
Python crash course

Slides taken from AMath 583 slides, lectures 25 and 26.

See also other references on
www.clawpack.org/g2s3/doc/resources.html

Randy LeVeque, University of Washington Gene Golub SIAM Summer School, 2012

http://faculty.washington.edu/rjl/uwamath583s11/sphinx/notes/html/slides.html
http://www.clawpack.org/g2s3/doc/resources.html

Python

Python is an object oriented general-purpose language

Advantages:
• Can be used interactively from a Python shell

(similar to Matlab)
• Can also write scripts to execute from Unix shell
• Little overhead to start programming
• Powerful modern language
• Many modules are available for specialized work
• Good graphics and visualization modules
• Easy to combine with other languages (e.g. Fortran)
• Open source and runs on all platforms

Randy LeVeque, University of Washington Gene Golub SIAM Summer School, 2012

Python

Disadvantage: Can be slow to do certain things,
such as looping over arrays.

Code is interpreted rather than compiled

Need to use suitable modules (e.g. NumPy) for speed.

Can easily create custom modules from compiled code written
in Fortran, C, etc.

Can also use extensions such as Cython that makes it easier to
mix Python with C code that will be compiled.

Python is often used for high-level scripts that e.g., download
data from the web, run a set of experiments, collate and plot
results.

Randy LeVeque, University of Washington Gene Golub SIAM Summer School, 2012

Interactive Python

Python can be used in a mode where commands are executed
as typed....

Standard Python shell:
$ python
Python 2.5.2 (r252:60911, Jul 31 2008, 17:31:22)
>>>

Better shell: ipython

$ ipython
IPython 0.8.1 -- An enhanced Interactive Python.
? -> Introduction to IPython’s features.
%magic -> Information about IPython’s ’magic’ % functions.
help -> Python’s own help system.
object? -> Details about ’object’. ?object also works,

?? prints more.

In [1]:

Or use Sage shell or notebook (web interface):
www.sagemath.org

Randy LeVeque, University of Washington Gene Golub SIAM Summer School, 2012

http://www.sagemath.org

Executing Python scripts

Can collect commands in a file somename.py
(a script or program) Similar to m-files in Matlab.

Then you can execute the commands either from the Unix
prompt:

$ python somename.py

or in a Python or IPython shell:

>>> execfile(’somename.py’)

In [13]: execfile(’somename.py’)
In [14]: run somename.py # only works in IPython

Later we’ll see you might instead want to import somename
as a module.

Randy LeVeque, University of Washington Gene Golub SIAM Summer School, 2012

Program structure

Python has no begin · · · end keywords or braces.

Blocks are determined entirely by indentation.

Forces you to write readable code!

def f(x):
"""Funny way to define abs(x)."""
if x<0:

y = -x
else:

z = 5.*x
y = z/5.

return y

for x in [-3., 0., 3.]:
print "f at ", x, " is ", f(x)

Randy LeVeque, University of Washington Gene Golub SIAM Summer School, 2012

Object-oriented language

Nearly everything in Python is an object of some class.

The class description tells what data the object holds and what
operations (methods or functions) are defined to interact with
the object.

Every “variable” is really just a pointer to some object. You can
reset it to point to some other object at will.

So variables don’t have “type” (e.g. integer, float, string).
(But the objects they currently point to do.)

Randy LeVeque, University of Washington Gene Golub SIAM Summer School, 2012

Object-oriented language

Nearly everything in Python is an object of some class.

The class description tells what data the object holds and what
operations (methods or functions) are defined to interact with
the object.

Every “variable” is really just a pointer to some object. You can
reset it to point to some other object at will.

So variables don’t have “type” (e.g. integer, float, string).
(But the objects they currently point to do.)

Randy LeVeque, University of Washington Gene Golub SIAM Summer School, 2012

Object-oriented language

>>> x = 3.4
>>> print id(x), type(x) # id() returns memory address
8645588 <type ’float’>

>>> x = 5
>>> print id(x), type(x)
8401752 <type ’int’>

>>> x = [4,5,6]
>>> print id(x), type(x)
1819752 <type ’list’>

>>> x = [7,8,9]
>>> print id(x), type(x)
1843808 <type ’list’>

Randy LeVeque, University of Washington Gene Golub SIAM Summer School, 2012

Object-oriented language

>>> x = [7,8,9]
>>> print id(x), type(x)
1843808 <type ’list’>

>>> x.append(10)
>>> x
[7, 8, 9, 10]
>>> print id(x), type(x)
1843808 <type ’list’>

Note: Object of type ’list’ has a method ’append’ that changes
the object.

A list is a mutable object.

Randy LeVeque, University of Washington Gene Golub SIAM Summer School, 2012

Object-oriented language — gotcha

>>> x = [1,2,3]
>>> print id(x), x
1845768 [1, 2, 3]

>>> y = x
>>> print id(y), y
1845768 [1, 2, 3]

>>> y.append(27)
>>> y
[1, 2, 3, 27]

>>> x
[1, 2, 3, 27]

Note: x and y point to the same object!
Randy LeVeque, University of Washington Gene Golub SIAM Summer School, 2012

Making a copy

>>> x = [1,2,3]
>>> print id(x), x
1845768 [1, 2, 3]

>>> y = list(x) # creates new list object
>>> print id(y), y
1846488 [1, 2, 3]

>>> y.append(27)

>>> y
[1, 2, 3, 27]

>>> x
[1, 2, 3]

Randy LeVeque, University of Washington Gene Golub SIAM Summer School, 2012

integers and floats are immutable

If type(x) in [int,float], then setting y = x
creates a new object y pointing to a new location.

>>> x = 3.4
>>> print id(x), x
8645588 3.4

>>> y = x
>>> print id(y), y
8645572 3.4

>>> y = y+1

>>> print id(y), y
8645572 4.4

>>> print id(x), x
8645588 3.4

Randy LeVeque, University of Washington Gene Golub SIAM Summer School, 2012

Lists

The elements of a list can be any objects
(need not be same type):

>>> L = [3, 4.5, ’abc’, [1,2]]

Indexing starts at 0:

>>> L[0]
3

>>> L[2]
’abc’

>>> L[3]
[1, 2]

>>> L[3][0] # element 0 of L[3]
1

Randy LeVeque, University of Washington Gene Golub SIAM Summer School, 2012

Lists

Lists have several built-in methods, e.g. append, insert, sort,
pop, reverse, remove, etc.

>>> L = [3, 4.5, ’abc’, [1,2]]

>>> L2 = L.pop(2)
>>> L2
’abc’

>>> L
[3, 4.5, [1, 2]]

Note: L still points to the same object, but it has changed.

In IPython: Type L. followed by Tab to see all attributes and
methods.

Randy LeVeque, University of Washington Gene Golub SIAM Summer School, 2012

Lists and tuples

>>> L = [3, 4.5, ’abc’]
>>> L[0] = ’xy’
>>> L
[’xy’, 4.5, ’abc’]

A tuple is like a list but is immutable:

>>> T = (3, 4.5, ’abc’)
>>> T[0]
3
>>> T[0] = ’xy’
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: ’tuple’ object does not support

item assignment

Randy LeVeque, University of Washington Gene Golub SIAM Summer School, 2012

Python modules

When you start Python it has a few basic built-in types and
functions.

To do something fancier you will probably import modules.

Example: to determine what directory we are in or change
directory, we need the module os (operating system):

>>> import os
>>> os.getcwd()
’/Users/rjl’

>>> os.chdir(’uwamath583s11/codes/python’)
>>> os.getcwd()
’/Users/rjl/uwamath583s11/codes/python’

Randy LeVeque, University of Washington Gene Golub SIAM Summer School, 2012

Python modules

When type import modname, Python looks on its search path
for the file modname.py.

You can add more directories using the Unix environment
variable PYTHONPATH.

Or, in Python, using the sys module:

>>> import sys
>>> sys.path # returns list of directories
[’’, ’/usr/bin’,]

>>> sys.path.append(’newdirectory’)

The empty string ” in the search path means it looks first in the
current directory.

Randy LeVeque, University of Washington Gene Golub SIAM Summer School, 2012

Python modules

Searches first in current directory, e.g.

>>> os.getcwd()
’/Users/rjl/uwamath583s11/codes/python’

>>> import myfcns

>>> myfcns.f1
<function f1 at 0x1bf4b0>

>>> myfcns.f1(2.) # evaluate f1 at 2.
3.0

Randy LeVeque, University of Washington Gene Golub SIAM Summer School, 2012

Python modules

Different ways to import:

>>> import os
>>> os.getcwd()
’/Users/rjl/uwamath583s11/codes/python’

>>> from os import getcwd
>>> getcwd()
’/Users/rjl/uwamath583s11/codes/python’

>>> from os import *
>>> getcwd()
’/Users/rjl/uwamath583s11/codes/python’

>>> import myfcns as MF
>>> MF.f1(2.)
3.0

Randy LeVeque, University of Washington Gene Golub SIAM Summer School, 2012

Modules and functions are objects

>>> import myfcns
>>> f = myfcns.f1
>>> f(2.)
3.0

>>> M = myfcns # M points to module

>>> L = [f, M.f2] # a list of functions

>>> L[0](2.)
3.0

Useful if you want to loop over a set of test functions.

Randy LeVeque, University of Washington Gene Golub SIAM Summer School, 2012

Modules and functions are objects

Useful if you want to loop over a set of test functions.

>>> L = [myfcns.f1, myfcns.f2]

>>> for f in L:
... print f, " evaluated at 2. is ", f(2.)
...

<function f1 at 0x1bf4b0> evaluated at 2. is 3.0
<function f2 at 0x1bf4f0> evaluated at 2. is 2980.95798704

Randy LeVeque, University of Washington Gene Golub SIAM Summer School, 2012

Lists aren’t good as numerical arrays

Lists in Python are quite general, can have arbitrary objects as
elements.

Addition and scalar multiplication are defined for lists, but not
what we want for numerical computation, e.g.

Multiplication repeats:

>>> x = [2., 3.]
>>> 2*x
[2.0, 3.0, 2.0, 3.0]

Addition concatenates:

>>> y = [5., 6.]
>>> x+y
[2.0, 3.0, 5.0, 6.0]

Randy LeVeque, University of Washington Gene Golub SIAM Summer School, 2012

NumPy module

Instead, use NumPy arrays:

>>> import numpy as np

>>> x = np.array([2., 3.])
>>> 2*x
array([4., 6.])

>>> y = np.array([5., 6.])
>>> x+y
array([7., 9.])

Other operations also apply component-wise:

>>> np.sqrt(x)
array([1.41421356, 1.73205081])
>>> np.cos(x)
array([-0.41614684, -0.9899925])

Randy LeVeque, University of Washington Gene Golub SIAM Summer School, 2012

NumPy arrays

Unlike lists, all elements of an np.array have the same type

>>> np.array([1, 2, 3]) # all integers
array([1, 2, 3])

>>> np.array([1, 2, 3.]) # one float
array([1., 2., 3.]) # they’re all floats!

Can explicitly state desired data type:

>>> x = np.array([1, 2, 3], dtype=complex)
>>> print x
[1.+0.j, 2.+0.j, 3.+0.j]

>>> (x + 1.j) * 2.j
array([-2.+2.j, -2.+4.j, -2.+6.j])

Randy LeVeque, University of Washington Gene Golub SIAM Summer School, 2012

NumPy arrays for vectors and matrices

>>> A = np.array([[1.,2], [3,4], [5,6]])
>>> A
array([[1., 2.],

[3., 4.],
[5., 6.]])

>>> A.shape
(3, 2)

>>> A.T
array([[1., 3., 5.],

[2., 4., 6.]])

>>> x = np.array([1., 1.])
>>> x.T
array([1., 1.])

Randy LeVeque, University of Washington Gene Golub SIAM Summer School, 2012

NumPy arrays for vectors and matrices

Can index into multi-dimensional arrays:

>>> A = np.array([[1.,2], [3,4], [5,6]])
>>> A
array([[1., 2.],

[3., 4.],
[5., 6.]])

>>> A[1,0]
3.0

Better than as list of lists...

>>> A[1][0]
3.0

Randy LeVeque, University of Washington Gene Golub SIAM Summer School, 2012

NumPy arrays for vectors and matrices

>>> A
array([[1., 2.],

[3., 4.],
[5., 6.]])

>>> x
array([1., 1.])

>>> np.dot(A,x) # matrix-vector product
array([3., 7., 11.])

>>> np.dot(A.T, A) # matrix-matrix product
array([[35., 44.],

[44., 56.]])

Randy LeVeque, University of Washington Gene Golub SIAM Summer School, 2012

NumPy matrices for vectors and matrices

For Linear algebra, may instead want to use numpy.matrix:

>>> A = np.matrix([[1.,2], [3,4], [5,6]])
>>> A
matrix([[1., 2.],

[3., 4.],
[5., 6.]])

Or, Matlab style (as a string that is converted):

>>> A = np.matrix("1.,2; 3,4; 5,6")
>>> A
matrix([[1., 2.],

[3., 4.],
[5., 6.]])

Randy LeVeque, University of Washington Gene Golub SIAM Summer School, 2012

NumPy matrices for vectors and matrices

Note: vectors are handled as matrices with 1 row or column:

>>> x = np.matrix("4.;5.")
>>> x
matrix([[4.],

[5.]])
>>> x.T
matrix([[4., 5.]])
>>> A*x
matrix([[14.],

[32.],
[50.]])

But note that indexing into x requires two indices:

>>> print x[0,0], x[1,0]
4.0 5.0

Randy LeVeque, University of Washington Gene Golub SIAM Summer School, 2012

Which to use, array or matrix?

For linear algebra matrix may be easier (and more like Matlab),
but vectors need two subscripts!

For most other uses, arrays more natural, e.g.

>>> x = np.linspace(0., 3., 100) # 100 points
>>> y = x**5 - 2.*sqrt(x)*cos(x) # 100 values
>>> plot(x,y)

np.linspace returns an array, which is what is needed here.

We will always use arrays. If you want to specify Matlab-style:

>>> B = np.matrix("1,2; 3,4").A
>>> B
array([[1, 2],

[3, 4]])

Randy LeVeque, University of Washington Gene Golub SIAM Summer School, 2012

Rank of an array

The rank of an array is the number of subscripts it takes:

>>> A = np.ones((4,4))

>>> A
array([[1., 1., 1., 1.],

[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]])

>>> np.rank(A)
2

Warning: This is not the rank of the matrix in the linear algebra
sense (dimension of the column space)!

Randy LeVeque, University of Washington Gene Golub SIAM Summer School, 2012

Rank of an array

Scalars have rank 0:

>>> z = np.array(7.)
>>> z
array(7.0)

NumPy arrays of any dimension are supported, e.g. rank 3:

>>> T = np.ones((2,2,2))
>>> T
array([[[1., 1.],

[1., 1.]],

[[1., 1.],
[1., 1.]]])

>>> T[0,0,0]
1.0

Randy LeVeque, University of Washington Gene Golub SIAM Summer School, 2012

Linear algebra with NumPy

>>> A = np.array([[1., 2.], [3, 4]])
>>> A
array([[1., 2.],

[3., 4.]])

>>> b = np.dot(A, np.array([8., 9.]))
>>> b
array([26., 60.])

Now solve Ax = b:

>>> from numpy.linalg import solve
>>> solve(A,b)
array([8., 9.])

Randy LeVeque, University of Washington Gene Golub SIAM Summer School, 2012

Eigenvalues

>>> from numpy.linalg import eig

>>> eig(A) # returns a tuple (evals,evecs)

(array([-0.37228132, 5.37228132]),
array([[-0.82456484, -0.41597356],

[0.56576746, -0.90937671]]))

>>> evals, evecs = eig(A) # unpacks tuple

>>> evals
array([-0.37228132, 5.37228132])

>>> evecs
array([[-0.82456484, -0.41597356],

[0.56576746, -0.90937671]])

Randy LeVeque, University of Washington Gene Golub SIAM Summer School, 2012

Function inputs and outputs

A sample function with 1 required input, 2 optional inputs,
and 2 outputs:

>>> def f(x,y=2,z=None):
... val = x+y
... if z:
... val = val + z
... return val,y # or return (val,y)
...
>>> f(1)
(3, 2)

>>> f(1,6,10)
(17, 6)

>>> f(1,z=5)
(8, 2)

Randy LeVeque, University of Washington Gene Golub SIAM Summer School, 2012

Function inputs and outputs

f returns two values, so we could also do:

>>> v1, v2 = f(1,z=5)
>>> v1
8
>>> v2
2

x has no default value, so it must always be specified:

>>> f()
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: f() takes at least

1 argument (0 given)

Randy LeVeque, University of Washington Gene Golub SIAM Summer School, 2012

A function with no output

This function does not return any value:

>>> def f2(x):
... y = x**2
... print "The square is ", y
...

>>> f2(3)
The square is 9

>>> y = f2(100)
The square is 10000

>>> print y
None

Note: None is a special pre-defined object in Python
Randy LeVeque, University of Washington Gene Golub SIAM Summer School, 2012

Quadrature (numerical integration)

Estimate
∫ 2
0 x2 dx = 8/3:

>>> from scipy.integrate import quad

>>> def f(x):
... return x**2
...
>>> quad(f, 0., 2.)
(2.666666666666667, 2.960594732333751e-14)

returns (value, error estimate).

Other keyword arguments to set error tolerance, for example.

Randy LeVeque, University of Washington Gene Golub SIAM Summer School, 2012

Lambda functions

In the last example, f is so simple we might want to just include
its definition directly in the call to quad.

We can do this with a lambda function:

>>> f = lambda x: x**2
>>> f(4)
16

This defines the same f as before. But instead we could do:

>>> quad(lambda x: x**2, 0., 2.)
(2.666666666666667, 2.960594732333751e-14)

Randy LeVeque, University of Washington Gene Golub SIAM Summer School, 2012

Random numbers

In [36]: from numpy.random import uniform
In [37]: uniform?

Docstring:
uniform(low=0.0, high=1.0, size=1)
Draw samples from a uniform distribution.
etc.

In [38]: uniform()
Out[38]: 0.052044690516633407

In [39]: uniform(size=(2,3)) # NOTE: keyword arg.
Out[39]:
array([[0.95581274, 0.07874926, 0.30454462],

[0.53318419, 0.27670149, 0.16840566]])

Randy LeVeque, University of Washington Gene Golub SIAM Summer School, 2012

Python loops

Example: iterating over items of a list

for j in [1,2,3]:
print "j is now ", j
print "this is also in loop"

print "the loop has ended"

produces:

j is now 1
this is also in loop
j is now 2
this is also in loop
j is now 3
this is also in loop
the loop has ended

Remember: Indentation determines what’s in the loop.
Randy LeVeque, University of Washington Gene Golub SIAM Summer School, 2012

Python loops

More generally:

for j in some_iterable_object:
contents of loop

Certain types or classes of objects are iterable.
Requires a pre-defined way to loop over the contents.

Lists and tuples are iterable, as in last example.

Strings are iterable:

for j in ’abc’:
print "j is now ", j

produces:

j is now a
j is now b
j is now c

Randy LeVeque, University of Washington Gene Golub SIAM Summer School, 2012

Python loops

To loop over the indices rather than over the values, use:

L = [12,5,7]
for j in range(len(L)):

print "j = %s, L[%s] is %s" % (j,j,L[j])

produces

j = 0, L[0] is 12
j = 1, L[1] is 5
j = 2, L[2] is 7

Note that:

>>> len(L)
3
>>> range(3)
[0, 1, 2]

So range(len(L)) produces a list with the proper indices.
Randy LeVeque, University of Washington Gene Golub SIAM Summer School, 2012

enumerate

Another way to do this is with enumerate:

L = [12,5,7]
for j,value in enumerate(L):

print "L[%s] is %s" % (j,value)

also produces

L[0] is 12
L[1] is 5
L[2] is 7

Randy LeVeque, University of Washington Gene Golub SIAM Summer School, 2012

Python if-then-else

x = 2
if x < 1:

print "x is less than 1"
elif x > 3:

print "x is larger than 3"
else:

print "x is between 1 and 3"

produces:

x is between 1 and 3

Note indentation!

There can be 1 or more elif (else if) statements, or none.

The else is also optional.

Randy LeVeque, University of Washington Gene Golub SIAM Summer School, 2012

Booleans

An object of type bool has value True or False.

>>> x = 2
>>> large = x > 100

>>> large
False
>>> type(large)
<type ’bool’>

Any boolean can go in the test of the if or elif clauses.

Note: To test equality, use == and for inequality, !=

>>> x==2
True
>>> x!=2
False

Randy LeVeque, University of Washington Gene Golub SIAM Summer School, 2012

Booleans

Can use:
and or &
or or |

>>> x = 0.5
>>> ((x>3) and (x<4)) or ((x>0) and (x<1))
True

is the same as

>>> ((x>3) & (x<4)) | ((x>0) & (x<1))
True

Randy LeVeque, University of Washington Gene Golub SIAM Summer School, 2012

Booleans

Other objects can also go in the test of the if or elif clauses.

In general, object acts as True unless it is:
• a boolean with value False,
• a integer with value 0, float with value 0.,
• an empty list [], empty string "", etc.
• the special object None.

y = None
if y:

print "y is ", y
else:

y = 0.
print "initialized y"

produces:

initialized y

Note: If y is not defined at all this will give an error.
(i.e., raise an exception)

Randy LeVeque, University of Washington Gene Golub SIAM Summer School, 2012

	Python introduction
	Python objects
	Python lists
	Python modules
	NumPy
	Linear algebra
	Functions
	Python iterators

