, A+∆Q =
∑

p:sp>0

spWp.

Conservative only if A−∆Q+A+∆Q = f(Qi)− f(Qi−1).

This holds for Roe solver.
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Roe Solver

Solve qt + Âqx = 0 where Â satisfies

Â(qr − ql) = f(qr)− f(ql).

Then:

• Good approximation for weak waves (smooth flow)

• Single shock captured exactly:

f(qr)− f(ql) = s(qr− ql) =⇒ qr− ql is an eigenvector of Â

• Wave-propagation algorithm is conservative since

A−∆Qi−1/2+A+∆Qi−1/2 =
∑

sp
i−1/2W

p
i−1/2 = A

∑
Wp

i−1/2.

Roe average Â can be determined analytically for many
important nonlinear systems (e.g. Euler, shallow water).
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Roe solver for Shallow Water

Given hl, ul, hr, ur, define

h̄ =
hl + hr

2
, û =

√
hlul +

√
hrur√

hl +
√
hr

Then

Â = Jacobian matrix evaluated at this average state

satisfies
A(qr − ql) = f(qr)− f(ql).

• Roe condition is satisfied,
• Isolated shock modeled well,
• Wave propagation algorithm is conservative,
• High resolution methods obtained using corrections with

limited waves.
R.J. LeVeque, University of Washington Gene Golub SIAM Summer School 2012



Roe solver for Shallow Water

Given hl, ul, hr, ur, define

h̄ =
hl + hr

2
, û =

√
hlul +

√
hrur√

hl +
√
hr

Eigenvalues of Â = f ′(q̂) are:

λ̂1 = û− ĉ, λ̂2 = û+ ĉ, ĉ =
√
gh̄.

Eigenvectors:

r̂1 =
[

1
û− ĉ

]
, r̂2 =

[
1

û+ ĉ

]
.

Examples in Clawpack 4.3 to be converted soon!
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The Riemann problem over topography

ht + (hu)x = 0

(hu)t +
(
hu2 +

1
2
gh2
)
x

= −ghBx(x)

With piecewise constant B(x), source term is delta function.
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Tsunami from 27 Feb 2010 quake off Chile
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Cross section of Atlantic Ocean & tsunami
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Transect of 27 February 2010 tsunami

Bathymetry, depth change by > 1000 m from one cell to next,

Surface elevation changes on order of a few cm.
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Source terms and quasi-steady solutions

qt + f(q)x = ψ(q)

Steady-state solution:

qt = 0 =⇒ f(q)x = ψ(q)

Balance between flux gradient and source.

Quasi-Steady solution:

Small perturbation propagating against steady-state background.

qt � f(q)x ≈ ψ(q)

Want accurate calculation of perturbation.

Examples:
• Shallow water equations with bottom topography and flat surface
• Stationary atmosphere where pressure gradient balances gravity

R.J. LeVeque, University of Washington Gene Golub SIAM Summer School 2012



Fractional steps for a quasisteady problem
Alternate between solving homogeneous conservation law

qt + f(q)x = 0 (1)

and source term
qt = ψ(q). (2)

When qt � f(q)x ≈ ψ(q):

• Solving (1) gives large change in q

• Solving (2) should essentially cancel this change.

Numerical difficulties:

• (1) and (2) are solved by very different methods. Generally will
not have proper cancellation.

• Nonlinear limiters are applied to f(q)x term, not to
small-perturbation waves. Large variation in steady state hides
structure of waves.
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Incorporating source term in f-waves

qt + f(q)x = ψ with f(q)x ≈ ψ.

Concentrate source at interfaces: Ψi−1/2 δ(x− xi−1/2)

Split f(Qi)− f(Qi−1)−∆xΨi−1/2 =
∑

pZ
p
i−1/2

Use these waves in wave-propagation algorithm.

Steady state maintained: (Well balanced)

If f(Qi)−f(Qi−1)
∆x = Ψi−1/2 then Zp ≡ 0

Near steady state:

Deviation from steady state is split into waves and limited.

R.J. LeVeque, University of Washington Gene Golub SIAM Summer School 2012



Shallow water equations with bathymetry B(x)

ht + (hu)x = 0

(hu)t +
(
hu2 +

1
2
gh2
)
x

= −ghBx(x)

Ocean-at-rest equilibrium:

ue ≡ 0, he(x) +B(x) ≡ η̄ = sea level.

Using
Ψi−1/2 = −g

2
(hi−1 + hi)

gives exactly well-balanced method, but only because hydrostatic pressure is
quadratic function of h:

f(Qi)− f(Qi−1)−Ψi−1/2(Bi −Bi−1) =

=
(

1
2
gh2

i −
1
2
gh2

i−1

)
+
g

2
(hi−1 + hi)(Bi −Bi−1)

=
g

2
(hi−1 + hi)((hi +Bi)− (hi−1 +Bi−1))

= 0 if hi +Bi = hi−1 +Bi−1 = η̄.
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Flux-based wave decomposition (f-waves)

Choose rp (e.g. eigenvectors of linearized Jacobian).

Then decompose flux difference:

fr(qr)− fl(ql) =
m∑

p=1

βprp ≡
m∑

p=1

Zp

rather than jump in q:

qr − ql =
m∑

p=1

αprp ≡
m∑

p=1

Wp

For linear system or Roe solver,

Zp = spWp, sp = eigenvalue.

Bale, RJL, Mitran, Rossmanith, SISC 2002 [link]
RJL, Pelanti, JCP 2001 [link]

R.J. LeVeque, University of Washington Gene Golub SIAM Summer School 2012
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Wave-propagation algorithm using waves

Qn+1
i = Qn

i −
∆t
∆x

[A+∆Qi−1/2 +A−∆Qi+1/2]

− ∆t
∆x

[F̃i+1/2 − F̃i−1/2]

Standard version: Qi −Qi−1 =
∑m

p=1W
p
i−1/2

A−∆Qi+1/2 =
m∑

p=1

(sp
i+1/2)−Wp

i+1/2

A+∆Qi−1/2 =
m∑

p=1

(sp
i−1/2)+Wp

i−1/2

F̃i−1/2 =
1
2

m∑
p=1

|sp
i−1/2|

(
1− ∆t

∆x
|sp

i−1/2|
)
W̃p

i−1/2.
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Wave-propagation algorithm using f-waves

Qn+1
i = Qn

i −
∆t
∆x

[A+∆Qi−1/2 +A−∆Qi+1/2]

− ∆t
∆x

[F̃i+1/2 − F̃i−1/2]

Using f -waves: fi(Qi)− fi−1(Qi−1) =
∑m

p=1Z
p
i−1/2

A−∆Qi−1/2 =
∑

p:sp
i−1/2

<0

Zp
i−1/2,

A+∆Qi−1/2 =
∑

p:sp
i−1/2

>0

Zp
i−1/2,

F̃i−1/2 =
1
2

m∑
p=1

sgn(sp
i−1/2)

(
1− ∆t

∆x
|sp

i−1/2|
)
Z̃p

i−1/2
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f-wave approximate Riemann solver

Let Â be any averaged Jacobian matrix, e.g.
Â = f ′((ql + qr)/2).

Use eigenvectors of Â to do f-wave splitting.

Then A−∆Qi−1/2 +A+∆Qi+1/2 = f(Qi)− f(Qi−1) and so
method is conservative.

If Â = Roe average, then this is equivalent to usual Roe
Riemann solver, and Zp = spWp.

Clawpack: Use library routine step1fw.f instead of step1.f.
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Dry cells and inundation

Use regular grid (e.g. Latitude–Longitude).

Finite volume cells can be wet (h > 0) or dry (h = 0).

Allow state to change dynamically from one step to next.

Need Riemann solver that handles dry states.

Use adaptive mesh refinement (AMR) to resolve shoreline.

AMR algorithms have to interact well with wetting/drying.

Also with well-balancing.

R.J. LeVeque, University of Washington Gene Golub SIAM Summer School 2012
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Inundation of Hilo, Hawaii from 27 Feb 2010 event

Resolution ∆y ≈ 160 km on Level 1 (covering Pacific Ocean),
∆y ≈ 10m on Level 5 (shown below).

Using 5 levels of refinement with ratios 8, 4, 16, 32.

Total refinement factor: 214 = 16, 384 in each direction.

With 15 m displacement at fault:

R.J. LeVeque, University of Washington Gene Golub SIAM Summer School 2012



27 February 2010 tsunami
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Inundation of Hilo, Hawaii

Using 5 levels of refinement with ratios 8, 4, 16, 32.

Resolution ≈ 160 km on Level 1 and ≈ 10m on Level 5.

Total refinement factor: 214 = 16, 384 in each direction.

With 15 m displacement at fault (27 Feb 2010):

With 90 m displacement at fault (1960?):
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The Riemann problem with dry state

ht + (hu)x = 0

(hu)t +
(
hu2 +

1
2
gh2
)
x

= −ghBx(x)

For small velocity u` > 0, the shore acts as solid wall:
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Some references

GeoClaw: www.clawpack.org/geoclaw
contains links to the recent paper with references and codes:

Tsunami modeling with adaptively refined finite volume
methods, by RJL, D. L. George, M. J. Berger, Acta Numerica
2011

The GeoClaw software for depth-averaged flows with adaptive
refinement, by M. J. Berger, D. L. George, RJL, and K. M.
Mandli, 2011 Advances in Water Resources

GeoClaw results for the NTHMP tsunami benchmark problems,
with Chamberlain, González, Hirai, Varkovitzky, 2011.

R.J. LeVeque, University of Washington Gene Golub SIAM Summer School 2012
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