Solutions

Let $c=$ √ $\overline{gh_0}$ and $Z=c/g=\sqrt{h_0/g}.$ Z is analogous to the impedance in linear acoustics.

The eigenvalues are $\lambda^1=-c$ and $\lambda^2=+c.$ The eigenvectors are

$$
r^{1} = \left[\begin{array}{c} -Z \\ 1 \end{array} \right], \qquad r^{2} = \left[\begin{array}{c} Z \\ 1 \end{array} \right].
$$

You could choose any other normalization, multiplying each by a nonzero constant. The formulas for the waves and the solution to the Riemann problem should come out the same no matter how you normalize.

The matrices R and R^{-1} are:

$$
R = \left[\begin{array}{rr} -Z & Z \\ 1 & 1 \end{array} \right], \qquad R^{-1} = \frac{1}{2Z} \left[\begin{array}{rr} -1 & Z \\ 1 & Z \end{array} \right].
$$

Solutions

Let

$$
\delta = \left[\begin{array}{c} h_r - h_\ell \\ u_r - u_\ell \end{array} \right].
$$

To find the waves we want to find α^1 and α^2 so that

$$
\alpha^1 r^1 + \alpha^2 r^2 = \delta.
$$

This is a linear system $R\alpha=\delta$ with solution $\alpha=R^{-1}\delta.$

$$
\alpha = \frac{1}{2Z} \left[\begin{array}{c} -\delta_1 + Z\delta_2 \\ \delta_1 + Z\delta_2 \end{array} \right]
$$

.

.

So, for example, the left-going wave is

$$
\mathcal{W}^1 = \alpha^1 r^1 = \frac{1}{2Z} (-\delta_1 + Z\delta_2) \begin{bmatrix} -Z\\ 1 \end{bmatrix}
$$

Solutions

The intermediate state in the Riemann solution is $q_m = q_\ell + \mathcal{W}^1.$ Working this out gives the general solution:

$$
h_m = \frac{1}{2}(h_{\ell} + h_r) - \frac{Z}{2}(u_r - u_{\ell})
$$

$$
u_m = \frac{1}{2}(u_{\ell} + u_r) - \frac{1}{2Z}(h_r - h_{\ell})
$$

Dam break: In particular, if $u_\ell = u_r = 0$ then

$$
h_m = \frac{1}{2}(h_\ell + h_r),
$$
 $u_m = -\frac{1}{2Z}(h_r - h_\ell).$

Note that the intermediate depth is the average of the two sides, the intermediate velocity is positive if $h_\ell > h_r$.

General solution:

$$
h_m = \frac{1}{2}(h_{\ell} + h_r) - \frac{Z}{2}(u_r - u_{\ell})
$$

$$
u_m = \frac{1}{2}(u_{\ell} + u_r) - \frac{1}{2Z}(h_r - h_{\ell})
$$

Reflecting wall: if $h_\ell = h_r = \bar{h}$ and $u_\ell = -u_r = \bar{u}$ then

$$
h_m = \bar{h} + Z\bar{u}, \qquad u_m = 0.
$$

Note that the intermediate depth is greater than \bar{h} if $\bar{u} > 0$, but less than \bar{h} if $\bar{u} < 0$ (flow away from the wall).