Tutorial suggestions

If you want to experiment with Clawpack, see www.clawpack.org/g2s3/doc/clawpack-quickstart.html

Determine the eigenvalues and eigenvectors of

$$A = \left[\begin{array}{cc} 0 & h_0 \\ g & 0 \end{array} \right]$$

for the linearized shallow water equations.

2. Solve the Riemann problem for these equations for general data

$$q_{\ell} = \left[\begin{array}{c} h_{\ell} \\ u_{\ell} \end{array} \right], \qquad q_{r} = \left[\begin{array}{c} h_{r} \\ u_{r} \end{array} \right]$$

Find a general expression for the middle state q_m and for the waves $W^1 = \alpha^1 r^1$ and $W^2 = \alpha^2 r^2$.

Tutorial suggestions

Take g = 10 and $h_0 = 10$ for simplicity.

Experiment with the following Riemann data.

(a) $h_{\ell} = 1$, $h_r = 0$, $u_{\ell} = u_r = 0$. (Dam break problem.)

(b)
$$h_{\ell} = 1$$
, $h_r = 1$, $u_{\ell} = 1$, $u_r = -1$.

Colliding streams of water — this Riemann problem can be used for modeling reflecting wall boundary conditions. For any left state h_{ℓ} , u_l set $h_r = h_{\ell}$ and $u_r = -u_{\ell}$.

Note that in this case the Riemann solution has $u_m = 0$, as would arise for flow into a wall at x = 0.

Hints on computing eigenvalues/vectors

Recall that $Ar = \lambda r$ means that $(A - \lambda I)r = 0$.

So $A - \lambda I$ must be a singular matrix, so $det(A - \lambda I) = 0$. For a 2×2 matrix the determinant is

$$(a_{11} - \lambda)(a_{22} - \lambda) - a_{12}a_{21}$$

Setting this to zero gives a quadratic equation to solve for the two eigenvalues λ^1 and λ^2 .

Then examine the singular matrix $(A - \lambda^p I)$ and find a vector r^p satisfying $(A - \lambda I)r^p = 0$. (What linear combination of the columns gives the 0 vector?)