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Numerical modelling of transoceanic tsunami propagation, together with the
detailed modelling of inundation of small-scale coastal regions, poses a number
of algorithmic challenges. The depth-averaged shallow water equations can
be used to reduce this to a time-dependent problem in two space dimensions,
but even so it is crucial to use adaptive mesh refinement in order to efficiently
handle the vast differences in spatial scales. This must be done in a ‘well-
balanced’ manner that accurately captures very small perturbations to the
steady state of the ocean at rest. Inundation can be modelled by allowing
cells to dynamically change from dry to wet, but this must also be done
carefully near refinement boundaries. We discuss these issues in the context of
Riemann-solver-based finite volume methods for tsunami modelling. Several
examples are presented using the GeoClaw software, and sample codes are
available to accompany the paper. The techniques discussed also apply to a
variety of other geophysical flows.
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1. Introduction

Many fluid flow or wave propagation problems in geophysics can be mod-
elled with two-dimensional depth-averaged equations, of which the shallow
water equations are the simplest example. In this paper we focus primar-
ily on the problem of modelling tsunamis propagating across an ocean and
inundating coastal regions, but a number of related applications have also
been tackled with depth-averaged approaches, such as storm surges arising
from hurricanes or typhoons; sediment transport and coastal morphology;
river flows and flooding; failures of dams, levees or weirs; tidal motions and
internal waves; glaciers and ice flows; pyroclastic or lava flows; landslides,
debris flows, and avalanches.
These problems often share the following features.

• The governing equations are a nonlinear hyperbolic system of conserva-
tion laws, usually with source terms (sometimes called balance laws).

• The flow takes place over complex topography or bathymetry (the term
used for topography below sea level).

• The flow is of bounded extent: the depth goes to zero at the margins or
shoreline and the ‘wet–dry interface’ is a moving boundary that must
be captured as part of the flow.

• There exist non-trivial steady states (such as a body of water at rest)
that should be maintained exactly. Often the wave propagation or flow
to be modelled is a small perturbation of this steady state.

• There are multiple scales in space and/or time, requiring adaptively
refined grids in order to efficiently simulate the full problem, even when
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two-dimensional depth-averaged equations are used. For geophysical
problems it may be necessary to refine each spatial dimension by five
orders of magnitude or more in some regions compared to the grid used
on the full domain.

Transoceanic tsunami modelling provides an excellent case study to explore
the computational difficulties inherent in these problems. The goal of this
paper is to discuss these challenges and present a set of computational tech-
niques to deal with them. Specifically, we will describe the methods that
are implemented in GeoClaw, open source software for solving this class of
problems that is distributed as part of Clawpack (www3). The main focus
is not on this specific software, however, but on general algorithmic ideas
that may also be useful in the context of other finite volume methods, and
also to problems outside the domain of geophysical flows that exhibit simi-
lar computational difficulties. For the interested reader, the software itself
is described in more detail in Berger, George, LeVeque and Mandli (2010)
and in the GeoClaw documentation (www7).
We will also survey some uses of tsunami modelling and a few of the

challenges that remain in developing this field, and geophysical flow mod-
elling more generally. This is a rich source of computational and modelling
problems with applicability to better understanding a variety of hazards
throughout the world.
The two-dimensional shallow water equations generally provide a good

model for tsunamis (as discussed further below), but even so it is essential
to use adaptive mesh refinement (AMR) in order to efficiently compute
accurate solutions. At specific locations along the coast it may be necessary
to model small-scale features of the bathymetry as well as levees, sea walls,
or buildings on the scale of metres. Modelling the entire ocean with this
resolution is clearly both impossible and unnecessary for a tsunami that may
have originated thousands of kilometres away. In fact, the wavelength of a
tsunami in the ocean may be 100 km or more, so that even in the region
around the wave a resolution on the scale of several km is appropriate.
In undisturbed regions of the ocean even larger grid cells are optimal. In
Section 12.1 we show an example where the coarsest cells are 2◦ of latitude
and longitude on each side. Five levels of mesh refinement are used, with the
finest grids used only near Hilo, Hawaii, where the total refinement factor
of 214 = 16 384 in each spatial dimension, so that the finest grid has roughly
10 m resolution. With adaptive refinement we can simulate the propagation
of a tsunami originating near Chile (see Figure 1.1 and Section 12) and the
inundation of Hilo (see Section 12.1) in a few hours on a single processor.
The shallow water equations are a nonlinear hyperbolic system of par-

tial differential equations and solutions may contain shock waves (hydraulic
jumps). In the open ocean a tsunami has an extremely small amplitude
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Figure 1.1. The 27 February 2010 tsunami as computed using GeoClaw.
In this computation a uniform 216× 300 grid with ∆x = ∆y = 1/6 degree
(10 arcminutes) is used. Compare to Figure 12.1, where adaptive mesh
refinement is used. The surface elevation and bathymetry along the
indicated transect is shown in Figure 1.2. The colour scale for the surface is
in metres relative to mean sea level. The location of DART buoy 32412
discussed in the text is also indicated.

(relative to the depth of the ocean) and long wavelength. Hence the propa-
gation is essentially linear, with variable coefficients due to varying bathy-
metry. As a tsunami approaches shore, however, the amplitude typically
increases while the depth of the water decreases and nonlinear effects be-
come important. It is thus desirable to use a method that handles the
nonlinearity well (e.g., a high-resolution shock-capturing method), while
also being efficient in the linear regime.
In general we would like the method to conserve mass to the extent pos-

sible (the momentum equations contain source terms due to the varying
bathymetry and possibly Coriolis and frictional drag terms). In this paper
we focus on shock-capturing finite volume designed for nonlinear problems
that are extensions of Godunov’s method. These methods are based on solv-
ing Riemann problems at the interfaces between grid cells, which consist of
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the given equations together with piecewise constant initial data determined
by the cell averages on either side. Second-order correction terms are de-
fined using limiters to avoid non-physical oscillations that might otherwise
appear in regions of steep gradients (e.g., breaking waves or turbulent bores
that arise as a tsunami approaches and inundates the shore). The methods
exactly conserve mass on a fixed grid, but as we will see in Section 9.2 mass
conservation is not generally possible or desirable near the shore when AMR
is used. Even away from the shore, conserving mass when the grid is refined
or de-refined requires some care when the bathymetry varies, as discussed
in Section 9.1.
Studying the effect of a tsunami requires accurate modelling of the motion

of the shoreline; a major tsunami can inundate several kilometres inland in
low-lying regions. This is a free boundary problem and the location of the
wet–dry interface must be computed as part of the numerical solution; in
fact this is one of the most important aspects of the computed solution
for practical purposes. Most tsunami codes do not attempt to explicitly
track the moving boundary, which would be very difficult for most realistic
problems since the shoreline topology is constantly changing as islands and
isolated lakes appear and disappear. Some tsunami models use a fixed shore-
line location with solid wall boundary conditions and measure the depth of
the solution at this boundary, perhaps converting this via empirical ex-
pression to estimates of the inundation distances and run-up (the elevation
above sea level at the point of maximum inundation). Most recent codes,
however, use some ‘wetting and drying’ algorithm. The computational grid
covers dry land as well as the ocean, and each grid cell is allowed to be
wet (h > 0) or dry (h = 0) in the shallow water equations. The state of
each cell can change dynamically in each time step as the wave advances
or retreats. Of course accurate modelling of the inundation also requires
detailed models of the local topography and bathymetry on a scale of tens
of metres or less, while the water depth must be resolved to a fraction of a
metre. Again this generally requires the use of mesh refinement to achieve
a suitable resolution at the coast.
In the context of a Godunov-type method, it is necessary to develop a

robust Riemann solver that can deal with Riemann problems in which one
cell is initially dry, as well as the case where a cell dries out as the water
recedes. This must be done in a manner that does not result in undershoots
that might lead to negative fluid depth.
For tsunami modelling it is essential to accurately capture small pertur-

bations to undisturbed water at rest; the ocean is 4 km deep on average
while even a major tsunami has an amplitude less than 1 m in the open
ocean. Moreover, the wavelength may be 100 km or more, so that over
1 km, for example, the ocean surface elevation in a tsunami wave varies by
less than 1 cm while the bathymetry (and hence the water depth) may vary



216 R. J. LeVeque, D. L. George and M. J. Berger

(a)

(b)

95 90 85 80 75 70
Degrees longitude

6000

4000

2000

0

2000

M
e
tr
e
s
d
e
p
th

500 km

95 90 85 80 75 70

0.2

0.0

0.2

M
e
tr
e
s

Surface elevation

Figure 1.2. Cross-section of the Pacific Ocean on a transect at constant
latitude 25◦S, as shown in Figure 1.1. (b) Full depth of the ocean. (a) Zoom
of the surface elevation from −20 cm to 20 cm showing the small amplitude
and long wavelength of the tsunami, 2.5 hours after the earthquake. Note
the difference in vertical scales and that in both figures the vertical scale is
greatly exaggerated relative to the horizontal scale. The bathymetry and
surface elevation are shown as piecewise constant functions over the finite
volume cells used, in order to illustrate the large jump in bathymetry
between neighbouring grid cells.

by hundreds of metres. This is illustrated in Figure 1.2, which shows a cross-
section of the Pacific Ocean along the transect indicated in Figure 1.1, along
with a zoomed view of the top surface exhibiting the long wavelength of the
tsunami. This extreme difference in scales makes it particularly important
that a numerical method be employed that can maintain the steady state of
the ocean at rest, and that accurately captures small perturbations to this
steady state. Such methods are often called ‘well-balanced’, because the
balance between the flux gradient and the source terms must be maintained
numerically. This must also be done in a way that remains well-balanced in
the context of AMR, with no spurious waves generated at mesh refinement
boundaries. We discuss this difficulty and our approach to well-balancing
further in Section 3.1.
Two-dimensional finite volume methods can be applied either on regular

(logically rectangular) quadrilateral grids or on unstructured grids such as
triangulations. Unstructured grids have the advantage of being able to fit
complicated geometries more easily, and for complex coastlines this may
seem the obvious approach. For a fixed coastline this might be true, but
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when inundation is modelled using a wetting and drying approach the ad-
vantage is no longer clear. Logically rectangular grids (indexed by (i, j))
in fact have several advantages: high accuracy is often easier to obtain (at
least for smoothly varying grids), and refinement on rectangular patches is
natural and relatively easy to perform. The GeoClaw software uses patch-
based logically rectangular grids following the approach of Berger, Colella
and Oliger (Berger and Colella 1989, Berger and Oliger 1984, Berger and
LeVeque 1998). This approach to AMR has been extensively used over the
past three decades in many applications and software packages, including
Clawpack as well as Chombo (www2), AMROC (www1), SAMRAI (www11),
and FLASH (www6). We review this approach in Section 8 and discuss sev-
eral difficulties that arise in applications to tsunamis.
For many geophysical flow problems it is natural to use either purely

Cartesian coordinates (over relatively small domains) or latitude–longitude
coordinates on the sphere. The latter is generally used for tsunami propaga-
tion problems, for which the region of interest is usually far from the poles.
For problems on the full sphere, other grids may be more appropriate, as
discussed briefly in Section 6.2. For problems such as flooding of a serpen-
tine river, it may be most appropriate to use a coarse grid that broadly
follows the river valley, together with AMR to focus computational cells in
the region where the river actually lies. In Section 6 we discuss a class of
two-dimensional wave propagation algorithms that maintain stability and
accuracy on general quadrilateral grids.
When developing methods to simulate complex geophysical flows it is

very important to perform validation and verification studies, as discussed
in Section 10. This requires both tests on synthetic problems where the
accuracy of the solvers can be judged as well as comparison to observations
from real events. Sections 11 and 12 present computational results of each
type in order to illustrate the application of these methods.

2. Tsunamis and tsunami modelling

The term tsunami (which means ‘harbour wave’ in Japanese) generally
refers to any impulse-generated gravity wave. Tsunamis can arise from
many different sources. Most large tsunamis are generated by vertical dis-
placement of the ocean floor during megathrust earthquakes on subduction
zones. At a subduction zone, one plate (typically an oceanic plate) de-
scends beneath another (typically continental) plate. The rate of this plate
motion is on the order of centimetres per year. In the shallow part of the
subduction zone, at depths less than 40 km, the plates are usually stuck
together and the leading edge of the upper plate is dragged downwards.
Slip during an earthquake releases this part of the plate, generally caus-
ing both upward and downward deformation of the ocean floor, and hence
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the entire water column above it. The vertical displacement can be sev-
eral metres, and it can extend across areas of tens of thousands of square
kilometres. Displacing this quantity of water by several metres injects an
enormous amount of potential energy into the ocean (as much as 1023 ergs
for a large tsunami, equivalent to roughly 10 megatonnes of TNT). The
potential energy is given by

Potential energy =

∫∫ ∫ η(x,y)

0
ρgz dz dx dy

=

∫∫
1

2
ρgη2(x, y) dx dy,

(2.1)

where ρ is the density of water, g is the gravitational constant, and η(x, y) is
the displacement of the surface from sea level. Here x and y are horizontal
Cartesian coordinates and z is the vertical direction. This energy is carried
away by propagating waves that tend to wreak their greatest havoc nearby,
but if the tsunami is large enough can also cause severe flooding and damage
thousands of kilometres away. Long-range tsunamis are often termed tele-
tsunamis or far-field tsunamis, to distinguish them from local tsunamis that
affect only regions near the source.
For example, the Aceh–Andaman earthquake on 26 December 2004 gener-

ated a tsunami along the zone where the Indian plate is subducting beneath
the Burma platelet. The rupture extended for a length of roughly 1500 km
and displaced water over a region approximately 150 km wide, with a ver-
tical displacement of several metres. More recently, the Chilean earthquake
of 27 February 2010 set off a tsunami along part of the South American
subduction zone, where the Nazca plate descends beneath the South Amer-
ican plate. The fault-rupture length was shorter, perhaps 450 km, and fault
displacement was also less, yielding a tsunami considerably smaller than the
Indian Ocean tsunami of 2004.
The fact that a megathrust earthquake displaces the entire water column

over a large surface area is advantageous to modellers, since it means that
use of the two-dimensional shallow water equations is well justified. These
equations, introduced in Section 3, model gravity waves with long wave-
length (relative to the depth of the fluid) in which the entire water column
is moving. These conditions are well satisfied as the tsunami propagates
across an ocean.
A secondary source of tsunamis is submarine landslides, also called sub-

aqueous landslides; see for example Bardet, Synolakis, Davies, Imamura
and Okal (2003), Masson, Harbitz, Wynn, Pedersen and Løvholt (2006),
Ostapenko (1999) and Watts, Grilli, Kirby, Fryer and Tappin (2003). These
often occur on the continental slope, which can be several kilometres high
and quite steep. The displacement of a large mass on the seafloor causes
a corresponding perturbation of the water column above this region, which
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again results in gravity waves that can appear as tsunamis. The local dis-
placements may be much larger than in a megathrust earthquake, but usu-
ally over much smaller areas and so the resulting tsunamis have far less
energy and rapidly dissipate as they radiate outwards. However, they can
still do severe damage to nearby coastal regions. For example, an earthquake
in 1998 resulted in a tsunami that destroyed several villages and killed more
than 2000 people along a 30 km stretch of the north shore of Papua New
Guinea. In this case it is thought that the tsunami was caused by a co-
seismic submarine landslide rather than by the earthquake itself (Synolakis
et al. 2002). In the case of large earthquakes, it is possible that in addition
to the seismic event itself, thousands of coseismic landslides may also oc-
cur, leading to additional tsunamis. As an example, Plafker, Kachadoorian,
Eckel and Mayo (1969) documented numerous tsunamis in Alaskan fjords
in connection with the 1964 earthquake.
There have also been submarine slumps of epic proportions that have

caused large-scale destruction. An example is the Storegga slide roughly
8200 years ago on the Norwegian shelf, in which as much as 3000 km3 of
mass was set in motion, creating a tsunami that inundated areas as far away
as Scotland (Dawson, Long and Smith 1988, Haflidason, Sejrup, Nyg̊ard,
Mienert and Bryn 2004).
Subaerial landslides occurring along the coast can also cause localized

tsunamis when the landslide debris enters the water. For example, a large-
scale landslide on Lituya Bay in Alaska in 1958 caused a landslide within
the bay that washed trees away to an elevation of 500 m on the far side of
the bay, as documented by Miller (1960) and studied for example in Mader
and Gittings (2002), Weiss, Fritz and Wünnemann (2009). Tsunamis and
seiches can also arise in lakes as a result of earthquakes or landslides. As
an example see McCulloch (1966).
The example we use in this paper is the tsunami generated by the Chilean

earthquake of 27 February 2010. The computational advantages of the AMR
techniques discussed in this paper are particularly dramatic in modelling
far-field effects of transoceanic tsunamis, but are also important in mod-
elling localized tsunamis or the near-field region (which is hardest hit by
any tsunami). Typically much higher resolution is needed along a small
portion of the coast of primary interest than elsewhere, and over much of
the computational domain there is dry land or quiescent water where a very
coarse grid can be used.

2.1. Available data sets

Modelling a tsunami requires not only a set of mathematical equations and
computational techniques, it also requires data sets, often very large ones.
We must specify the bathymetry of the ocean and coastal regions, the topo-
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graphy onshore in regions that may be inundated, and the motion of the
seafloor that initiates the tsunami. For validation studies we also need
observed data from past events, which might include DART buoy (Deep-
ocean Assessment and Reporting of Tsunamis) or tide gauge data as well
as post-tsunami field surveys of run-up and inundation.
Fortunately there are now ample sources of real data available online

that are relatively easy to work with. One of the goals of our own work has
been to provide tools to facilitate this, and to provide templates that may
be useful in setting up and solving a new tsunami problem. This is still
work in progress, but some pointers and documentation are provided in the
GeoClaw documentation (www7).
Large-scale bathymetry at the resolution of 1 minute (1/60 degree) for

the entire Earth is available from the National Geophysical Data Center
(NGDC). The National Geophysical Data Center (NGDC) GEODAS Grid
Translator (www9) allows one to specify a rectangular latitude–longitude
domain and download bathymetry at a choice of resolutions. Note that
one degree of latitude is about 111 km and one degree longitude varies
from 111 km at the equator to half that at 60◦ North, for example. For
modelling transoceanic propagation we have found that 10-minute data,
with a resolution of roughly 18 km, are often sufficient. In coastal regions
greater resolution is required. In particular, in order to model inundation
of a target region it may be necessary to have data sets with a resolution of
tens of metres or less. The availability of such data varies greatly. In some
countries coastal bathymetry is virtually impossible to obtain. In other
locations it is easily available online. In particular, many coastal regions of
the US are covered by data sets available from NOAA DEMs (www10).
In addition to bathymetry, it is necessary to have matching onshore to-

pography for regions where inundation is to be studied. Unfortunately
bathymetry and topography are generally measured by different techniques
and sometimes the data sets do not match up properly at the coastline,
which of course is exactly the region of primary interest in modelling in-
undation. Often a great deal of work has already gone into creating the
public data sets in order to reconcile these differences, but an awareness of
potential difficulties is valuable.
When studying landslide-induced tsunamis, an additional difficulty is that

detailed bathymetry of the region around the slide is typically obtained only
after the slide has occurred. Without pre-slide bathymetry at the same
resolution it can be difficult to determine the correct initial bathymetry or
the mass of the slide, which of course is crucial to know in order to generate
the correct tsunami numerically.
For subduction zone events it is also necessary to know the seafloor dis-

placement in order to generate the tsunami. In this case the modeller is
aided by the fact that the mechanics of some earthquakes have been well
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studied. For large events there are generally ample seismic data available
from around the world that can be used to attempt to reconstruct the focal
mechanism of the quake: the direction of slip and orientation of the fault,
along with the depth at which the rupture occurred, the length of the rup-
ture, the magnitude of the displacement, etc. An event can sometimes be
modelled by a simplified representation consisting of a few such parameters,
for example the USGS model of the Chile 2010 earthquake (www12) that
we use in some of our examples later in this paper. To convert these pa-
rameters into seafloor deformation in each grid cell would require solving
three-dimensional elasticity equations with a dislocation within the earth,
and would require detailed knowledge of the elastic parameters and the ge-
ological substructure of the earth in the region of the quake. Instead, a
simplified model is generally used to quickly convert parameters into ap-
proximate seafloor deformation, such as the well-known model introduced
by Mansinha and Smylie (1971) and later modified by Okada (1985, 1992).
We use a Python implementation of the Okada model that we based on the
models in the COMCOT (www4) (Liu, Woo and Cho 1998).
Larger events are often subdivided into a finite collection of such para-

metrizations, by breaking the fault into pieces with different sets of parame-
ters. For each piece, the focal mechanism parameters can then be converted
into the resulting motion of the seafloor, and these can be summed to ob-
tain the approximate seafloor deformation resulting from the earthquake. It
may also be necessary to use time-dependent deformations for large events,
such as the 2004 Aceh–Andaman event, which lasted more than 10 minutes
as the rupture propagated northwards.
Although large earthquakes are well studied, determining the correct

mechanism is non-trivial and there are often several different mechanisms
proposed that may be substantially different, particularly in regard to the
tsunamis that they generate. One use of tsunami modelling is to aid in the
study of earthquakes, providing additional constraints on the mechanism
beyond the seismic evidence; see for example Hirata, Geist, Satake, Tanioka
and Yamaki (2003). However, the existence of competing descriptions of the
earthquake can also make it more difficult to validate a numerical method
for the tsunami itself.
In addition to seismic data, real-time data during a tsunami are also mea-

sured by tide gauges at many coastal locations, from which the amplitude
and waveform of the tsunami can be estimated. The tides and any coseis-
mic deformation must be filtered out from these data in order to see the
tsunami, particularly for large-scale tsunamis that can extend through sev-
eral tidal periods. The observed waves (particularly in shallow water) are
also highly dependent on the local bathymetry, and can vary greatly between
nearby points. Tide gauges in bays or harbours often register much more
wave action than would be seen farther from shore, due to reflections and
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resonant sloshing. To have any hope of properly capturing this numer-
ically it is generally necessary to provide the model with fine-scale local
bathymetry.
The wave amplitude in the deep ocean cannot be measured by traditional

tide gauges, but in recent years a network of gauges have been installed on
the ocean floor that measure the water pressure with sufficient sensitivity to
estimate the depth. In Section 12 we use data from a DART buoy (Meinig,
Stalin, Nakamura, González and Milburn 2006), which transmits data from
a pressure sensor at a depth of more than 4000 m. The DART system was
developed by NOAA and originally deployed only along the western coast
of the United States. Many other nations have also developed similar buoy
systems, and after the 2004 Indian Ocean tsunami the world-wide network
was greatly expanded. Real-time and historical data sets are available online
via DART Data (www5).
Also useful in tsunami modelling is the wealth of data collected by tsunami

survey teams that respond after any tsunami event. Attempts are made to
map the run-up and inundation along stretches of the affected coast, by
examining water marks on buildings, wrack lines, debris lodged in trees,
and other markers. This evidence often disappears relatively quickly after
the event and the rapid response of scientists and volunteers is critical.
The findings are generally published and are valuable sources of data for
validation studies. Again it is often necessary to have high-resolution local
bathymetry and topography in order to model the great variation in run-up
and inundation that are often seen between nearby coastal locations. Survey
teams sometimes collect these data as well. For some sample survey results,
see for example Gelfenbaum and Jaffe (2003), Liu, Lynett, Fernando, Jaffe
and Fritz (2005) and Yeh et al. (2006).
Information about past tsunamis can also be gleaned from the study of

tsunami deposits (Bourgeois 2009). As a tsunami approaches shore it gen-
erally becomes quite turbulent, even forming a bore, and picks up sediment
such as sand and marine microorganisms that may be deposited inland
as the tsunami decelerates. These deposits can often be identified, either
near the surface from a recent tsunami or in the subsurface from prehistoric
events, as illustrated in Figure 2.1. In some coastal regions, excavations and
core samples reveal more than ten distinct layers of deposits from tsunamis
in the past few thousand years. Much of what is known about the frequency
of megathrust earthquakes along subduction zones has been learned from
studying tsunami deposits, as these deposits are commonly the only remain-
ing evidence of past earthquakes. For example, Figure 2.2 shows the record
of 17 sand layers interpreted as tsunami deposits, from the coast of Ore-
gon state, indicating that megathrust events along the Cascadia Subduction
Zone (CSZ) occur roughly every 500 years. The CSZ runs from northern
California to British Columbia, and the last great earthquake and triggered
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(a)

(b)

Figure 2.1. 2004 and older tsunami deposits in western Thailand (Jankaew
et al. 2008). (a) Coastal profile of a part of western Thailand hit by the 2004
Indian Ocean tsunami (simplified from Figure 2 in Jankaew et al. (2008)).
(b) Photo and sketch of a trench along this profile, showing the 2004
tsunami deposit and three older tsunami deposits, all younger than about
2500 years ago.

tsunami were on 26 January 1700, as determined from matching Japanese
historical records of a tsunami with dated tsunami deposits in the Pacific
Northwest of the US (Satake, Shimazaki, Tsuji and Ueda 1996, Satake,
Wang and Atwater 2003). An interesting account of this scientific discovery
can be found in Atwater et al. (2005). The next such event will have dis-
astrous consequences for many communities in the Pacific Northwest, and
the tsunami is expected to cause damage around the Pacific.

2.2. Uses of tsunami modelling

There are many reasons to study tsunamis computationally, and ample mo-
tivation for developing faster and more accurate numerical methods. Appli-
cations include the development of more accurate real-time warning systems,
the assessment of potential future hazards to assist in emergency planning,
and the investigation of past tsunamis and their sources. In this section we
give a brief introduction to some of the issues involved.
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Figure 2.2. An example of long-term records of tsunami deposits interpreted
to be from the Cascadia subduction zone: from Bradley Lake on the coast of
southern Oregon. Seventeen different sediment deposits were identified and
correlated at eight different locations. The far right column shows the
approximate age of each set of deposits. From Bourgeois (2009), based on
a figure of Kelsey, Nelson, Hemphill-Haley and Witter (2005).

Real-time warning systems rely on numerical models to predict whether
an earthquake has produced a dangerous tsunami, and to identify which
communities may need to be warned or evacuated. Mistakes in either di-
rection are costly: failing to evacuate can lead to loss of life, but evacuating
unnecessarily is not only very expensive but also leads to poor response
to future warnings. Real-time prediction is difficult for many reasons: a
code is required that will run faster than real time and still provide detailed
results, usually for many different locations. Moreover, the source is usu-
ally poorly known initially since solving the inverse problem of determining
the focal mechanism from seismic signals takes considerable time and con-
solidation of data from multiple sites. The DART buoys were developed
in part to address this problem. By measuring the actual wave at one or
more locations near the source, a better estimate of the tsunami can be
quickly generated and used to select initial data for real-time prediction, as
discussed by Percival et al. (2010).
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Most codes used for studying tsunamis are not designed for real-time
warning; this is a specialized and demanding application (Titov et al. 2005).
However, there are many other applications where research codes can play
a role. For example, hazard assessment and mitigation requires the use of
tsunami models to investigate the potential damage from a future tsunami,
to locate safe havens and plan evacuation routes, and to assist government
agencies in planning for emergency response. For this, information about
past tsunamis in a region is valuable both in validating the code and in
designing hypothetical tsunami sources for assessing the vulnerability to
future tsunamis.

A topic of growing interest is the development of probabilistic models
that take into account the uncertainty of future earthquakes. Seismologists
can often provide information about the likelihood of ruptures of various
magnitudes along several fault planes, and tsunami modellers then seek
to produce from this a probabilistic assessment of the risk of inundation
to varying degrees. Although these simulations do not need to be set up
and run in real time, the need to do large numbers of simulations for a
probabilistic study is additional motivation for developing fast and accurate
techniques that can handle the entire simulation from tsunami generation to
detailed modelling of specific distant communities. For more on this topic,
see for example Geist and Parsons (2006), González, Geist, Jaffe, Kanoglu
et al. (2009) and Geist, Parsons, ten Brink and Lee (2009).

Another use of tsunami modelling is to better understand past tsunamis,
and to identify the earthquakes that generated them. Much of what is
known about earthquakes that happened before the age of seismic monitor-
ing or historical records has been determined through the study of tsunami
deposits, as illustrated in Figures 2.1 and 2.2 and discussed above. Tsunami
modelling is often required to assist in solving the inverse problem of deter-
mining the most likely earthquake source and magnitude from a given set
of deposits. For this it would be desirable to couple the tsunami model to
sedimentation equations capable of modelling the suspension of sediments
and their transport and deposition, ideally also taking into account the re-
sulting changes in bathymetry and topography that may affect the fluid
dynamics. Moreover, tsunami deposits often exhibit layers in which the
grain size either increases or decreases with depth, and this grading con-
tains information about how the flow was behaving at this location while
the sediment was deposited; e.g., Higman, Gelfenbaum, Lynett, Moore and
Jaffe (2007) and Martin et al. (2008). Ideally the model would include mul-
tiple grain sizes and accurately simulate the entrainment and sedimentation
of each. The development of sufficiently accurate sedimentation models and
computational tools adequate to do this type of analysis is an active area
of research; see for example Huntington et al. (2007).
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3. The shallow water equations

The shallow water equations are the standard governing model used for
transoceanic tsunami propagation as well as for local inundation: e.g., Yeh,
Liu, Briggs and Synolakis (1994) and Titov and Synolakis (1995, 1998).
Because we use shock-capturing methods that can converge to discontinuous
weak solutions, we solve the most general form of the equations: a nonlinear
system of hyperbolic conservation laws for depth and momentum. In one
space dimension these take the form

ht + (hu)x = 0, (3.1a)

(hu)t + (hu2 + 1
2gh

2)x = −ghBx, (3.1b)

where g is the gravitational constant, h(x, t) is the fluid depth, u(x, t) is the
vertically averaged horizontal fluid velocity. A drag term −D(h, u)u can be
added to the momentum equation and is often important in very shallow
water near the shoreline. This is discussed in Section 7.
The function B(x) is the bottom surface elevation relative to mean sea

level. Where B < 0 this corresponds to submarine bathymetry and where
B > 0 to topography. Although in tsunami studies the term bathymetry
is commonly used, in much of this paper we will use the term topography
to refer to both bathymetry and onshore topography, both for conciseness
and because in many other geophysical flows (debris flows, lava flows, etc.)
there is only topography.
We will also use η(x, t) to denote the water surface elevation,

η(x, t) = h(x, t) +B(x, t).

We allow the topography to be time-dependent since most tsunamis are
generated by motion of the ocean floor resulting from an earthquake or
landslide. Figure 3.1 shows a simple sketch of the variables. Note that
(3.1) is in fact a ‘balance law’, since variable bottom topography and drag
introduce source terms in the momentum equation. The physically relevant
form (3.1) introduces some difficulties for numerical solution, particularly
with regard to steady state preservation. As mentioned above, this has led
to the development of well-balanced schemes for such systems (see e.g. Bale,
LeVeque, Mitran and Rossmanith (2002), Bouchut (2004), George (2008),
Greenberg and LeRoux (1996), Botta, Klein, Langenberg and Lützenkirchen
(2004), Gallardo, Parés and Castro (2007), Gosse (2000), LeVeque (2010)
and Noelle, Pankrantz, Puppo and Natvig (2006)). This is sometimes cir-
cumvented by using alternative non-conservative forms of the shallow water
equations for η(x, t) and u(x, t), but these forms are problematic if disconti-
nuities appear in the inundation regime (bore formation), and conservation
of mass is not easily guaranteed.
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h

η

(B−ηs )<0

(B−ηs )>0
ηs

Figure 3.1. Sketch of the variables of the shallow water equations. The
shaded region is the water of depth h(x, t), and the water surface is
η(x, t) = B(x, t) + h(x, t). The dashed line shows the mean sea level ηs.

For tsunami modelling we solve the two-dimensional shallow water equa-
tions

ht + (hu)x + (hv)y = 0, (3.2a)

(hu)t + (hu2 + 1
2gh

2)x + (huv)y = −ghBx, (3.2b)

(hv)t + (huv)x + (hv2 + 1
2gh

2)y = −ghBy, (3.2c)

where u(x, y, t) and v(x, y, t) are the depth-averaged velocities in the two
horizontal directions, B(x, y, t) is the topography. Again a drag term might
be added to the momentum equations.
For simplicity, we will discuss many issues in the context of the one-

dimensional shallow water equations (3.1) whenever possible. We also first
consider the equations in Cartesian coordinates, with x and y measured in
metres, as might be appropriate when modelling local effects of waves on
a small portion of the coast or in a wave tank. For transoceanic tsunami
propagation it is necessary to propagate on the surface of the earth, as
discussed further in Section 6.2. For this it is common to use latitude
and longitude coordinates, assuming the earth is a perfect sphere. A more
accurate geoid representation of the earth could be used instead. Latitude–
longitude coordinates present difficulties for many problems posed on the
sphere due to the fact that grid lines coalesce at the poles and cells are
much smaller in the polar regions than elsewhere, which can lead to time
step restrictions. For tsunamis on the earth we are generally only interested
in the mid-latitudes and this is not a problem, but in Section 6.2 we mention
an alternative grid that may be useful in other contexts.
On a rotating sphere the equations should also include Coriolis terms

in the momentum equations. For tsunami modelling these are generally
neglected. During propagation across an ocean, the fluid velocities are
small and are concentrated within the wave region and Coriolis effects have
been shown to be very small (e.g., Kowalik, Knight, Logan and Whitmore
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(2005)). Our own tests have also indicated that Coriolis terms can be safely
ignored. On the other hand, they are simple to include numerically along
with the drag terms via a fractional step approach, as discussed in Section 7.

3.1. Hyperbolicity and Riemann problems

The shallow water equations (3.1) belong to the more general class of hy-
perbolic systems

qt + f(q)x = ψ(q, x), (3.3)

where q(x, t) is the vector of unknowns, f(q) is the vector of corresponding
fluxes, and ψ(q, x) is a vector of source terms:

q =

[
h
hu

]
, f(q) =

[
hu

hu2 + 1
2gh

2

]
, ψ =

[
0

−ghBx

]
. (3.4)

We will also introduce the notation µ = hu for the momentum and φ =
hu2 + 1

2gh
2 for the momentum flux, so that

q =

[
h
µ

]
, f(q) =

[
µ
φ

]
. (3.5)

The Jacobian matrix f ′(q) then has the form

f ′(q) =
[
∂µ/∂h ∂µ/∂µ
∂φ/∂h ∂φ/∂µ

]
=

[
0 1

gh− u2 2u

]
. (3.6)

Hyperbolicity requires that the Jacobian matrix be diagonalizable with real
eigenvalues and linearly independent eigenvectors. For the shallow water
equations the matrix in (3.6) has eigenvalues

λ1 = u−
√
gh, λ2 = u+

√
gh (3.7)

and corresponding eigenvectors

r1 =

[
1

u−√
gh

]
, r2 =

[
1

u+
√
gh

]
. (3.8)

We will use superscripts to index these eigenvalues and eigenvectors since
subscripts corresponding to grid cells will be added later.
Note that the eigenvalues are always real for physically relevant depths

h ≥ 0. For h > 0 they are distinct and the eigenvectors are linearly inde-
pendent. Hence the equations are hyperbolic for h > 0, and the solution
consists of propagating waves. The eigenvalues correspond to velocities of
propagation and the eigenvectors give information about the relation be-
tween h and hu in a wave propagating at this speed.

Note that waves propagate at velocities ±√
gh relative to the background

fluid velocity u. The velocity c =
√
gh is the gravity wave speed and is
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analogous to the sound speed for small-amplitude acoustic waves. For two-
dimensional shallow water equations the theory is somewhat more compli-
cated, since waves can propagate in any direction, but the speed of propa-
gation in any direction is again

√
gh relative to the fluid velocity.

Note also that in general the eigenvalues satisfy λ1 < λ2, but they could
both be negative (if u < −√

gh) or both positive (if u >
√
gh). Such flows

are called supercritical and correspond to supersonic flow in gas dynamics.
For tsunami modelling, the flow is nearly always subcritical, with λ1 < 0 <
λ2, except in very shallow water near the shore. The ratio |u|/√gh is called
the Froude number and is analogous to the Mach number of gas dynamics.
For a tsunami propagating in the ocean, the fluid velocity is very small

relative to
√
gh and so the velocity of propagation depends primarily on the

depth. For a typical ocean depth of 4000 m the propagation speed is nearly
200 m s−1, roughly the speed of a commercial jet. In shallower water the
wave speed decreases. On a continental shelf with a typical depth of 100 m,
the speed is about 30 m s−1, about 6 times smaller. This is worth bearing
in mind when using explicit numerical methods, since the time step allowed
by stability considerations is directly proportional to the wave speed. We
will return to this in Section 8.1.

3.2. Eliminating the source term

There is a technique that is often used to eliminate the source term in a
hyperbolic system with the structure of the one we are considering, which
we introduce now since we will use it in developing Riemann solvers below.
Rewrite the original system of nonlinear equations (3.1) as a system of three
equations, by viewing the topography B(x, t) as a function of x and t that
does not vary with time:

ht + µx = 0,

µt + φx + ghBx = 0,

Bt = 0.

(3.9)

This gives a homogeneous hyperbolic system, though at the expense of turn-
ing the system into a nonlinear system that is not in conservation form, due
to the ‘non-conservative product’ hBx. This has potential difficulties asso-
ciated with it (see for example Castro, LeFloch, Munoz and Parés (2008)),
but this form is useful in deriving Riemann solvers. The system (3.9) is
hyperbolic since the eigenvalues of the Jacobian matrix 0 1 0

−u2 + gh 2u gh
0 0 0

 (3.10)

are easily seen to be λ1,2 = u ±√
gh, as in the original system, along with
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λ0 = 0. The new wave we have introduced with speed 0 comes from the
stationary discontinuity in B. Note that the eigenvector associated with
this wave is

r0 =

gh/(u2 − gh)
0
1

. (3.11)

This indicates that the stationary wave with a small jump in bathymetry
∆B also has a jump in h, and if u = 0 then the first component of r0 is
−1, so that ∆h = −∆B and hence ∆η = 0, corresponding to the ocean
at rest. More generally, if the Froude number |u|/√gh is small then ∆η ≈
−(u2/gh)∆B.
The momentum µ is always constant across this wave. This makes sense

physically since µ is also the mass flux, and a stationary jump in mass
flux would lead to the creation of a delta function singularity in mass at
this point.

3.3. Linearized equations

The easiest case to analyse is the linearized equation governing small-am-
plitude waves relative to the fluid depth. Consider flat topography for the
moment (so the source term disappears) and suppose we consider very small-

amplitude waves against a background steady state with constant depth ĥ
and velocity û. For tsunami modelling it is natural to take û = 0, but one
could also study small waves on a steady flow with some non-zero velocity.
Then, if we write q(x, t) = q̂ + q̃(x, t) and insert this into the shallow water
equations, we find that the small perturbation q̃ satisfies

q̃t + Âq̃x = O(‖q̃‖2), (3.12)

where Â = f ′(q̂) is the constant Jacobian matrix evaluated at the back-

ground state q̂ = (ĥ, ĥû)T . If we drop the higher-order terms and also drop
the tildes in (3.13), we obtain the linearized equations

qt + Âqx = 0. (3.13)

This is a linear hyperbolic partial differential equation (PDE) with constant
eigenvalues

λ̂1 = û− ĉ, λ̂2 = û+ ĉ, where ĉ =

√
gĥ. (3.14)

The eigenvectors r̂1 and r̂2 from (3.8) are also constant. If we form a

matrix R̂ = [r̂1, r̂2] with these columns, then this eigenvector matrix diag-

onalizes Â:

Â = R̂Λ̂R̂−1, or Λ̂ = R̂−1ÂR̂. (3.15)
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Because this matrix is independent of x and t, we can multiply (3.13) by

R−1, replace A by AR̂R̂−1, and hence obtain the diagonal system

wt + Λ̂wx = 0, (3.16)

where w = R̂−1q. This decouples into two scalar advection equations for
the characteristic variables w1 and w2, with solutions that simply trans-
late at speeds λ̂1 and λ̂2 respectively. The linear PDE with arbitrary ini-
tial conditions can thus be solved by computing initial characteristic data
w(x, 0) = R̂−1q(x, 0), solving the scalar advection equations for each compo-

nent of w(x, t), and finally computing q(x, t) = R̂w(x, t). Note that q(x, t)
is always a linear combination of the two eigenvectors, and w1(x, t) and
w2(x, t) are simply the weights.

3.4. The linear Riemann problem

Since the ocean does not have constant depth, and is not one-dimensional,
we cannot use the above exact solution procedure directly. However, under-
standing the eigenstructure displayed above is critical to the development
of Godunov-type numerical methods that we concentrate on here. These
methods, and also much of the theory of both linear and nonlinear hyper-
bolic PDEs, are based on solutions to the so-called Riemann problem. This
consists of the original PDE under study together with very special initial
data at some time t = t̄ consisting of piecewise constant data with a single
jump discontinuity at some point x̄,

q(x, t̄) =

{
Q� if x < x̄,

Qr if x > x̄.
(3.17)

For the linear hyperbolic problem (3.13), it is easy to see (using the con-
struction of the exact solution described above), that the solution consists of

two discontinuities propagating away from the point x̄ at velocities λ̂1 and
λ̂2. Moreover the jump in q across each of these waves must be proportional
to the corresponding eigenvector, and so the solution has the form

q(x, t) =


Q� if x < x̄+ λ̂1(t− t̄),

Qm if x̄+ λ̂1(t− t̄) < x < x̄+ λ̂2(t− t̄),

Qr if x > x̄+ λ̂2(t− t̄),

(3.18)

where the middle state Qm satisfies

Qm = Q� + α1r̂1 = Qr − α2r̂2 (3.19)

for some scalars α1 and α2. We will denote the waves by

W1 = Qm −Q� = α1r̂1, W2 = Qr −Qm = α2r̂2. (3.20)
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The weights α1 and α2 can be found as the two components of the vector
α by solving the linear system

R̂α = Qr −Q�. (3.21)

The solution is easily determined to be

α1 =
λ̂2∆h−∆µ

2ĉ
, α2 =

−λ̂1∆h−∆µ

2ĉ
. (3.22)

where ∆h = hr−h� and ∆µ = µr−µ� = hrur−h�u�. Note in particular that
if u� = ur = û then α1 = α2 = (hr−h�)/2, and the initial jump in h resolves
into equal-amplitude waves propagating upstream and downstream.
For the constant coefficient linear problem the characteristic structure de-

termines the Riemann solution. For variable coefficient or nonlinear prob-
lems, the exact solution for general initial data can no longer be computed
by characteristics in general, but the Riemann problem can still be solved
and is a key tool in analysis and numerics.

3.5. Varying topography

To linearize the shallow water equations in the case of variable topography,
it is easiest to work in terms of the surface elevation η(x, t) = B(x)+h(x, t).
We will linearize about a flat surface η̂ and zero velocity û = 0. We will
define ĥ(x) = η̂ − B(x), which is no longer constant and may have large
variations if the topography B(x) varies. The momentum equation can be
rewritten as

µt + (hu2)x + gh(h+B)x = 0, (3.23)

and linearizing this gives the equation

µ̃t + gĥ(x)η̃x = 0 (3.24)

for the perturbation (η̃, µ̃) about (η̂, 0). Combining this with the already
linear continuity equation η̃t+ µ̃x = 0 and dropping tildes gives the variable
coefficient linear hyperbolic system[

η
µ

]
t

+

[
0 1

gĥ(x) 0

] [
η
µ

]
x

=

[
0
0

]
. (3.25)

If we try to diagonalize these equations, we find that because the eigen-
vector matrix R now varies with x, the advection equations for the charac-
teristic variables w1 and w2 are coupled together by source terms that only
vanish where the bathymetry is flat. Over varying bathymetry a wave in
one characteristic family is constantly losing energy into the other family,
corresponding to wave reflection from the bathymetry.
Nonetheless, we can define a Riemann problem for this variable coefficient

system by allowing a jump in ĥ from ĥ� to ĥr at x̄, along with a jump in the
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data from (η�, µ�) to (ηr, µr). The solution to this Riemann problem con-

sists of a left-going wave with speed ĉ� = −(gĥ�)
1/2 and a right-going wave

with speed ĉr = (gĥr)
1/2. Each wave propagates across a region of constant

topography (B� or Br respectively) at the appropriate speed, and hence the
jump in (η, µ) across each wave must be an eigenvector corresponding to
the coefficient matrix on that side of x̄:

W1 = α1r̂1� = α1

[
1

−ĉ�
]
, W2 = α2r̂2r = α2

[
1
ĉr

]
, (3.26)

The weights α1 and α2 can be determined by solving the linear system[
1 1

−ĉ� ĉr

] [
α1

α2

]
=

[
ηr − η�
µr − µ�

]
≡

[
∆η
∆µ

]
, (3.27)

yielding

α1 =
ĉr∆η −∆µ

c� + cr
, α2 =

ĉl∆η +∆µ

c� + cr
. (3.28)

Note that in the case when there is no jump in topography, ĥ� = ĥr = ĥ,
we find that −c� = cr = (gĥ)1/2, and ∆η = ∆h, so that (3.28) agrees with
(3.22).
Another way to derive this linearized solution is to linearize the system

(3.9) that we obtained by introducing B(x, y) as a new component. Lin-

earizing about ĥ and û = 0 gives the variable coefficient matrix

Â(x) =

 0 1 0

gĥ(x) 0 gĥ(x)
0 0 0

, ĥ(x) =

{
ĥ� if x < x̄,

ĥr if x > x̄.
(3.29)

The Riemann solution consists of three waves, found by decomposing

∆q =

∆h
∆µ
∆B

 = α1

 1
−ĉ�
0

+ α2

 1
ĉr
0

+ α0

−1
0
1

. (3.30)

From the third equation we find α0 = ∆B, and then α1 and α2 can be found
by solving ∆h+∆B

∆µ
0

 = α1

 1
−ĉ
0

+ α2

1ĉ
0

. (3.31)

Since ∆h +∆B = ∆η, this gives the same system as (3.27), and the same
propagating waves as before.
We will make use of this Riemann solution for the linearized shallow

water equations in developing an approach for the full nonlinear equations
in Section 5.
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3.6. Interaction with the continental shelf

Often there is a broad and shallow continental shelf that is separated from
the deep ocean by a very steep and narrow continental slope (narrow relative
to the wavelength of the tsunami, that is). Figure 12.4 shows the continental
shelf near Lima, Peru and the refraction of the 27 February 2010 tsunami
wave hitting this shelf. In this section we consider an idealized model to help
understand the amplification of a tsunami that takes place as it approaches
the coast.
Consider piecewise constant bathymetry with a jump from an undisturbed

depth h� to a shallower depth of hr. Figure 3.2 shows an example of a small-
amplitude wave interacting with such bathymetry, in this case a step dis-
continuity 30 km offshore at the location indicated by the dashed line. The
undisturbed depths are h� = 4000 and hr = 200 m. At time t = 0 a hump of
stationary water is introduced with amplitude 0.4 m. This hump splits into
left-going and right-going waves of equal amplitude, sufficiently small that
propagation is essentially linear on both sides of the discontinuity. A purely
positive perturbation of the depth is used here to make the figures clearer,
but any small-amplitude waveform would behave in the same manner.
We observe in Figure 3.2 that the right-going wave is split into transmitted

and reflected waves when it encounters the discontinuity in bathymetry.
The transmitted wave has large amplitude, but shorter wavelength, while
the reflected wave has smaller amplitude. At later times the right-going
wave on the shelf reflects off the right boundary and becomes a left-going
wave. In this model problem the shore is simply a solid vertical wall, but
a similar reflection would be observed from a beach. This left-going wave
reflected from shore later hits the discontinuity in bathymetry and is itself
split into a transmitted wave (left-going in the ocean) and a reflected wave
(right-going on the shelf). The reflected right-going wave is now a wave of
depression, which later reflects off the shore, then off the discontinuity, etc.
It is important to note that much of the wave energy is trapped on the

continental shelf and reflects multiple times between the discontinuity in
bathymetry and the shore. This has practical implications and is partly
responsible for the fact that multiple destructive tsunami waves are often
observed on the coast. Moreover, the trapped wave continues to radiate
energy back into the ocean each time the wave reflects off the discontinuity.
This leads to a more complex wave pattern elsewhere in the ocean than
would be observed from the initial tsunami alone, or from including only
the single reflection that would be seen from a shore with no shelf. This
suggests that to accurately simulate tsunamis it may be important to ade-
quately resolve continental shelves, even in regions away from the coastline
of primary interest in the simulation. As an example of this, the simula-
tion shown in Figures 12.1–12.4 shows that large-amplitude waves remain
trapped on the shelf off Peru long after the main tsunami has passed by.
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Figure 3.2. An idealized tsunami interacting with a step discontinuity
representing a continental shelf. The dashed line indicates the location of
the discontinuity, 30 km offshore. See Figure 3.3 for the same solution as a
contour plot in the x–t plane.
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Figure 3.3. Contour plot in the x–t plane of an idealized tsunami interacting
with a step discontinuity representing a continental shelf. Solid contour lines
are at 0.025, 0.05, . . . , 0.35 m. Dashed contour lines are at −0.025, −0.05,
−0.1, −0.15 m. This is a different view of the results shown in Figure 3.2,
and the times shown there are indicated as horizontal lines.
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Consider the first interaction of the wave shown in Figure 3.2 with the
discontinuity. Note that the lower wave speed on the shelf results in a
shorter-amplitude wave. To understand this, suppose the initial wave has
wavelengthW�. The tail of the wave reaches the step at time ∆t =W�/

√
gh�

later than the front of the wave. At this time the front of the transmit-
ted wave on the shallow side has moved a distance ∆t

√
ghr and so the

wavelength observed on the shallow side is Wr =
√
hr/h�W� < W�. The

wavelength decreases by the same factor as the decrease in wave speed.
On the other hand, the amplitude of the transmitted wave is larger than

the amplitude of the original wave by a factor CT > 1, the transmission
coefficient , while the reflected wave is smaller by a factor CR < 1, the
reflection coefficient. For the idealized step discontinuity, these coefficients
are given by

CT =
2c�

c� + cr
, CR =

c� − cr
c� + cr

, (3.32)

analogous to the transmission and reflection coefficients of linear acoustics,
for example, at an interface between materials with different impedance. For
the example shown in Figures 3.2 and 3.3, the coefficients are CT ≈ 1.63
and CR = CT − 1 ≈ 0.63.
There are several ways to derive these coefficients. An approach that fits

well here is to use the structure of the Riemann solution derived above, as
is done for acoustics in LeVeque (2002). Consider a pure right-going wave
consisting of a jump discontinuity of magnitude ∆η in depth, that hits the
discontinuity in bathymetry at some time t̄. From this time forward we
have a Riemann problem in which ∆µ = c�∆η by the jump conditions
across a right-going wave in the deep water. The Riemann solution consists
of a left-going wave (the reflected wave) and a right-going wave (the trans-
mitted wave) of the form (3.26), and the formulas (3.28) when applied to
this particular Riemann data yield directly the coefficients (3.32). A more
general waveform can be viewed as a sequence of small step discontinuities
approaching the shelf, each of which must have the same relation between
∆η and ∆µ, and so each is split in the same manner into transmitted and
reflected waves.
Note that if c� = cr there is no discontinuity, and in this case CT = 1

while CR = 0. On the other hand, in the limiting case of very shallow water
on the right, CT → 2 while CR → 1. This limiting case corresponds to a
solid wall boundary condition, and this factor of 2 amplification is apparent
at time t = 1000 s in Figure 3.2, when the wave is reflecting off the shore.

In general the amplification factor for a wave transmitted into shallower
water is between 1 and 2, while the reflection coefficient is between 0 and
1 if c� > cr. When a wave is transmitted from shallow water into deeper
water (e.g., if c� < cr) then the reflection coefficient in (3.32) is negative,
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explaining the negation of amplitude seen in Figures 3.2 and 3.3 when the
trapped wave reflects off the discontinuity, for example between times 1400
and 2000 seconds in those plots.
We can also calculate the fraction of energy that is transmitted and re-

flected at the shelf. In a pure right-going wave (or a pure left-going wave)
the energy is equally distributed between potential and kinetic energy by
the equipartition principle. If η(x) is the displacement of the surface from
sea level ηs = 0 and u(x) is the velocity of the fluid, then these are given by

Potential energy =

∫
1

2
ρgη2(x) dx,

Kinetic energy =

∫
1

2
ρu2(x) dx,

(3.33)

where ρ is the density of the water. It is easy to check that these are equal
for a wave in a single characteristic family (for the linearized equations
about a constant depth h and zero velocity) by noting that the form of the
eigenvectors (3.8) shows that hu(x) = ±√

gh η(x) for each x. Let E� be
the energy in the wave approaching the step. The reflected wave has the
same shape but the amplitude of η(x) is reduced by CR everywhere, and
hence the energy in the reflected wave is C2

RE�. By conservation of energy,
the amount of energy transmitted is (1 − C2

R)E�. This result can also be
found by calculating the potential energy of the transmitted wave directly
from the integral in (3.33), taking into account both the amplitude of the
wave by the factor CT and the reduction in wavelength by

√
hr/h�. For the

example shown in Figures 3.2 and 3.3, approximately 60% of the energy is
transmitted onto the shelf at the first reflection time. At the kth reflection
of the wave trapped on the shelf, the energy radiated can be calculated to

be (1−CR)
2C

(k−1)
R E�. The total of the initially reflected energy plus all the

radiated energy is given by an infinite series that sums to E�.

4. Finite volume methods

Before continuing our discussion of Riemann problems for the shallow water
equations, we pause to introduce the basic ideas of finite volume methods,
both as motivation and in order to see what information will be required
from Riemann solutions.
Nonlinear hyperbolic systems (3.3) present some well-known difficulties

for numerical solution, and a considerable amount of research has been
dedicated to the development of suitable numerical methods for them; see
LeVeque (2002) for an overview. A class of numerical methods that has
been very successful for these problems are the shock-capturing Godunov-
type methods : finite volume methods making use of Riemann problems to
determine the numerical update.
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In a one-dimensional finite volume method, the numerical solution Qn
i is

an approximation to the average value of the solution in the ith grid cell
Ci = [xi−1/2, xi+1/2]:

Qn
i ≈ 1

Vi

∫
Ci
q(x, tn) dx, (4.1)

where Vi is the volume of the grid cell (simply the length in one dimension,
Vi = xi+1/2−xi−1/2). The wave propagation algorithm updates the numer-

ical solution from Qn
i to Qn+1

i by solving Riemann problems at xi−1/2 and
xi+1/2, the boundaries of Ci, and using the resulting wave structure of the
Riemann problem to determine the numerical update. For a homogeneous
system of conservation laws qt + f(q)x = 0, such methods are often written
in conservation form,

Qn+1
i = Qn

i − ∆t

∆x
(Fn

i+1/2 − Fn
i−1/2) (4.2)

where Fn
i−1/2 is a numerical flux approximating the time average of the true

flux across the left edge of cell Ci over the time interval:

Fn
i−1/2 ≈

1

∆t

∫ tn+1

tn

f(q(xi−1/2, t)) dt. (4.3)

If the method is in conservation form, then no matter how the numerical
fluxes are chosen the method will be conservative: summing Qn+1

i over all
grid cells gives a cancellation of fluxes except for fluxes at the boundaries.
The classical Godunov’s method is obtained by solving the Riemann problem
at each cell edge (using x̄ = xi−1/2 and t̄ = tn in our general description
of the Riemann problem, for example) and then evaluating the resulting
Riemann solution at xi−1/2 to define the numerical flux, setting

Fn
i−1/2 = f(Q(xi−1/2)).

This gives a first-order accurate method that can be viewed as a general-
ization of the upwind method for scalar advection.
For equations (3.3) with a source term, one common approach is to use a

fractional step method in which each time step is subdivided into a step on
the homogeneous conservation law qt+ f(q)x = 0, followed by a step on the
source terms alone, solving qt = ψ(q, x). This approach generally works well
for the friction or Coriolis terms in the shallow water equations, as discussed
further in Section 7, but is not suitable for handling the bathymetry terms.
For the steady state solution of the ocean at rest, the bathymetry source
term must exactly cancel out the gradient of hydrostatic pressure that ap-
pears in the momentum flux. A fractional step method will not achieve this
and will generate large spurious waves. Instead these source terms must be
incorporated into the Riemann solution directly, as discussed further below.
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To incorporate source terms, it is no longer possible to use the conserva-
tion form (4.2). Instead we will write the method in fluctuation form

Qn+1
i = Qn

i − ∆t

∆x
(A+∆Qn

i−1/2 +A−∆Qn
i+1/2), (4.4)

where the vector A+∆Qn
i−1/2 represents the net effect of all waves prop-

agating into the cell from the left boundary, while A−∆Qn
i+1/2 is the net

effect of all waves propagating into the cell from the right boundary. For a
homogeneous conservation law, this will be conservative if we choose these
fluctuations as a flux-difference splitting at each interface, so that for exam-
ple

A−∆Qn
i−1/2 +A+∆Qn

i−1/2 = f(Qn
i )− f(Qn

i−1). (4.5)

When source terms are incorporated, the right-hand side of (4.5) must be
suitably modified as discussed below.
The notation A±∆Q is motivated by the linear case. If f(q) = Aq, then

Godunov’s method is the simple generalization of the scalar upwind method
obtained by taking

A±∆Qn
i−1/2 = A±(Qn

i −Qn
i−1), (4.6)

where the matrices A± are defined by

A± = RΛ±R−1, Λ± =

[
(λ1)± 0
0 (λ2)±

]
, (4.7)

where λ+ = max(λ, 0) and λ− = min(λ, 0). For the linearized shallow
water equations, note that in the subcritical case these fluctuations are
simply

A−∆Qi−1/2 = λ̂1W1
i−1/2, A+∆Qi−1/2 = λ̂2W2

i−1/2. (4.8)

In the supercritical case, one of the fluctuations would be the zero vector
while the other is the sum of λ̂pWp

i−1/2 over p = 1, 2, which gives the full

jump in the flux difference A(Qn
i −Qn

i−1).

4.1. Second-order corrections and limiters

Godunov’s method is only first-order accurate and introduces a great deal of
numerical diffusion into the solution. In particular, steep gradients are badly
smeared out. To obtain a high-resolution method , we add additional terms
to (4.4) that model the second derivative terms in a Taylor series expansion
of q(x, t + ∆t) about q(x, t), and then apply limiters to avoid the non-
physical oscillations that often arise near discontinuities when a dispersive
second-order method is used. To maintain conservation, these corrections
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can be expressed in a flux-differencing form, and so we replace (4.4) by

Qn+1
i = Qn

i −
∆t

∆x
(A+∆Qn

i−1/2+A−∆Qn
i+1/2)−

∆t

∆x
(F̃n

i+1/2− F̃n
i−1/2). (4.9)

For a constant coefficient linear system, second-order accuracy is achieved
by taking

F̃n
i−1/2 =

1

2

(
I − ∆t

∆x
|A|

)
|A|(Qn

i −Qn
i−1), (4.10)

where |A| = R(Λ+ − Λ−)R−1. Inserting (4.10) and (4.6) into (4.9) and
simplifying reveals that this is simply the Lax–Wendroff method,

Qn+1
i = Qn

i −
1

2

∆t

∆x
A(Qn

i+1−Qn
i−1)+

1

2

(
∆t

∆x

)2

A2(Qn
i+1−Qn

i +Q
n
i−1). (4.11)

Although this is second-order accurate on smooth solutions, the dominant
term in the error is dispersive, and so non-physical oscillations appear near
steep gradients. This can be disastrous, particularly if they lead to negative
values of the depth. By viewing the Lax–Wendroff method in the form (4.9),
as a modification to the upwind Godunov method, we can apply limiters
to produce ‘high-resolution’ results. To do so, note that the correction flux
(4.10) can be rewritten in terms of the waves W1 and W2 as

F̃i−1/2 =
1

2

2∑
i=1

(
1− ∆t

∆x
|λp|

)
|λp|Wp

i−1/2, (4.12)

where we have dropped the time step index n and the superscript p refers
to the wave family. We introduce limiters by replacing Wp

i−1/2 by a limited

version W̃p
i−1/2 = Φ(θpi−1/2)Wp

i−1/2, where θ
p
i−1/2 is a scalar measure of the

strength of the wave Wp
i−1/2 relative to the wave in the same family arising

from a neighbouring Riemann problem, while Φ(θ) is a scalar-valued limiter
function that takes values near 1 where the solution appears to be smooth
and is typically closer to 0 near perceived discontinuities. See LeVeque
(2002) for more details. There is a vast literature on limiter functions and
methods with a similar flavour. Often the limiter is applied to the numerical
flux function (giving flux-limiter methods) or to slopes in a reconstruction
of a piecewise polynomial approximate solution from the cell averages (e.g.,
slope limiter methods). The above formulation in terms of ‘wave limiters’
has the advantage that it extends very naturally to arbitrary hyperbolic sys-
tems of equations, even those that are not in conservation form. This wave
propagation approach is the basic method used throughout the Clawpack
software. The generalization to two space dimensions is briefly discussed in
Section 6.
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4.2. The f-wave formulation

Another formulation of the wave propagation algorithms known as the f-
wave form has been found to be very useful in many contexts, including the
incorporation of source terms as discussed below. An approximate Riemann
solver generally produces a set of wave basis vectors rpi−1/2 (often as the

eigenvectors of some matrix) and then determines the waves by decomposing
the vector Qi −Qi−1 as a linear combination of these basis vectors,

Qi −Qi−1 =
∑
p

αp
i−1/2r

p
i−1/2 ≡

∑
p

Wp
i−1/2. (4.13)

The f-wave approach instead splits the flux difference as a linear combination
of these vectors,

f(Qi)− f(Qi−1) =
∑
p

βpi−1/2r
p
i−1/2 ≡

∑
p

Zp
i−1/2. (4.14)

From this splitting we can easily define fluctuations A±∆Qi−1/2 satisfying
(4.5) by assigning the f-waves Zp

i−1/2 for which the corresponding eigenvalue

or approximate wave speed is negative to A−∆Qi−1/2, and the remaining

f-waves to A+∆Qi−1/2. For the linearized shallow water equations in the
subcritical case, this reduces to

A−∆Qi−1/2 = Z1
i−1/2, A+∆Qi−1/2 = Z2

i−1/2,

F̃i−1/2 =
1

2

2∑
p=1

(
1− ∆t

∆x
|λ̂p|

)
sgn(λp)Z̃p

i−1/2,
(4.15)

where Z̃p
i−1/2 is a limited version of Zp

i−1/2. The f-waves are limited in

exactly the same manner as waves Wp
i−1/2 would be.

One advantage of this formulation is that the requirement (4.5) is satisfied
no matter how the eigenvectors r1 and r2 are chosen for the nonlinear case.
Another advantage is that source terms are easily included into the Riemann
solver in a well-balanced manner.

5. The nonlinear Riemann problem

Although linearized equations may be suitable in deep water, as a tsunami
approaches shore the nonlinearities cannot be ignored. In the nonlinear
equations the characteristic speeds (eigenvalues of the Jacobian matrix)
vary with the solution itself. Over flat bathymetry the fluid depth is greater
at the peak of a wave than in the trough, so the peak travels faster and can
even overtake the trough in water that is shallow relative to the wavelength.
This wave breaking is clearly visible for ordinary wind-generated waves on
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Time 0 Time 0

Time 3.00 Time 0.08

Time 6.00 Time 0.16

(a) (b)

Figure 5.1. Solution to the ‘dam-break’ Riemann problem for the shallow
water equations with initial velocity 0. The shading shows a passively
advected tracer to help visualize the fluid velocities, compression, and
rarefaction. The bathymetry is (a) B� = −1 and Br = −0.5, (b) B� = −4000
and Br = −200. In both cases, η� = 1 and ηr = 0.

the ocean as they move into sufficiently shallow water in the surf zone.
In the shallow water equations the depth must remain single-valued and so
overturning waves cannot be modelled directly. Instead a shock wave forms,
also called a hydraulic jump in shallow water theory. This models a bore, a
near-discontinuity in the surface elevation that is often seen at the leading
edge of tsunamis as they approach shore or propagate up a river.
The nonlinear Riemann problem over flat bathymetry can be solved and

consists of two waves moving at constant velocities, though now each wave is
generally either a shock wave (if characteristics are converging) or a spread-
ing rarefaction wave (if characteristics are diverging, i.e., the eigenvalue is
strictly increasing from left to right across the wave). For details on solving
the nonlinear Riemann problem exactly, see for example LeVeque (2002) or
Toro (2001).
On varying topography we can consider a generalized Riemann problem

in which the bathymetry is allowed to be discontinuous at the point x̄ along
with the state variables. The solution to this nonlinear Riemann problem
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generally consists of three waves. In addition to the two propagating waves,
which each propagate over flat bathymetry to one side or the other of x̄
as in the linear case discussed above, there will also be a stationary wave
(propagating with speed zero) at x̄, where the jump in bathymetry leads to
a jump in depth h, and also in the surface η if water is flowing across the
step. This is illustrated in Figure 5.1. In the linearized model this stationary
jump in η does not appear because the jump in the surface at a stationary
discontinuity is of order u2/gh for small perturbations. Figure 5.1(b) shows
the solution to the nonlinear Riemann problem with the same jump in the
surface η as in Figure 5.1(a), but over much deeper water. The spread of
characteristics across the rarefaction wave is so small that it appears as a
discontinuity and the fluid velocity is so small that the jump in surface at
the stationary discontinuity can not be seen.

5.1. Approximate Riemann solvers

For the linearized shallow water equations on flat topography, the exact
eigenstructure is known and easily used to compute the exact Riemann
solution for any states Q� and Qr, as has been done in Section 3.4. For
the nonlinear problem, the exact solution is more difficult to compute and
generally not worth the effort, since the waves and speeds are used in a finite
volume method that introduces errors when computing cell averages in each
time step. Since a Riemann problem is solved at every cell interface in each
time step, the cost of the Riemann solver often dominates the computational
cost of the method and it is important to develop efficient approximate
solvers. Moreover, rarefaction waves such as those shown in Figure 5.1(a)
are not directly handled by the wave propagation algorithms, which assume
each wave is a jump discontinuity.
Instead of using the exact Riemann solution, most Godunov-type methods

use approximate Riemann solvers. For GeoClaw we use approximate solvers
that always return a set of waves (or f-waves) that are simple discontinuities
propagating at constant speeds. These must be chosen in a manner that:

• gives a good approximation to the nonlinear Riemann solution,

• preserves steady states, in particular the ocean at rest,

• handles dry states h� = 0 or hr = 0,

• works well in conjunction with AMR.

The Riemann solver used in GeoClaw is rather complicated and will not be
described in detail. We will just give a flavour of how it is constructed. Full
details can be found in George (2006, 2008), and the dry state problem is
discussed further in George (2010).
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The f-wave approach developed in Section 3.5 is expanded to an aug-
mented Riemann solver in which the vector

∆h
∆µ
∆φ
∆B

 (5.1)

is decomposed into 4 waves. Note that the first two components of this
vector correspond to the jump in q = (h, µ) in the Riemann problem data,
while the second and third components together correspond to the jump
in flux f(q) = (µ, φ). The jump in h is explicitly included in order to
apply techniques that ensure that no negative depths are generated in the
Riemann solutions near the shoreline.
The equations defining the Riemann problem consist of the equations

(3.9) for h, µ, and B, together with an equation for the momentum flux φ
derived by differentiating

φ = µ/h+
1

2
gh2 (5.2)

with respect to t and using the equations for the time derivatives of h and
µ to obtain

φt + 2(u2 − gh)µx + 2uφx + 2ghuBx = 0. (5.3)

This results in the non-conservative system
h
µ
φ
B


t

+


0 1 0 0

gh− u2 2u 0 gh
0 gh− u2 2u 2ghu
0 0 0 0



h
µ
φ
B


x

=


0
0
0
0

. (5.4)

The eigenvalues of this matrix are

λ1 = u−
√
gh, λ2 = u+

√
gh, λ3 = 2u, λ0 = 0, (5.5)

and the corresponding eigenvectors are

r1 =


1
λ1

(λ1)2

0

, r2 =


1
λ2

(λ2)2

0

, r3 =


0
0
1
0

, r0 =


gh/λ1λ2

0
−gh
1

. (5.6)

Again the eigenvector r0 corresponds to the stationary wave induced by the
jump in topography. Note that the first component of r0 can be written
as −1/(1 − u2/gh) and for zero velocity reduces to −1, corresponding to
the jump ∆h = −∆B that gives the ocean at rest, ∆η = 0. It is shown
in George (2006, 2008) that a well-balanced method for both the ocean
at rest and also a flowing steady state is obtained by defining a discrete
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approximation to the steady wave as

W0 = ∆B


−ρ1
0

−gh̄ρ2
1

, (5.7)

where h̄ = (h� + hr)/2 and the ratios ρ1 and ρ2 are nearly 1 for small
velocities:

ρ1 =
gh̄

gh̄− ū2
, ρ2 =

max(u�ur, 0)− gh̄

ū2 − gh̄
, (5.8)

where ū = 1
2(u� + ur). Subtracting this wave from the vector (5.1) reduces

the problem to a system of three equations for the remaining waves.
The eigenvalues λ1 and λ2 are replaced by wave speeds s1 and s2 esti-

mated from the Riemann data, and these values are also used in the discrete
eigenvectors r1 and r2. The wave speeds are approximated using a variant
of the approach suggested by Einfeldt (1988) in connection with the HLL
solver of Harten, Lax and van Leer (1983) to avoid difficulties with the vac-
uum state in gas dynamics, which is analogous to the dry state problem
in shallow water. This HLLE solver is further discussed in Einfeldt, Munz,
Roe and Sjogreen (1991) and elsewhere. These HLLE speeds are given by

s1 = min(ŝ1, u� − c�), s2 = max(ŝ2, ur + cr) (5.9)

where ŝ1 and ŝ2 are the speeds used in the Roe solver for the shallow water
equations,

ŝ1 = ū− ĉ, ŝ2 = ū+ ĉ, (5.10)

where

ĉ =

√
gh̄, û =

u�
√
h� + ur

√
hr√

h� +
√
hr

. (5.11)

The wave decomposition is then done by solving the linear system to deter-
mine the weights β1, β2, and β3 in∆h∆µ

∆φ

 = β1

 1
s1

(s1)2

+ β2

 1
s2

(s2)2

+ β3

00
1

. (5.12)

Further improvements can be made by replacing the third eigenvector by a
different choice in certain situations, as discussed further in George (2008).
Finally, the second and third components of these waves are used as f-
waves in the algorithm described in Section 4.2 along with the wave speeds
s1, s2, and s3 = 2û. This results in a method that conserves mass (and
momentum when ∆B = 0), avoids dry states, and is well-balanced. A
number of related Riemann solvers and Godunov-type methods have been
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Figure 5.2. Solution to the Riemann problem for the shallow water
equations with a dry state on the right and positive velocity in the left state.
The velocity is larger in the case shown in column (b). The shading shows a
passively advected tracer to help visualize the fluid velocities, compression,
and rarefaction.

proposed in the literature that can also achieve these goals. The approach
outlined above that splits the jump in q and in f(q) is also related to the
relaxation approaches discussed in Bouchut (2004) and LeVeque and Pelanti
(2001). See also Bale et al. (2002), Gosse (2001, 2000) and In (1999).
Riemann problems with an initial dry state on one side raise additional

issues that we will not discuss in detail here. Figure 5.2 shows two examples
to illustrate one aspect of this problem. In each case there is a step discon-
tinuity in bathymetry with the left cell wet and the right cell dry, data of
the sort that naturally arise along the shoreline. In the case illustrated in
Figure 5.2(a), the velocity in the left state is positive but sufficiently small
that the step discontinuity acts as a solid wall and the Riemann solution
consists of a left-moving 1-shock, with stationary water to the right of the
shock. The case illustrated in Figure 5.2(b) has a larger positive fluid ve-
locity, in which case the flow overtops the step and there is a right-going
1-rarefaction invading the dry cell along with a left-going 1-shock. For more
details about the handling of dry states in the Riemann solver used in Geo-
Claw, see George (2008, 2010).
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6. Algorithms in two space dimensions

In two space dimensions, hyperbolic systems such as (3.2) more generally
take the form

qt + f(q)x + g(q)y = ψ(q, x, y). (6.1)

Godunov-type finite volume algorithms can be naturally extended to two
dimensions by solving 1D Riemann problems normal to each edge of a finite
volume cell, and using the Riemann solution to define an edge flux or a set
of waves propagating into the neighbouring cells. High-resolution correction
terms can then be added to achieve greater accuracy without spurious oscil-
lations. The methods used in GeoClaw are the standard wave propagation
algorithms of Clawpack, which are described in detail in LeVeque (2002).
For a logically rectangular quadrilateral grid, the cells can be indexed by
(i, j) and each cell has four neighbours. In this case the numerical solution
Qn

ij is an approximation to the average value of the solution over the grid
cell Cij ,

Qn
ij ≈

1

Vij

∫
Cij
q(x, y, tn) dx dy, (6.2)

where Vij is the area of the cell. For a regular Cartesian grid, the cell
areas are simply Vij = ∆x∆y, but the methods can also be applied on any
quadrilateral grid defined by a mapping of the uniform computational grid.
The basic idea of the wave propagation algorithms in two dimensions

is illustrated in Figure 6.1, where six quadrilateral grid cells are shown.
Figure 6.1(a) shows the left-going and right-going waves that might be gen-
erated by solving the Riemann problem normal to the cell edge in the middle
of this patch. The shallow water equations are rotationally invariant, and
the Riemann problem normal to any edge can easily be solved by rotating
the momentum components of the cell averages Q to normal and tangential
components. The normal components are used in solving a 1D Riemann
problem along with the depth h on either side. The jump in tangential
velocity is simply advected by a third wave propagating at the intermediate
velocity found from the 1D Riemann solution.
Using these waves to update the cell averages in the two cells neighbouring

this edge gives the natural generalization of Godunov’s method, which is
first-order accurate and stable only for Courant numbers up to 0.5 (because
of the waves that also enter the cell from above and below when solving
Riemann problems in the orthogonal direction).
To increase the accuracy we need to add second-order correction terms

that model the next terms in a Taylor series expansion of the solution at
the end of the time step about the starting values, requiring an estimate
of qtt. In the Lax–Wendroff framework used in the wave propagation algo-
rithms, this is replaced by spatial derivatives by differentiating the original
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system of equations in time. The result involves qxx and qyy and these terms
can be incorporated by a direct extension of the one-dimensional correction
terms, with limiters used as in one dimension to give high resolution (sharp
gradients without overshoots or undershoots). The time derivative qtt also
involves mixed derivatives qxy and it is important to include these terms as
well, both to achieve full second-order accuracy and also to improve the sta-
bility properties of the method. The cross-derivative terms are included by
taking the waves propagating normal to the interface shown in Figure 6.1(a)
and splitting each wave into up-going and down-going pieces that modify
the cell averages above or below. This is accomplished by decomposing the
fluctuations A±∆Q into eigenvectors of the Jacobian matrix in the trans-
verse direction (tangent to the cell interface we started with). The resulting
eigen-decomposition is used to split each of the fluctuations into an down-
going part (illustrated in Figure 6.1(b)) and a up-going part (illustrated in
Figure 6.1(c)), and is done in the transverse Riemann solver of Clawpack.
The triangular portions of these waves that lie in the adjacent row of grid
cells can be used to define a flux from the cells in the middle row to the
cells in the bottom or top row of cells respectively. The algorithms must of
course be modified to take into account the areas swept out by the waves
relative to the area of the grid cells in order to properly update cell averages.
This approach is described in more detail in LeVeque (2002) and has been
successfully used in solving a wide variety of hyperbolic systems in two space
dimensions, and also in three dimensions after introducing an additional set
of transverse terms (Langseth and LeVeque 2000). See also LeVeque (1996)
for a simpler discussion in the context of advection equations.
With the addition of these transverse terms, the resulting method is stable

up to a Courant number of 1. The methods can be used on an arbitrary log-
ically rectangular grid: the mapping from computational to physical space
need not be smooth, an advantage for some applications such as the quadri-
lateral grid on the sphere used for AMR calculations in Berger, Calhoun,
Helzel and LeVeque (2009).

6.1. Ghost cells and boundary conditions

Boundary conditions are imposed by introducing an additional two rows
of grid cells (called ghost cells) around the edge of the grid. In each time
step values of Q are set in these cells in some manner, depending on the
physical boundary condition, and then the finite volume method is applied
over all cells in the original domain. Updating cells adjacent to the original
boundaries will use ghost cell values in determining the update, and in this
way the physical boundary conditions indirectly affect the solution.
For tsunami modelling we typically take the full domain to be sufficiently

large that any waves leaving the domain can be safely ignored; we assume
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(a) (b) (c)

Figure 6.1. (a) Six quadrilateral grid cells and the waves moving normal to
a cell interface after solving the normal Riemann problem. (b) Down-going
portions of these waves resulting from transverse Riemann solve. (c) Up-going
portions of these waves resulting from transverse Riemann solve.

they should not later reflect off a physical feature and re-enter the do-
main. So we require non-reflecting boundary conditions (also called absorb-
ing boundary conditions) that allow outgoing waves to leave the domain
without unphysical numerical reflections at the edge of the computational
domain. For Godunov-type methods such as the wave propagation meth-
ods we employ, a very simple extrapolation method gives a reasonable non-
reflecting boundary condition as discussed in LeVeque (2002): in each time
step we simply copy the values of Q in the cells adjacent to each boundary
into the adjacent ghost cells. Solving a Riemann problem between two iden-
tical states results in zero-strength waves and so the Riemann problems at
the cell interfaces at the domain boundary give no spurious incoming waves.
This is illustrated in Figure 12.1, for example, where the tsunami is seen to
leave the computational grid with very little spurious reflection.

When adaptive mesh refinement is used, many grid patches will have
edges that are within the full computational domain. In this case ghost cell
values are filled either from an adjacent grid at the same level of refinement,
if such a grid exists, or by interpolating from coarser levels. This is described
further in Section 9. It is important to ensure that spurious waves are not
generated from internal interfaces between grids at different levels. Again
Godunov-type methods seem to handle this quite well, as is also apparent
from the results shown in Figure 12.1, for example.
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6.2. Solving on the sphere

To properly model the propagation of tsunamis across the ocean, it is nec-
essary to solve the shallow water equations on the surface of the sphere
rather than in Cartesian coordinates. This can be done using the approach
discussed above and illustrated in Figure 6.1, where now the cell area is
calculated as an area on the sphere. The coordinate lines bounding the
quadrilaterals are assumed to lie along great circles on the sphere between
the corner vertices and so these areas are easily computed.
The current implementation in GeoClaw assumes that latitude–longitude

coordinates are used on the sphere. This gives some simplification of the
Riemann solvers since the cell edges are then orthogonal to one another
and the momenta that are stored in the Q vectors are the components of
momentum in these two directions. Latitude–longitude grids are generally
used for teletsunami modelling since interest is generally focused on the
mid-latitudes. To obtain an accurate representation of flow on the sphere,
it is necessary to compute the cell volumes Vij using surface area on the
sphere. The grid cells are viewed as patches of the sphere obtained by
joining the four corners by great circle arcs between the specified latitude
and longitude values. The length of the cell edges also come into the finite
volume methods and must be calculated using great circle distance.
On the full sphere, latitude–longitude coordinates have the problem that

grid lines coalesce at the poles. The cells are very small near the poles
relative to those near the equator, requiring very small time steps in order to
keep the global Courant number below 1. A variety of other grids have been
proposed for solving problems on the full sphere, particularly in atmospheric
sciences where flow at the poles is an important part of the solution. One
approach that fits well with the AMR algorithms described in this paper is
discussed in Berger et al. (2009).

7. Source terms for friction

Topographic source terms are best incorporated into the Riemann solver, as
described in Section 3.1. Additional source terms arise from bottom friction
in shallow water, and are particularly important in modelling inundation.
Run-up and inundation distance are affected by the roughness of the terrain,
and would be much larger on a bare sandy beach than through a mangrove
swamp, for example.
To model friction, we replace the momentum equations of (3.2) by

(hu)t + (hu2 + 1
2gh

2)x + (huv)y + ghBx = −D(h, u, v)hu, (7.1a)

(hv)t + (huv)x + (hv2 + 1
2gh

2)y + ghBy = −D(h, u, v)hv, (7.1b)

with some frictional drag coefficient D(h, u, v). Various models are available
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in the literature. We generally use the form

D(h, u, v) = n2gh−7/3
√
u2 + v2. (7.2)

The parameter n is the Manning coefficient and depends on the roughness.
If detailed information about the surface is known then this could be a
spatially varying parameter, but for generic tsunami modelling a constant
value of n = 0.025 is often used.
Note that in deep water the friction term in (7.1) is generally negligible,

being of magnitude O(|u|2h−4/3), and so we only apply these source terms
in coastal regions, e.g., in depths of 100 m or less. In these regions the
source term is applied as an update to momentum at the end of each time
step. We loop over all grid cells and in shallow regions update the momenta
(hu)ij and (hv)ij by

Dij = n2gh
−7/3
ij

√
u2ij + v2ij ,

(hu)ij = (hu)ij/(1 + ∆tDij),

(hv)ij = (hv)ij/(1 + ∆tDij),

(7.3)

This corresponds to taking a step of a linearized backward Euler method
on the ordinary differential equations for momentum obtained from the
source alone. By using backward Euler, we ensure that the momentum is
driven to zero when ∆tDij is large, rather than potentially changing sign
as might happen with forward Euler, for example. A higher-order method
could be used, but given the uncertainty in the Manning coefficient (and
indeed in the friction model itself), this would be of questionable value.
Including friction is particularly important at the shoreline where the depth
h approaches zero, and the above procedure helps to stabilize the method
and ensure that velocities remain bounded as the shoreline moves while a
wave is advancing or retreating.

8. Adaptive mesh refinement

In this section we will first describe the general block-structured adaptive
mesh refinement (AMR) algorithms that are widely used on structured log-
ically rectangular grids. This approach is discussed in numerous papers
including Berger and Oliger (1984) and Berger and Colella (1989). The
implementation specific to Clawpack and hence to GeoClaw is described in
more detail in Berger and LeVeque (1998). We will summarize the basic
approach and then concentrate on some of the challenges that arise when
combining AMR with geophysical flow algorithms, in particular in dealing
with dry states and with the need for well-balanced algorithms that main-
tain steady states.
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8.1. AMR overview

Block-structured AMR algorithms are designed to solve hyperbolic systems
on a hierarchy of logically rectangular grids. A single coarse (level 1) grid
comprises the entire domain, while grids at a given level 
+1 are finer than
the coarser level 
 grids by fixed integer refinement ratios r�x and r�y in the
two spatial directions,

∆x�+1 = ∆x�/r�x, ∆y�+1 = ∆y�/r�y. (8.1)

In practice we normally take r�x = r�y at each level since in this application
there is seldom any reason to refine differently in the two spatial directions.
The nesting requirements of subgrids are not restrictive, in that a single
level (
+ 1) grid may overlap several level 
 grids, and may be adjacent to
level (
− 1) grids.
Since subgrids at a given level can appear and disappear adaptively, the

highest grid level present at a given point in the domain changes with time.
The subgrid arrangement changes during the process of regridding, which
occurs every few time steps. This allows subgrids to essentially ‘move’ with
features in the solution. On the current set of grids, the solution on each grid
is advanced using the same numerical method that would be used on a single
rectangular grid, together with some special procedures at the boundaries
of subgrids.
The time steps on level 
+1 grids are typically smaller than the time step

on the level 
 grids by a factor r�t . Since Godunov-type explicit methods
like the wave propagation method are stable only if the Courant number is
bounded by 1, it is common practice to choose the same refinement factor in
time as in space, r�t = r�x = r�y, since this usually leads to the same Courant
number on the finer grids as on the coarser grid. The Courant number can
be thought of as a measure of the fraction of a grid cell that a wave can
traverse in one time step, and is given by |smax∆t/∆x|, where smax is the
maximum wave speed over the grid.
However, for tsunami applications of the type considered in this paper,

it is often desirable to choose r�t to be smaller than the spatial refinement
factor for the levels 
 corresponding to the finest grids, which are often
introduced only near the shoreline in regions where run-up and inundation
are to be studied. This is because the Courant number is based on the wave
speed |u±√

gh| ≈ √
gh, which depends on the water depth. For grids that

are confined to coastal regions, h is much smaller than on the coarser grids
that cover the ocean. If the coarsest grid covers regions where the ocean
is 4000 m deep while a fine level is restricted to regions where the depth
is at most 40 m, for example, then refining by the same factor in space
and time would lead to a Courant number of 0.1 or less on the fine grid
and potentially require 10 times as many time steps on the fine grids than
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are necessary for stability. Since the vast majority of grid cells are often
associated with fine grids near the shore, this can have a huge impact on the
efficiency of the method (and also its accuracy, since solving a hyperbolic
equation with very small Courant number introduces additional numerical
viscosity and is typically less accurate than if a larger time step is used).
We will first give a brief summary of the AMR integration algorithm

and the regridding strategy. We then focus on the modifications that are
required for tsunami modelling, which are also important in modelling other
depth-averaged geophysical flows of the type mentioned in Section 1.

8.2. AMR procedure

The basic AMR integrating algorithm applies the following steps recursively,
starting with the coarsest grids at level 
 = 1.

AMR Integration Strategy.

(1) Take a time step of length ∆t� on all grids at level 
.

(2) Using the solution at the beginning and end of this time step, perform
space–time interpolation to determine ghost cell values for all level 
+1
grids at the initial time and all r�t −1 intermediate times, for any ghost
cells that do not lie in adjacent level 
 + 1 grids. (Where there is an
adjacent grid at the same level, values are copied directly into the ghost
cells at each intermediate time step.)

(3) Take r�t time steps on all level 
+1 grids to bring these grids up to the
same advanced time as the level 
 grids.

(4) For any grid cell at level 
 that is covered by a level 
+1 grid, replace
the solution Q in this cell by an appropriate average (described in
Section 9) of the values from the r�xr

�
y grid cells on the finer grid that

cover this cell.

(5) Adjust the coarse cell values adjacent to fine grids to maintain conser-
vation of mass (and of momentum in regions where the source terms
vanish). This step is described in more detail in Section 9.4, after
discussing the interpolation issues.

After each of the level 
+1 time steps in step (3) above, the same algorithm
is applied recursively to advance even finer grids (levels 
+ 2, . . .).
Every few time steps on each level a regridding step is applied (except

on the finest allowed level). The frequency depends on how fast the waves
are moving, and how wide a buffer region around the grid patches there
is. The larger the buffer region, the less frequently regridding needs to be
performed. On the other hand a wide buffer region results in more grid cells
to integrate on the finer level. We typically use a buffer width of 2 or 3 cells
and regrid every 2 or 3 time steps on each level.
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AMR Regridding Algorithm.

(1) Flag cells at level 
 that require refinement to level 
+1. Our flagging
strategy for tsunami modelling is summarized below.

(2) Cluster the flagged cells into rectangular patches using the algorithm
of Berger and Rigoutsos (1991). This heuristic tries to strike a balance
between minimizing the number of grids (to reduce patch overhead),
and minimizing the number of unnecessarily refined cells when cluster-
ing into rectangles.

(3) Initialize the solution on each level 
+1 grid. For each cell, either copy
the data from an existing level 
 + 1 grid or, if no such grid exists at
this point, interpolate from level 
 grids using procedures described in
the next section.

8.3. AMR cell flagging criteria

Depending on the application, a variety of different criteria might be used
for flagging cells. In many applications an error estimation procedure or
a feature detection algorithm is applied to all grid points on levels l <
Lmax, where Lmax is the maximum number of levels allowed. Cells where
a threshold is exceeded are flagged for inclusion in a finer grid patch. A
common choice is to compute the spatial gradient of one or more components
of the solution vector q. For the simulation of tsunamis, we generally use
the elevation of the sea surface relative to sea level, |h + B − ηs|. This is
non-zero only in the wave and is a much better flagging indicator than the
gradient of h, for example, which can be very large even in regions where
the ocean is at rest due to variations in topography.
The sheer scale of tsunami modelling makes it necessary to allow much

more refinement in some spatio-temporal regions than in others. In partic-
ular, the maximum refinement level and refinement ratios may be chosen to
allow a very fine resolution of some regions of the coast that are of particular
interest, for example a harbour or bay where a detailed inundation map is
desired. Other regions of the coast may be of less interest and require less
refinement. We may also wish to allow much less refinement away from the
coast where the tsunami can be well represented on a much coarser grid.
Conversely it is sometimes useful to require refinement up to a given level
in certain regions. This is useful, for example, to force some refinement of a
region before the wave arrives. These regions of required or allowed refine-
ment may vary with time, since one part of the coast may be of interest at
early times and another part of the coast (more distant from the source) of
interest at later times. To address this, in the GeoClaw software the user
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can specify a set of space–time regions of the form

L1, L2, x1 , x2, y1, y2, t1, t2

to indicate that on the given space–time rectangle [x1, x2]× [y1, y2]× [t1, t2],
refinement to at least level L1 is required, and to at most level L2 is allowed.

9. Interpolation strategies for coarsening and refining

If the refinement level increases in a region during regridding, the solution in
the cells of the finer grid may need to be interpolated from coarser levels in
order to initialize the new grids. In the other direction, averaging from fine
grids to coarser underlying grids is done in step (4) of the AMR algorithm
of Section 8.2. This produces the best possible solution on the coarse grid
at each time. When a fine grid disappears in some region during regridding,
the remaining coarser grid already contains the averaged solution based on
the finer grid, and so no additional work is required to deal with coarsening
during the regridding stage.
We will first discuss refining and coarsening in the context of a one-

dimensional problem where it is easier to visualize. The formulas we develop
all extend in a natural way to the full two-dimensional case, discussed in
Section 9.3.
When refining and coarsening it is important to maintain the steady states

of an ocean at rest. This is particularly important since refinement often
occurs just before the tsunami wave arrives in an undisturbed area of the
ocean, and coarsening occurs as waves leave an area and the ocean returns
to a steady state.
Since the interpolation procedures are intimately tied to the representa-

tion of the bathymetry and its interpolation between grids at different levels,
we start the discussion there. We consider a cell C�

k at some level 
, and

say that a cell C�+1
i at the finer level is a subcell of C�

k if it covers a subset
of the interval C�

k (recall we are still working in one space dimension). The

set of indices i for which C�+1
i is a subcell of C�

k will be denoted by Γ�
k. We

will say that the topography is consistent between the different levels if the
topography value B�

k in a cell at level 
 is equal to the average of the values

B�+1
i in all subcells of C�

k at level 
+ 1:

B�
k =

1

r�x

∑
i∈Γ�

k

B�+1
i . (9.1)

If the cells have non-uniform sizes, for example on a latitude–longitude grid
in two dimensions, then this formula generalizes to the requirement that

B�
k =

1

V �
k

∑
i∈Γ�

k

V �+1
i B�+1

i . (9.2)
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Figure 9.1. (a) Level 
+ 1 topography and water depth with a constant sea
surface elevation ηs. The dashed lines are the level 
 topography. (b) Level 

topography and water depth on the coarse grid.

where the cell volumes (lengths in 1D, areas in 2D) satisfy

V �
k =

∑
i∈Γ�

k

V �+1
i . (9.3)

Since a discussion of this consistency is most relevant in 2D, we will defer
discussion of how we accomplish (9.2) to Section 9.3, and assume that it
holds for now.

9.1. Coarsening and refining away from shore

We first consider a situation such as illustrated in Figure 9.1, where all the
cells are wet on both levels. In this figure and the following figures, the
darker region is the earth below the topography Bi and the lighter region
is the water between Bi and ηi = Bi + hi. The coarse-grid topography of
Figure 9.1(b) (which is also shown as a dashed line in Figures 9.1(a) and
(b)) is consistent with the fine grid topography: each coarse-grid value of
B is the average of the two fine grid values. The water depths illustrated
in Figures 9.1(a) and 9.1(b) are consistent with each other (the total mass
of water is the same) and both correspond to an undisturbed ocean with
η ≡ ηs.
Suppose we are given the solution Q�+1

i for i = 1, 2, . . . , 6 on the fine
(level 
+1) grid shown in Figure 9.1(a) and we wish to coarsen it to obtain
Figure 9.1(b). Assume the topography B�+1

i is consistent, so that

B�
k =

1

2
(B�+1

2k−1 +B�+1
2k ), k = 1, 2, 3. (9.4)

To compute the water depth h�k in the coarser cells we can simply set

h�k =
1

2
(h�+1

2k−1 + h�+1
2k ), k = 1, 2, 3. (9.5)
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This preserves the steady state of water at rest B�+1
i + h�+1

i = ηs for all
i ∈ Γ�

k, since then B�
k + h�k = ηs as well. More generally, with an arbitrary

refinement factor r�x and possibly varying cell volumes, we would set

h�k =
1

V �
k

∑
i∈Γ�

k

V �+1
i h�+1

i . (9.6)

The momentum µ�k can be averaged from level 
+1 to level 
 in the same
manner, replacing h by µ in (9.6).
To go in the other direction, now suppose we are given the coarse-grid so-

lution of Figure 9.1(b) and wish to interpolate to the fine grid, for example
after a new grid is created. We would like to obtain Figure 9.1(a) on the
fine grid in this case, with the flat water surface preserved. Unfortunately,
the standard approach using linear interpolation of the conserved variables
in the coarse cell and evaluating them at the centre of each fine grid cell de-
scribed in Berger and LeVeque (1998) works very well for most conservation
laws but fails miserably here.
For the data shown in Figure 9.1(b), the depth is decreasing linearly over

the three coarse-grid cells. Using this linear function as the interpolant to
compute the fluid depth h in the cells C�+1

i on the finer grid would con-
serve mass but would not preserve the sea surface, because the fine grid
bathymetry is not varying linearly. Variation in the sea surface would gen-
erate gradients of h+B and hence spurious waves. In tsunami calculations
on coarse ocean grids this interpolation strategy can easily generate discon-
tinuities in the surface level on the order of tens or hundreds of metres,
destroying all chances of modelling a tsunami. Instead, the interpolation
must be based on surface elevation η�k = B�

k + h�k, which for Figure 9.1(b)
would all be equal to ηs. We construct a linear interpolant to these data
over each grid cell and evaluate this at the fine cell centres to obtain values
η�+1
i , and then set h�+1

i = η�+1
i −B�+1

i . The interpolant in coarse cell k is

η(x) = η�k + σ�k(x− x�k), (9.7)

where x�k is the centre of this cell. The slope σ�k is chosen to be

σ�k = minmod(η�k − η�k−1, η
�
k+1 − η�k)/∆x

�. (9.8)

We generally use the standard minmod function (e.g., LeVeque (2002)),
which returns the argument of minimum modulus, or zero if the two argu-
ments have opposite sign. This interpolation strategy prevents the intro-
duction of new extrema in the water surface elevation, preserves a flat sea
surface (provided that all depths are positive), and produces Figure 9.1(a)
from the data in Figure 9.1(b).
In a tsunami wave the sea surface is not flat but is nearly so, and the sur-

face is a smoothly varying function of x even when the topography varies
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rapidly. The approach of interpolating the water surface elevation also works
well in this case and produces a second-order accurate approximation to
smooth waves. Note that although we switch to the variable η when do-
ing the interpolation, the equations are still being solved in terms of the
conserved quantities.
To interpolate the momentum, we begin with the standard approach; we

determine a linear interpolant to µ�k and then evaluate this at the fine cell
centres. Again we use minmod slopes to prevent the introduction of new
local extrema in momentum. However, because we might be interpolating
to fine cells that are much shallower than the coarse cell, we ensure that
the interpolation does not introduce new extrema in velocities as well. We
check the velocities in the fine cells, defined by µ�+1

i /h�+1
i , for all i ∈ Γ�

k, to
see if there are new local extrema that exceed the coarse velocities C�

k, C�
k−1

and C�
k+1. If so, we redefine the fine cell momenta, for all i ∈ Γ�

k, by

µ�+1
i = h�+1

i

(
µ�k/h

�
k

)
. (9.9)

Note that this still conserves momentum, assuming that (9.6) is satisfied,
since ∑

i∈Γ�
k

V �+1
i µ�+1

i =
(
µ�k/h

�
k

) ∑
i∈Γ�

k

V �+1
i h�+1

i by (9.9).

= V �
k µ

�
k by (9.6)

(9.10)

While this additional limiting may at first seem unnecessary or overly
restrictive, without it the velocities created in shallow regions where fine
cells have vanishingly small depths can become unbounded. This makes
the interpolation procedures near the shore, at the interface of wet and dry
cells, especially difficult. This is the subject of the next section.

9.2. Coarsening and refining near the shore

The averaging and interpolation strategies just presented break down near
the shoreline where one or more cells is dry. Figure 9.2 illustrates two
possible situations. In both cases it is impossible to maintain conservation of
mass and also preserve the flat sea surface. In this case we forgo conservation
and maintain the flat surface, since otherwise the resulting gradient in sea
surface will generate spurious waves near the coast that can easily have
larger magnitude than the tsunami itself.
In Figure 9.2(b) the middle coarse cell is wet, h�2 > 0, while on the refined

grid only one of the two refined cells is wet, h�+1
3 > 0 but h�+1

4 = 0 in
Figure 9.2(a). Figures 9.2(c) and 9.2(d) show a case where the middle
coarse cell is dry, but on the fine grid one of the underlying fine cells must
be wet in order to maintain a constant sea surface. In both cases, the total
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Figure 9.2. (a) Level 
+ 1 topography and water depth on a beach where
the three rightmost cells are dry. (b) Corresponding level 
 representation
with one dry cell. (c) Second example of level 
+ 1 topography and water
depth on a beach where the three rightmost cells are dry. (d) The
corresponding level 
 representation with two dry cells. Note that refining
the middle dry cell leads to one wet cell and one dry cell.

mass of water is not preserved either when going from the coarse to fine or
from the fine to coarse grid.
The lack of conservation of mass near shorelines is perhaps troubling, but

there is no way to avoid this when different resolutions of the topography
are used. For ocean-scale tsunami modelling it may easily happen that the
entire region of interest along the coast lies within a single grid cell on the
coarsest level, and this cell will be dry if the average topography value in
this coarse cell is above sea level. Obviously, when this cell is refined as the
wave approaches land, water must be introduced on the finer grids in order
to properly represent the fine-scale topography and shoreline. Stated more
generally, in order to prevent the generation of new sea-surface extrema and
hence hydraulic gradients near the shoreline, the coarsening and refining
formulas presented in the previous section require additional modifications,
which do not conserve mass in general. To mitigate this we try to ensure
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that the shoreline is appropriately refined, using fine topography and a flat
sea, before the wave arrives. Then the change in mass does not affect the
computed solution at all: exactly the same solution would be computed if
the shoreline had been fully resolved from the start of the computation.
When coarsening, the simple averaging (9.6) cannot be used near the

shoreline unless all fine cells are dry h�+1
i = 0, in which case the coarse cell

h�k = 0 is also dry and is the average. In general, to go from the fine grid
values to a coarse-grid value we average over only those subcells that are
wet, setting

η̃�k =

∑
i∈Γ�

k
V �+1
i sgn(h�+1

i )η�+1
i∑

i∈Γ�
k
V �+1
i sgn(h�+1

i )
, (9.11)

and then set

h�k = max(0, η̃�k −B�
k). (9.12)

Note that sgn(H) is always 0 (if the cell is dry) or 1 (if it is wet) and by
assumption at least one subcell is wet, so the denominator of (9.11) is non-
zero. If all cells are wet then we will have η̃�k > B�

k and mass is conserved.
In fact the formula (9.12) reduces to (9.6) in this case, and in practice we
always use (9.12) for coarsening.
Now consider refinement. To interpolate the depth from a coarse cell to

the underlying fine cells in a situation such as those shown in Figure 9.2,
we first construct a linear interpolant for the surface elevation η, a function
of the form

N �
k(x) = η̄�k + σ̄�k(x− x�k), (9.13)

Here η̄�k is not the usual surface variable η, but is modified to account for
dry cells. This will be defined below. Once defined on all coarse cells, σ̄�k is
computed again using minmod slopes based on the values of η̄�. We then
compute the depth in the subcells using this linear function and the fine
grid topography,

h�+1
i = max(0, N �

k(x
�+1
i )−B�+1

i ), (9.14)

for each subcell C�+1
i of the coarse cell C�

k.
If the cell C�

k is wet then the surface value η̄�k in (9.13) is taken to be

η̄�k = η�k = B�
k + h�k if h�k > 0. (9.15)

If the coarse cell is dry, we need to determine an appropriate surface
elevation η̄�k for use in the linear function (9.13). In this case η�k = B�

k, and
this topography value may be above sea level. Instead of using this value
we set η̄�k = ηs, the specified sea level, in this case.
For interpolating and coarsening momentum near the shore, because mass

is not conserved in general, we must treat momentum carefully by adopting
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additional procedures to change the momentum in a way that is consistent
with the change in mass. Upon coarsening the momentum, the procedure
we use conserves momentum whenever mass is conserved. If mass is lost
upon coarsening, such as would occur when coarsening the solutions shown
in Figures 9.2(a) and 9.2(c), the momentum associated with the mass that
no longer exists is removed. That is, for cells with non-zero mass, we define
the coarse momentum by

µ�k =
min(V �

k h
�
k,
∑

i∈Γ�
k
V �+1
i h�+1

i )∑
i∈Γ�

k
V �+1
i h�+1

i

1

V �
k

∑
i∈Γ�

k

V �+1
i µ�+1

i . (9.16)

Note that (9.16) reduces to the standard coarsening formula when the mass
is conserved, yet when mass is reduced upon coarsening the coarse momen-
tum is multiplied by the ratio of the coarse mass to the mass in the fine
subcells.
Upon refinement, we begin with the standard procedure used away from

the shore: a linear interpolation of momentum is performed, and then the
momentum in each fine subcell is checked to see if new extrema in velocities
are generated (in determining velocity bounds, we define the velocity to be
zero in dry neighbouring coarse cells), in which case we resort to (9.9) for
all subcells i ∈ γ�k. This certainly includes the case where a dry (h�+1

i = 0)
subcell has non-zero momentum and hence an infinite velocity. That is,
when velocity bounds are violated, each fine-cell momentum becomes the
product of the fine-cell depth and the coarse velocity (for coarse cells that
are dry (h�k = 0), the velocity is defined to be zero). Note that this procedure
alone does not conserve momentum if mass is not conserved: rather, if mass
is altered on the fine grid, the momentum would be altered by the ratio
of fine subcells’ mass to the coarse cell’s mass. To prevent the addition of
momentum to the system purely through refinement, we modify (9.9) to

µ�+1
i = h�+1

i

µ�k
max

(
h�k,

1
V �
k

∑
i∈Γ�

k
V �+1
i h�+1

i

) . (9.17)

Note that (9.17) implies that momentum is conserved even when mass has
been added, since in that case∑

i∈Γ�
k
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i µ�+1

i =
µ�k

max
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1
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k
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i

) ∑
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i h�+1

i = V �
k µ

�
k.

(9.18)

When mass is lost, (9.17) implies that the momentum is multiplied by the
ratio of the remaining fine-cell mass and coarse mass, essentially removing
momentum associated with the lost mass.
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All of the formulas in this section reduce to those of the previous section
when mass is conserved. Therefore we can implement the coarsening and
refining strategy in a uniform manner for all cases. While the formulas
may seem overly complicated, they ensure the following properties upon
regridding.

• Mass is conserved except possibly near the shore.

• Mass conservation implies momentum conservation.

• If mass is gained, momentum is conserved.

• If mass with non-zero momentum is lost, the momentum associated
with that mass is removed as well.

• New extrema in surface elevation and hence hydraulic gradients are
not created.

• New extrema in water velocity are not created.

In general, coarsening and refinement near the shoreline should ideally hap-
pen just prior to the arrival of waves, while the shoreline is still at a steady
state. In this case, all of the specialized procedures described in this sec-
tion produce the same solution on the fine grids as would exist if the fine
grids had been initialized with a constant sea level long before the tsunami
arrival. Therefore, although mass and momentum are not necessarily con-
served upon refinement, the adaptive solution is ideally close to the solution
that would exist if fixed (non-AMR) grids were used, yet at a much reduced
computational expense.

9.3. Extension to two dimensions

Interpolation and averaging
All of the interpolation and averaging strategies described above extend
naturally to two dimensions. In fact, if we continue to let a single index
represent grid cells, e.g., i ∈ Γ�

k represents the index of a level 
 + 1 rect-

angular subcell C�+1
i within a level 
 rectangular cell C�

k, then most of the
formulas described above need only minor modification. The length ratio r�x
becomes an area ratio r�xr

�
y in the case of a Cartesian grid. More generally

we continue to use V �
k to represent the area of cell k on level 
.

For interpolation, we simply extend the linear interpolants (9.7) and
(9.13) to two dimensions,

f(x, y) = f �k + (σx)�k(x− x�k) + (σy)�k(y − y�k). (9.19)

Here, (x�k, y
�
k) is the centre of this cell, and the slopes (σx)�k and (σy)�k are

the minmod limited slopes in the x and y directions respectively. Lastly,
when considering neighbouring cells to determine if new velocity extrema
are generated in C�+1

i , we consider all nine coarse cells including and sur-
rounding C�

k.
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Consistent computational topography
The topographic data used in a computation are often specified by several
different rectangular gridded digital elevation models (DEMs) that are at
different resolutions. For example, over the entire ocean 10-minute data
may be sufficient, while in the region near the earthquake source or along a
coastal region of interest one or more finer-scale DEMs must be provided.
The DEMs also do not necessarily align with the finite volume computa-
tional grids, and so the consistency property (9.2) for topography on differ-
ent grid levels requires careful consideration.
We accomplish (9.2) in the following manner. The topography data sets

are ordered in terms of their spatial resolution (if two data sets have the same
resolution they are arbitrarily ordered). We define the topographic surface
B(x, y) as the piecewise bilinear function that interpolates the topography
data set of the highest resolution DEM at any given point (x, y) in the
domain. Away from boundaries of DEMs, this function is continuous and
defined within each rectangle of the DEM grid using bilinear interpolation
between the four corner points. Where a fine DEM grid is overlaid on top
of a coarser one, there are potentially discontinuities in B(x, y) across the
outer boundaries of the finer DEM. This procedure defines a unique piece-
wise bilinear function B(x, y) based only on the DEM grids, independent
of the computational grid(s). When a new computational grid is created,
either at the start of a computation or when regridding, the computational
topography in each finite volume cell is defined by integrating B(x, y) over
the cell:

B�
k =

1

V �
i

∫
C�
k

B(x, y) dx dy. (9.20)

Note that each integral may span several DEM cells if it overlaps a DEM
boundary, but since it is a piecewise bilinear function the integral can be
computed exactly. Since these topography values are based on exact inte-
grals of the same surface, at all refinement levels, the consistency property
(9.2) will always be satisfied.

9.4. Maintaining conservation at grid interfaces

The discussion above focused on maintaining constant sea level and con-
serving mass and momentum when grid cells are coarsened and refined. We
now turn to step (5) in the AMR Integration Strategy of Section 8.2. We
wish to ensure that the method conserves mass away from the shoreline at
least, and also momentum in the case without source terms. The final solu-
tion will not be strictly conservative due to the source terms of topography
and friction, and due to the shoreline algorithms which favour maintaining a
constant sea level over maintaining conservation of mass, but the underlying
method should be conservative to reduce these effects.
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Recall that in step (4) of the algorithm in Section 8.2 the value of Q in
any coarse-grid cell that is covered by fine grids is replaced by the appro-
priate weighted average of the more accurate fine-grid values. This poten-
tially causes a conservation error since the fine grid cells at the boundary
of the patch were updated using fluxes from ghost cells rather than from
the neighbouring coarse cells directly. The standard fix for this, applied
to finite volume methods written in flux-differencing form, is to adjust the
adjacent coarse-grid values by the difference between the coarse grid flux
at the patch boundary (originally used to compute the value in this cell)
and the weighted average of fine grid fluxes that was instead used interior
to the patch (Berger and Colella 1989). This restores global conservation
and presumably also improves the value in these coarse-grid cells by using
a more accurate approximation of the flux, as determined on the fine cells.
We use the f-wave propagation algorithm instead of flux-differencing since

this allows the development of a well-balanced method in the non-conserv-
ative form described above. This requires a modification of the flux-based
fix-up procedure that is described in detail in Berger and LeVeque (1998)
and implemented more generally in the AMR algorithms of Clawpack. This
modification works in general for wave propagation algorithms based on
fluctuations rather than fluxes.
Note that since the fine grid typically takes many time steps between

each coarse-grid step, performing this fix-up involves saving the fluctuations
around the perimeter of each fine grid at each intermediate step, which
is easily done. The harder computation is the modification of the coarse
cell values based on these fluctuations, since the coarse cells affected are
generally interior to a coarse grid and appear in an irregular manner. Each
coarse grid keeps a linked list of cells needing this correction, and saves the
fluctuations on the edge adjacent to a fine grid. For example, if the coarse
cell is to the left of the fine grid, the left-going fluctuation is needed.
One additional correction step is needed for conservation when using the

wave propagation approach. A Riemann problem between a coarse-grid cell
and the fine grid ghost cell needs to be accounted for to maintain conserva-
tion. This leads to an additional Riemann problem at the boundary of each
fine grid cell at each intermediate time, as discussed by Berger and LeVeque
(1998). In the absence of source terms and away from the shoreline, these
two steps ensure that conservation is maintained in spite of the fact that
the method does not explicitly calculate fluxes.

10. Verification, validation, and reproducibilty

Verification and validation (V&V) is an important aspect of research in
computational science, and often poses a large-scale challenge of its own
for complex applications: see Roache (1998) for a general discussion. Our
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goal in this paper is not to provide detailed V&V studies of the GeoClaw
software, but only to give a flavour of some of the issues that arise and ap-
proaches one might take in relation to tsunami models. For some other dis-
cussions of this topic and possible test problems, see for example Synolakis
and Bernard (2006) or Synolakis, Bernard, Titov, Kânoğlu and González
(2008).

Verification in the present context consists of verifying that the compu-
tational algorithms and software can give a sufficiently accurate solution
to the shallow water equations they purportedly solve, with the specified
topography and initial conditions. In particular, this requires checking that
the adaptive refinement algorithms provide accurate results in the regions
of interest even when much coarser grids are used elsewhere, without gen-
erating spurious reflections at grid interfaces, for example. Exact solutions
to the shallow water equations over topography are difficult to come by,
but a few solutions are known that are useful, in particular as tests of the
shoreline algorithms. The paper of Carrier, Wu and Yeh (2003) provides the
exact solution for a one-dimensional wave on a beach that is suggested as
a verification problem in Synolakis et al. (2008) and was one of the bench-
mark problems discussed by many authors in Liu, Yeh and Synolakis (2008).
The paper of Thacker (1981) presents some other exact solutions, includ-
ing water sloshing in a parabolic bowl, which has often been used as a test
problem for numerical methods, for example by Gallardo et al. (2007) and
in the GeoClaw test suite. In Section 11 we illustrate another technique for
testing whether a tsunami code accurately solves the shallow water equa-
tions in the necessary regimes for modelling both transoceanic propagation
and local inundation. No finite set of tests will prove that the program
always gives correct solutions, and of course no numerical method will: the
accuracy depends on the grid resolution used and other factors. However,
by exercising the code on problems where an exact or highly accurate refer-
ence solution is available, it is possible to gain a useful appreciation for the
accuracy and limitations of a code.

Validation of a code is generally more difficult, since this concerns the
question of whether the computational results provide a useful approxima-
tion to reality under a certain range of conditions. The depth-averaged
shallow water equations provide only an approximation to the full three-
dimensional Navier–Stokes equations, so even the exact solution to these
equations will only be an approximation to the real flow. Several assump-
tions are made in deriving the shallow water equations, in particular that
the wavelength of the waves of interest is long relative to the fluid depth.
This is often true for tsunamis generated by megathrust events, at least for
the transoceanic propagation phase. It is less clear that this assumption
holds as tsunamis move into shallower water and interact with small-scale
local features. A great deal of effort has gone into validation studies for
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the shallow water equations and into the development and testing of other
model equations that may give a better representation of reality.
Validation studies of tsunami models take many forms. Comparison with

actual tsunami events similar to ones the code is designed to model is the
best form of validation in many ways. Due to the recent frequency of large
tsunamis there is a wealth of data now available, far beyond what was
available 10 years ago. These data have been used in numerous validation
studies of tsunami models, for example Grilli et al. (2007) and Wang and
Liu (2007). These studies are seldom clear-cut, however, due to the wide
range of unknowns concerning the earthquake source structure, the resulting
seafloor deformation, the proper drag coefficient to use in friction terms, and
various other factors.
To perform more controlled experiments, large-scale wave tanks are used

to simulate tsunami inundation, with scaled-down versions of coastal fea-
tures and precisely controlled sources from wave generators. The resulting
flow and inundation can then be accurately measured with tools such as
depth gauges, flow meters, and high-speed cameras. By running a tsunami
code on the wave tank topography with the same source, careful compar-
isons between numerical results and the actual flow can be performed. Some
standard test problems are described in Liu et al. (2008) and Synolakis et al.
(2008). A problem with this, of course, is that this can only validate the
code relative to the wave tank, which is itself a scaled-down model of real
topography. There is still the question of how well this flow corresponds
to reality.
Reproducibility of computational experiments is an issue of growing con-

cern in computational science; see for example Fomel and Claerbout (2009),
Merali (2010) and Quirk (2003). By this we mean the performance of com-
putational experiments in a controlled and documented manner that can
potentially be reproduced by other scientists. While this is a standard part
of the scientific method in laboratory sciences, in computational science the
culture has put little emphasis on this. Many publications contain numer-
ical experiments where neither the method used or the test problem itself
are described in sufficient detail for others to verify the results or to perform
meaningful comparisons against competing methods.
Part of our goal with GeoClaw, and with the Clawpack project more

generally, is to facilitate the specification, sharing, and archiving of com-
putational experiments (LeVeque 2009). The codes for all the experiments
in the next sections can be found on the webpage for this paper (www13),
along with pointers to additional codes such as those used for the experi-
ments presented in Berger et al. (2010).
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11. The radial ocean

As a verification test that the shallow water equations are solved correctly
on the surface of the sphere, and that the wetting and drying algorithms
give similar results regardless of the orientation of the shoreline relative to
the grid, it is useful to test the code on synthetic problems where compar-
isons are easy to perform. We illustrate this with an example taken from
Berger et al. (2010), which should be consulted for more details on the
bathymetry and a related test problem. The domain consists of a radially
symmetric ocean with a radius of 1645 km on the surface of a sphere of
radius comparable to the earth’s radius, R = 6367.5 km, centred at 40◦N.
The extent of the ocean in latitude–longitude space is shown in Figure 11.1.
The bathymetry is flat at −4000 m up to a 1500 km, and then is followed
by a smooth continental slope and continental shelf with a depth of 100 m,
and finally a linear beach. The initial conditions for the tsunami consist of
a Gaussian hump of water at the centre, given by

η(r) = A0 exp
(−2r2/109

)
, (11.1)

where r is the great-circle distance from the centre, measured in metres.
The amplitude A0 is varied to illustrate the effect of different size tsunamis.
At some location along the shelf we place a circular island with a radius of

roughly 10 km, centred 45 km offshore. In theory the flow around the island
should be identical regardless of where it is placed, though numerically this
will not be true. We compare the results for two different locations as a test
of consistency.
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Figure 11.1. (a) Geometry of the radially symmetric ocean, as described in
the text. (b) A zoom view of the topography of the continental shelf along
the ray going through the centre of the island. The location of the four
gauges is also shown.
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Figure 11.2. Bathymetry in regions near an island placed at different
locations along the coast, indicated by the rectangles in Figure 11.1(a).
The location of four gauges is also shown. The time history of the surface
at these gauges is shown in Figure 11.4.
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Figure 11.3. Contours of tsunami height for flow around the island from
Test 1 and Test 2, in the case A0 = 150 in (11.1). In each case solid contours
are at η = 1, 3, 5, 7 m, and dashed contours are at η = −1,−3,−5,−7.

Figure 11.1(a) shows the ocean (which does not look circular in latitude–
longitude coordinates). The outer solid curve is the position of the shoreline,
with constant distance from the centre when measured on the surface of a
sphere. The dashed line shows the extent of the continental shelf. The boxes
labelled Test 1 and Test 2 are regions where the island is located in the tests
presented in the following figures. The small circle near the centre shows
roughly the extent of the hump of water used as initial data. Figure 11.1(b)
shows a cross-section of the bathymetry through the island.
Figure 11.2 shows zoomed views of the two boxes labelled Test 1 and

Test 2 in Figure 11.1(a), with contours of the bathymetry. The solid contour
lines are shoreline (B = 0) and the dashed contour lines are at elevations
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B = −40,−80,−120,−160 m. Note that the continental shelf has a uniform
depth of −100 m. In this figure we also indicate the locations of four gauges
where the surface elevation as a function of time is recorded as the compu-
tation progresses. Specifying gauges is a standard feature in GeoClaw and
at each time step the finest grid available near each gauge location is used
to interpolate the surface elevation to the gauge location. Figure 11.4 shows
results at these gauges for several different tests, described below.
We solve using five levels of AMR with the same parameters as in Berger

et al. (2010): a 40 × 40 level 1 grid over the full domain (1◦ on a side),
and factor of 4 refinement in each subsequent level (a cumulative factor 256
refinement on the finest level). Levels 4 and 5 are used only near the island.
We show results for three different values of the amplitude in (11.1):

A0 = 0.005, 5.0 and 150.0. Figure 11.4 shows the surface elevation measured
at the four gauges shown in Figure 11.2. For any fixed amplitude A0, the
gauge responses should be the same in Test 1 and Test 2, since the island
and gauges are simply rotated together to a new position. This is illustrated
in Figure 11.4, where the solid curve is from Test 1 and the dashed curve
is from Test 2. The good agreement indicates that propagation is handled
properly on the surface of the sphere and that the topography of the island
and shore are well approximated on the grid, regardless of orientation.
The tsunami propagation over the deep ocean is essentially linear for all

of these amplitudes. For the two smaller-amplitude cases the propagation
on the shelf and around the island also shows nearly linear dependence
on the data, especially for gauges 1 and 4, where the undisturbed ocean
depth is 100 m. Gauges 2 and 3 are at locations where the depth is about
11 m, and some nonlinear effects can be observed. Compare the gauge plots
in Figure 11.4(a,b) (for A0 = 0.005) with those in Figure 11.4(c,d) (for
A0 = 5), and note that the vertical axis has been rescaled by a factor of
100. Also note that for the A0 = 0.005 case, the maximum amplitude seen
at any of the gauges is below 1 cm. Before hitting the continental shelf, this
tsunami had even smaller amplitude. This test illustrates that it is possible
to accurately capture even very small-amplitude tsunamis.
Figure 11.4(e,f) shows a much larger-amplitude tsunami, using the same

initial data (11.1) but with A0 = 150. Propagation across the ocean is still
essentially linear and so the arrival time is nearly the same, but the wave
amplitude is large enough that steepening occurs on the shelf. The nonlinear
effects are evident in these gauge plots, which are no longer simply scaled
up linearly from the first two cases.
In Figure 11.5 we show surface plots of the run-up at different times,

comparing the two computations with the island in different locations. Fig-
ure 11.3 shows contour plots for the first of these times, t = 10000 s. Four
gauge locations are shown in Figure 11.2 and the surface elevation at these
gauges is shown in Figure 11.4. The agreement is quite good.
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Figure 11.4. Comparison of gauge output from Test 1 and Test 2, showing
the surface elevation as a function of time (in seconds) for the gauges shown
in Figure 11.2. In each figure, the solid curve is from Test 1 and the dashed
curve is from Test 2. (a,b) Very small-amplitude tsunami, with A0 = 0.005
in (11.1). (c,d) A0 = 0.5. (e,f) A0 = 150, giving the large-amplitude tsunami
seen in Figure 11.5. Note the difference in vertical scale in each set of figures
(metres in each case).
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Time = 10000 Time = 10000

Time = 11000 Time = 11000

Time = 13500 Time = 13500

Figure 11.5. Surface plots of the tsunami interacting with the island for
Test 1 and Test 2, in the case A0 = 150 in (11.1). At time t = 10000 seconds
the tsunami is just wrapping around the island, as shown also in
Figure 11.3. At time 13500 the reflected wave from the mainland has run up
the lee side of the island and is flowing back down. For an animation of
these results, see the webpage for this paper (www13).
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12. The 27 February 2010 Chile tsunami

As an illustration of the use of adaptive mesh refinement to explore real-
world tsunamis, we will show some results obtained using GeoClaw for
tsunamis similar to the one generated by the 27 February 2010 earthquake
near Maule, Chile. Some computations of the 2004 Indian Ocean tsunami
calculated with this software can be found in LeVeque and George (2004)
and George and LeVeque (2006).
We will use relatively coarse grids so that the computations can be easily

repeated by the interested reader using the source code available on the
webpage for this paper (www13). Several source mechanisms have been
proposed for this event. Here we use a simple source computed by applying
the Okada model to the fault parameters given by USGS earthquake data
(www12). We use bathymetry at a resolution of 10 minutes (1/6 degree) in
latitude and longitude, obtained from the ETOPO2 data set at the National
Geophysical Data Center (NGDC) GEODAS Grid Translator (www9).
Figures 12.1 and 12.2 show comparisons of results obtained with two

simulations using different AMR strategies. In both cases, the level 1 grid
has a 2◦ resolution in each direction (roughly 222 km in latitude), and grid
cells of this grid can be seen on the South American continent. The finest
grid level also has the same resolution in both cases, a factor of 20 smaller
in each direction.
For the calculation in Figures 12.1(a) and 12.2(a), only two AMR levels

are used, with a refinement factor of r1x = r1y = 20 in each direction and
flagging all cells where the water is disturbed from sea level. The level 2
grid grows as the tsunami propagates until it covers the full domain at 5
hours. (It is split into 4 level 2 grids at this point because of restrictions in
the software on the size of any single grid to reduce the memory overhead.)
Results of this calculation agree exactly with what would be obtained with
a single grid with a uniform grid size of 0.1◦.
For the calculation in Figures 12.1(b) and 12.2(b), three AMR levels are

used and cells are only flagged for refinement if the deviation from sea level
is greater than 0.1 m. Moreover, after t = 3 hours, we flag points only if the
latitude is greater than −25◦S. The refinement factors are r1x = r1y = 4 from

level 1 to level 2 and r2x = r2y = 5 from level 2 to level 3, so the finest grid
has the same resolution as in (a). Ideally the results in the regions covered
by the finest grid (the smallest rectangles in the figure) would be identical
to those in (a). Visually they agree quite well. In particular, it should be
noted that there is no apparent difficulty with spurious wave generation at
the interfaces between patches at different refinement levels. Also note that
in both calculations the wave leaves the computational domain cleanly with
little spurious reflection at the open boundaries.
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(a) (b)

Figure 12.1. The 27 February 2010 tsunami as computed using GeoClaw. The
rectangles show the edges of refinement patches. (a) Two levels of AMR, with
refinement everywhere around and behind the wave. (b) Three levels of AMR,
with the same finest grid resolution but refinement in limited regions. The
colour scale is the same as in Figure 1.1, ranging from −0.2 to 0.2 m.
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(a) (b)

Figure 12.2. Continuation of Figure 12.1. Note the reflection from the
Galapagos on the equator at 6 hours, and that elsewhere the wave leaves the
computational domain cleanly. For an animation of these results, see the
webpage for this paper (www13).
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Figure 12.3. (a) Data from DART buoy 32412 before removing the tides.
The first blip about 15 minutes after the earthquake is the seismic wave.
The tsunami arrives roughly 3 hours later. (b) Comparison of de-tided
DART buoy data with two GeoClaw computations. The resolution of the
finest grid was the same in both cases.

For a more quantitative comparison of these results, Figure 12.3(b) shows
a comparison of the computed surface elevation as a function of time at the
location of DART buoy 32412. The solid line is from the level 2 (uniform
fine grid) computation, while the dashed line is from the level 3 computation
in Figures 12.1(b) and 12.2(b). The agreement is very good up to about 5
hours, after which the DART buoy is in a region that is not refined.
Note from Figure 12.2 that at 8 hours there is still wave action visible

on the coast of Peru to the northeast of the DART buoy. This is a region
where the continental shelf is very wide and shallow, and waves become
trapped in this region due to the slow propagation speed and reflections for
the steep shelf slope. In Figure 12.4 we show a zoomed view of these regions
from another computation in which a fourth level of AMR has been added,
refining by an additional factor of 4. (We have also used finer bathymetry
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Figure 12.4. Tsunami interaction with the broad continental shelf off the
coast of Peru. A fourth level of refinement has been added beyond the levels
shown on Figure 12.2. Grid patch edges are not shown and grid lines are
shown only for levels 1–3 on land. For an animation of these results, see the
webpage for this paper (www13).

in this region, 4-minute data from (www9).) In these figures one can clearly
see the fast and broad tsunami sweeping northwards at times 4 and 4.5
hours, and the manner in which this wave is refracted at the continental
slope to become a narrower wave of larger amplitude moving towards the
coast. These waves continue to propagate up and down the coast in this
region for more than 24 hours after the tsunami has passed.

12.1. Inundation of Hilo

Some bays have the dubious distinction of being tsunami magnets due to
local bathymetry that tends to focus and amplify tsunamis. Notable exam-
ples on the US coastline are Crescent City, CA and Hilo, HI. In this section
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we use adaptive refinement to track the 27 February 2010 tsunami originat-
ing in Chile across the Pacific Ocean and then add several additional levels
of refinement to resolve the region near Hilo Harbor. The two simulations
described in this section had the same computational parameters such as
refinement criteria, but with two different source mechanisms. The compu-
tational domain for these simulations spanned 120 degrees of latitude and
100 degrees of longitude, from the source region near Maule, Chile in the
southeastern corner of the domain to the Hawaiian Islands in the north-
western corner. We used five levels of grids, using refinement ratios of 8, 4,
16 and 32. The coarsest level consisted of a 60× 50 grid with 2◦ grid cells,
yielding a very coarse grid over the ocean at rest. Transoceanic propagating
waves were resolved in level 2 grids. Level 3 grids were allowed only near the
Hawaiian island chain, with the refinement ratio chosen to roughly match
the resolution of bathymetric data used (1 minute). Level 4 grids were al-
lowed surrounding the Big Island of Hawaii, where Hilo is located. In this
region we used 3-arcsecond bathymetry from (www8). Finally, level 5 grids
were allowed only near Hilo Harbor, where 1/3-arcsecond data from the
same source were used. Figure 12.5 shows the the domain of the simulation
at four times, as the waves propagate across the Pacific. The outlines of
level 3–5 grids can be seen in the final frame, and appear just as the waves
reach Hawaii. Figure 12.6 shows a close-up of the grids surrounding Hilo.
The finest fifth-level grids were sufficient to resolve the small-scale features
necessary to model inundation, such as shoreline structures and a sea wall
in Hilo Harbor. The computational grids on the fifth level had grid cells
with roughly 10 m grid resolution. Note that the finest grids are refined by
a factor 214 = 16 384 in each coordinate direction relative to level 1 grids.
Each grid cell on the coarsest level would contain roughly 286 million grid
cells if a uniform fine grid were used, far more than the total number of grid
cells used at any one time with adaptive refinement.

The two source mechanisms used were identical except for the magnitude
of slip. We first modelled the actual 27 February 2010 event described
in Section 12, by applying the Okada model to fault parameters given
by (www12). USGS earthquake data (www12). For the second source mech-
anism we used the same fault parameters, but increased each subfault dis-
location by a factor of 10. The motivation for this second source model
is twofold. First, the actual 27 February 2010 tsunami produced little or
no inundation in Hilo, so to demonstrate inundation modelling with
GeoClaw we created a much larger hypothetical tsunami. Second, amplify-
ing the dislocation while keeping all other parameters fixed allows
us to examine linearity in the off-shore region versus nonlinearity for tsunami
inundation.

The waves produced in Hilo Harbor by the larger hypothetical source are
comparable to those arising from more tsunamigenic events in the past (for
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Figure 12.5. The 27 February 2010 tsunami propagates toward the
Hawaiian Islands on level 1 and 2 grids. Higher-level grids appear
around Hawaii as the waves arrive.

(a) (b)

Figure 12.6. Close-up of the higher-level grids appearing as the
tsunami reaches the Hawaiian Islands. (a) All levels of grids, with grid
lines omitted from levels 3–5. (b) Close-up of the Island of Hawaii,
where an outline of level 5 grids surrounding the city of Hilo can be
seen on the east coast of Hawaii. Grid lines are omitted from levels 4–5.
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(a)

(b)

Figure 12.7. Computed inundation maps of Hilo, HI, based on two source
mechanisms. (a) Inundation using an actual USGS fault model for the
February 2010 event. (b) Hypothetical source mechanism, with the
dislocations amplified by a factor of 10, in order to show inundation.

example, the 1960 Chile quake and the 1964 Alaska event). Figure 12.7
shows the two different inundation patterns from the original and amplified
source. The location of simulated water level gauges are indicated in the
figures. The output of the gauges is shown in Figure 12.8. Gauge 1 is
in Hilo Harbor and shows the incoming waves. Note that the waves in the
harbour are still close to linear with respect to the source dislocation, several
thousand kilometres away. However, in the nearer-shore and onshore regions
inundation becomes strongly nonlinear, and determining the patterns of
inundation cannot be done by a linear scaling of solutions from different
source models.
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(a)

(b)

(c)

Figure 12.8. Time series of the surface elevation at three different simulated
gauge locations near Hilo, HI. The locations of the gauges are shown in
Figure 12.7. The results for the ‘amplified fault model’ were obtained by
increasing the slip displacement at the source by a factor of 10. The solid
curve in (a) shows the solution for the amplified source mechanism multiplied
by 0.10. This lies nearly on top of the curve from the original source model,
indicating that the response is nearly linear in the harbour. The inland
gauges in (b,c) exhibit nonlinear behaviour: they remain dry for the smaller
tsunami but show large inundation waves for the amplified fault model.
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13. Final remarks

In this paper we have focused on tsunami modelling using Godunov-type
finite volume methods, and the issues that arise when simulating the prop-
agation of a very small-amplitude wave across the ocean, followed by mod-
elling the nonlinear run-up and inundation of specific regions remote from
the initial event. The scale of these problems makes the use of adaptive
mesh refinement crucial.
The same techniques are applicable to a variety of other geophysical flow

problems such as those listed in Section 1. The GeoClaw software has
recently been applied to other problems, such as modelling the failure of
the Malpasset dam in 1959 (George 2010). This has often been used as a
test problem for validation of codes modelling dam breaks. Storm surge
associated with tropical storms is another application where shallow water
equations are often used, and some preliminary results on this topic have
been obtained by Mandli (2010) with the GeoClaw code.
For many problems the shallow water equations are insufficient and other

depth-averaged models must be developed. Even in the context of tsunami
modelling, there are some situations where it may be important to include
dispersive terms (González and Kulikov 1993, Saito, Matsuzawa, Obara and
Baba 2010), particularly for shorter-wavelength waves arising from subma-
rine landslides, as discussed for example by Watts et al. (2003) or Lynett
and Liu (2002). A variety of dispersive terms might be added; see Bona,
Chen and Saut (2002) for a recent survey of Boussinesq models and other
alternatives. Dispersive terms generally arise in the form of third-order
derivatives in the equation, generally requiring implicit algorithms in order
to obtain stable results with reasonable time steps. This adds significant
complication in the context of AMR and this option is not yet available in
GeoClaw. An alternative is to use a dispersive numerical method, tuned
to mimic the true dispersion; see for example Burwell, Tolkova and Chawla
(2007). This seems problematic in the context of AMR.
Other flows require the use of more complex rheologies than water, for

example landslides, debris flows, or lava flows. We are currently extending
GeoClaw to handle debris flows using a variant of the models of Denlinger
and Iverson (2004a, 2004b). For some related work with similar finite volume
algorithms, see Pelanti, Bouchut and Mangeney (2008, 2011) and Costa and
Macedonio (2005).
A variety of numerical approaches have been used for modelling tsunamis

and other depth-averaged flows in recent years. There is a large literature
on topics such as well-balanced methods and wetting-and-drying algorithms,
not only for finite volume methods but also for finite difference, finite ele-
ment, discontinuous Galerkin, and other methodologies, on both structured
and unstructured grids. We have not attempted a full literature survey in
this paper, either on numerical methods or tsunami science, but hope that



Tsunami modelling 283

the references provided give the reader some entry into this field. There are
a host of challenging problems remaining in the quest to better understand
and protect against these hazards.
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