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Abstract

High-resolution Finite Volume Methods for Extracorporeal Shock Wave Therapy

Kirsten Meri Fagnan

Chair of the Supervisory Committee:
Professor Randall J. LeVeque

Applied Mathematics

Extracorporeal Shock Wave Therapy (ESWT) is a noninvasive treatment for bone fractures that fail
to heal, necrotic wounds and strained tendons. It is similar to lithotripsy, a non-surgical treatment
for kidney stones. In this treatment a shock wave is generated in water and then focused using an
acoustic lens or reflector so the energy of the wave is concentrated in a small region. This technique
has been used since the 1980’s, but the underlying biological mechanisms are not well understood.
In this thesis we have computationally investigated shock wave propagation in ESWT by solving
a Lagrangian form of the isentropic Euler equations in the fluid and linear elasticity in the bone
using high-resolution finite volume methods. We have also incorporated tissue-like materials into
the model through variation of the parameters in the Tait equation of state.

This work differs from prior modeling of ESWT in that we are solving a full three-dimensional
system of equations so we can handle complex bone geometries, and our formulation of the equations
enables us to consider shear stresses generated within the bone. In this thesis I provide background
information on shock wave therapy and prior modeling efforts. I have given details on the set of
equations we use to model the wave propagation, as well as results validating this approach.
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GLOSSARY

ESWT: Extracorporeal shock wave therapy - noninvasive treatment for tendinopathies, nonunions
and calcifications.

ESWL: Extracorporeal shock wave lithotripsy - noninvasive treatment for the pulverization of
kidney stones.

F1: The first focus of the ellipsoid in a model of an electrohydraulic lithotripter where the spark
plug source sets off the explosion.

F2: The second focus of the ellipsoid in a model of an electrohydraulic lithotripter where the
object being treated is placed in order to maximize energy deposition in the desired location.

HO: Heterotopic ossification, growth of bone-like material in soft tissue.

NONUNION: Bone fracture that fails to heal in six months and will not heal without surgical or
other intervention.

BIREFRINGENCE: is the decomposition of a ray of light into two rays.

PHOTOELASTIC: Property of some materials where the propagation path of light is altered by
stresses that make the material birefringent.

ISOCHROMATIC FRINGES: Lines of maximum principal stress difference in a photoelastic image,
isolated when a circular polariscope is used.

ISOCLINIC FRINGES: A loci of points of constant inclination of the principal axes of refraction,
visible when birefringent materials are studied with a linear polariscope.

AMR: Adaptive mesh refinement - algorithm where multiple grids with different levels of refine-
ment are used in the same computational domain allowing for the use of a fine grid only in
locations where it is necessary.
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1

Chapter 1

INTRODUCTION

The work presented in this thesis arose from discussions with Dr. Thomas J. Matula and Dr.
Michael Bailey from the Applied Physics Laboratory at the University of Washington. Extracorpo-
real shock wave lithotripsy (ESWL) was introduced in the the 1980’s for the treatment of urinary
stones, and was soon followed by extracorporeal shock wave therapy (ESWT) for musculoskeletal
conditions. Dr. Matula and Dr. Bailey had been conducting experiments in order to better under-
stand the mechanisms involved in stone comminution during ESWL, as well as exploring the role of
cavitation, the formation and bursting of gas bubbles, in both treatments. In lithotripsy, or shock
wave therapy, a shock wave is generated, for example by an explosion in water, focused through the
use of an ellipsoid reflector and it then propagates into the body where, ideally, maximal energy
is deposited at the treatment site. In order to better understand the treatment, it is important to
develop a methodology for studying the propagation of the shock wave through water and biological
materials, as well as how the shock wave interacts with objects at the focus (F2). This has been the
focus of much research over the past 30 years, and our recent work contributes to that knowledge
base.

What is clear from experimentation is the importance of shear stress in the comminution of
kidney stones[72], growth of endothelial cells necessary for angiogenesis[62], and osteogenesis [41].
It has also been hypothesized that there is a cumulative shearing mechanism responsible for tissue
damage in ESWL [31]. It is therefore extremely important that shear stresses be included in any
mathematical modeling where we hope to better understand the interaction of the pressure wave
with bone or soft tissue. Most prior modeling efforts have been limited to the Euler equations
with various equations of state[7, 43] or the KZK equation [3], which do not include shear stresses.
We have utilized the fact that displacements of the fluid and solid are small, in order to write the
equations for the fluid and solid dynamics in a Lagrangian frame. This has enabled us to investigate
not only the propagation of the pressure wave, but the generation of shear stress within and at the
surface of the bone.

The numerical methods used in this thesis are implemented with the high resolution wave prop-
agation algorithm as formulated by LeVeque [51]. These methods are Godunov-type finite volume
methods that utilize the solution of Riemann problems to determine the numerical update at each
time step. Instead of using the solution of the Riemann problem to determine the cell interface fluxes
directly, in the wave propagation algorithm, the numerical solution is updated by direct re-averaging
of the waves arising in the solution to the Riemann problem onto adjacent grid cells. This method is
applicable to hyperbolic systems of equations including linear elasticity, nonlinear elasticity and the
Euler equations, i.e. the components of our model for ESWT. In order to solve the equations in a
reasonable amount of time while capturing the steepening of the shock and interaction with complex
bone geometries, we utilize the adaptive mesh refinement routines available in the AMRCLAW and
ChomboClaw software packages [27, 48, 10]. Chombo was written to be run in parallel and scales
up to 10,000 processors [19]. In our testing of ChomboClaw we have determined that it scales to at
least 128 processors, but further testing must be done on larger super computers.

My work has three aims: 1) The development of a mathematical model that captures the non-
linear steepening and propagation of the shock wave in water, as well as the shear stresses created
in bone or kidney stone being treated, 2) The development of a numerical method for efficiently and
robustly solving the mathematical model, and 3) Utilization of the code developed to elucidate some
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of the physical mechanisms involved in shock wave therapy, and to suggest ways to optimize treat-
ment protocols for nonunions and heterotopic ossifications based on criteria suggested by numerical
experiments and biology.

The thesis is structured as follows: In Chapter 2, I provide a survey of the treatment protocols,
describe the relevant biological components and discuss the physics that governs the efficacy of the
treatment as suggested by experiments at APL and the literature.

Prior to presenting the mathematical model, in Chapter 3 I briefly describe the numerical ap-
proach that will be used to solve the problem, using an example from linear acoustics with spatially-
varying material properties. This motivates the discussion for the equations used in the model.
They are all systems of hyperbolic partial differential equations, and are therefore well-suited to
being solved by the wave propagation algorithm that is fully described in Chapter 7.

In Chapter 4, I introduce the incompressible Euler equations. These equations have been studied
extensively and with the appropriate equation of state, generate the correct pressure wave measured
in ESWL and ESWT. I describe the eigenstructure of the linearized system as well as typical solutions
to the one-dimensional Riemann problem. In this chapter I also discuss the difference between Tait
and Tamman equations of state that are commonly used for modeling shock wave therapy. This
chapter concludes with computational results demonstrating the accurate capture of the pressure
wave as compared with experiments, and justifies the use of the Tammann equation of state in our
model.

The next component of the model is linear elasticity. This model has been shown to be valid
on a macroscopic scale for bone [33], and allows us to investigate the shear stress generated at the
fluid-solid interface. In Chapter 5 I describe the eigenstructure of the three-dimensional system
and show results from calculations where we demonstrate that our numerical approach can handle
spatially varying material properties.

In Chapter 6 I develop a combined system that models the Lagrangian form of the incompressible
Euler equations and elasticity. This is done using a slightly modified version of the nonlinear elasticity
equations, where different materials are modeled using a different equations of state. In this section I
demonstrate how our model captures the behavior of the Euler equations in a lagrangian framework
for ESWT, as well as demonstrating the validity of the Tait equation of state.

Chapter 7 is devoted to computation. I explain the numerical methods for solving hyperbolic
systems of PDEs using the f-wave approach, as well as the approximate Riemann solver developed
to solve the nonlinear elasticity equations. In this chapter I discuss how we are able to efficiently
solve three-dimensional problems using ChomboClaw, a parallel code with adaptive mesh refinement
for hyperbolic systems of partial differential equations. I have been able to run large calculations on
the TeraGrid system, making use of hundreds of processors and in order to perform scaling tests of
the ChomboClaw system.

The laboratory experiments that motivated this investigation are described in Chapter 8. I
describe how the experimental results are obtained and the relevance to in vivo behavior of shock
wave therapy. In this chapter I will also discuss the property of birefringence and how we utilize
equations for photoelasticity to more accurately compare our results with the images obtained during
the laboratory experiments.

In Chapters 9 and 10 I discuss the results we have obtained up to this point with our code, and
the implications for improved treatment of muskuloskeletal pathologies. Finally, I explore future
work and experiments that can be performed with the code we have developed, as well as avenues
for improvement.



3

Chapter 2

BACKGROUND

In both lithotripsy and shock wave therapy, a shock wave is generated in a liquid bath, focused
through the use of an ellipsoid reflector and then propagates into the body where, ideally, maximal
energy is deposited at the treatment site. A characteristic wave form measured at the focus F2
of an HM3 Dornier lithotripter can be seen in figure 2.1. The reflector used in the HM3 Dornier
lithotripter is an ellipsoid and therefore has 2 foci. We refer to these foci as F1 and F2. The relevant
terms are also listed in the glossary at the beginning of this document. The total duration of the
pulse is approximately 5µs. There is a rapid rise to pressures that can range from 40-100 MPa,
followed by a longer, smoother region that has a peak pressure between -5 and -15 MPa. The fast
transition from ambient pressure to tens of MPa is referred to as a shock. The physics and behavior
of shock waves is explored later in this chapter.

Figure 2.1: A typical pressure waveform used in medical extracorporeal shock wave therapy [4].

We first consider the development and uses of extracoporeal shock wave lithotripsy and therapy
(ESWL and ESWT), then the physics and geometry pertinent to these treatments and finally we
discuss some of the biological considerations for our modeling effort.

2.1 ESWL

The first clinical application of extracorporeal shock wave lithotripsy (ESWL), was on February 2,
1980 in Munich, Germany [45, 15]. In 1969, researchers first conceived of the pulverization of kidney
stones with shock waves. At that time the only medical use for shock waves was the Russian ”Urat”
apparatus that was used for endoscopic destruction of bladder stones. In this case, there was direct
contact between the shock wave source and the stone. At that time, much of the research involving
shock waves was related to air and space travel, the discovery of the effect of shock waves on tissue
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was accidental. In 1966, an engineer at Dornier Systems, Ltd felt something similar to an electrical
shock when touching a shock wave target at the exact moment of the shock wave action. Upon
further investigation, it was determined that the shock waves entering the body had caused that
sensation. Subsequent studies of soft tissue damage due to shock waves were conducted in animals.
It was demonstrated that shock waves generated in water were transmitted into the body without
significant energy loss and measuring probes placed in the tissue were easily destroyed by the shock
waves [45]. This led to the development of ESWL for the treatment of kidney stones.

ESWL has been considered a revolutionary treatment and it has been estimated that in the United
States approximately 70% of kidney stones are treated using ESWL [47, 25]. The characteristic
pressure pulse used in ESWL has a range of effects on the body. The shock wave pulverizes kidney
stones making it possible for a patient to pass the stones in their urine; however, it also causes, in
some cases significant, collateral damage in the surrounding soft tissue [53, 25].

This damage to the soft tissue has inspired some changes to the lithotripter design over the
years, but the acoustic wave form has remained essentially the same. Some studies indicate that
when design changes increase the amplitude and shrink the focal regions of the devices, that more soft
tissue damage and higher re-treatment rates occur [15]. One of the primary goals of the lithotripsy
community to design new systems that are safer and more effective. Urologists and physicists have
worked together in order to determine the best treatment protocols with current technology. In
order to optimally make use of the current generation of machines, it is important to understand
both how they work, and how the pressure wave interacts with biological tissues.

The two primary mechanical forces generated by the ESWL acoustic field are direct stress from
the high-pressure shock wave and microjets associated with the collapse of cavitation bubbles. It
has been demonstrated by Sapozhinkov, et. al. [72] that the shear stresses generated by the shock
wave hitting the stone plays a large role in determining the break up of the stone.

2.2 ESWT

Due to the success of ESWL at noninvasively breaking up kidney stones, clinicians decided to try
using the same wave forms to break up calcium deposits that develop in soft tissue in other parts of
the body, particularly in the shoulder[58]. During these treatments, and in ESWL, it was clear that
one biological response that occurred was angiogenesis, or the development of new blood vessels in
the region being treated. Some have hypothesized that the mechanical stimulation of the soft tissue
leads to the release of growth factors such as VEGF, that lead to re-vascularization of the area [64].
After these discoveries, ESWT was then used to treat necrosis of the humeral head, a condition
where the ball at the end of the humerus that inserts into the glenoid, has developed a dead region
where no blood flow can get through. If left untreated, the bone will eventually break leading to
shoulder replacement surgery. Clinicians had some success with ESWT for this issue, but it seems
to be highly dependent upon insuring the focal region of the device is in the correct location [54].
An additional observation from these studies was that in the region treated with ESWT, there was
noticeable thickening of the bone, or bone growth. Somehow, in addition to stimulating blood flow,
the mechanical forces imparted by ESWT also generate osteogenesis. As a result, the same treatment
was then applied to non-unions, or bone fractures that fail to heal. If a bone fracture has failed to
heal in 6 months or less, but eventually does heal without treatment, it is called a delayed union.
ESWT has been highly effective in treating those injuries, but the underlying biological mechanisms
that lead to healing are still not well understood [64].

2.3 Physics of ESWT

In order for ESWL and ESWT to be viable treatments, a shock wave of sufficient strength must be
created and transmitted to the target area safely and efficiently. This requires that the shock wave
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a) b)

Figure 2.2: Cartoon of the HM3 Dornier Lithotripter. In a) the spherical wave is generated at
F1, reflects off the ellipsoid and the reflected wave focuses at F2. In b) the diagram illustrates the
creation of the edge waves at the corner of the ellipsoid and the contribution of negative pressure to
the tail of the ESWT pressure wave.

be generated in a medium, such as water, that has an acoustical impedance very close to that of
human tissue. To accomplish this, clinicians use a coupling gel between the water-filled bladder of
the device and the patient’s skin. Also, the energy of the shock wave must be concentrated so that
the appropriate compressive and tensile stresses are maximized in the treatment region to cause the
desired biological effects with minimal collateral damage. This is done through the use of reflectors
or acoustic lenses that focus the energy of, for example, an underwater explosion. The physics that
describes the steepening of the waves is similar for all focusing methodologies.

2.3.1 Models for ESWT

Our modeling effort focused on the HM3 Dornier lithotripter device because our colleagues at the
Applied Physics lab were using this type of device for their experiments. The Dornier lithotripter
uses a truncated ellipsoid reflector with a shock plug positioned at one focus of the ellipse, F1. The
major and minor axes of the ellipsoid in the HM3 are a = 140mm and b = 79.8mm, respectively.
The foci of this ellipse are at (±115, 0, 0) and the reflector is truncated at 100mm from F1, or
(−10, 0, 0). It was initially thought that the direct wave did not contribute much to the treatment
[45], however Matula, et al. [56] have determined that the direct wave can play a role in excitation
of cavitation bubbles. The majority of the energy is contained in the reflected wave that emerges
from the reflector in the shape of a crescent. As the wave propagates, the crescent converges and
the energy is concentrated in a focal area within 10− 20mm of F2. Ideally, the focusing of the shock
wave spares the surrounding tissue and is only strong enough to damage, or treat, biological tissue
at the focus.

The initial shock wave generated by the explosion is typically approximated by a positive trian-
gular pulse [77, 18, 14, 39]. As the spherical wave expands and reflects at the ellipsoidal surface, a
negative tail develops behind the shock. As the shock wave reaches the edge of the reflector, the edge
wave is generated and provides the largest contribution to the negative pressure tail of the ESWT
pressure waveform, this can be seen schematically in Figure (2.2).
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Coleman, et al [20] made measurements of the pressure field for the Dornier HM3 lithotripter.
The device used in the Applied Physics Lab at the University of Washington was designed after the
HM3 and its pressure wave is similar. Pressure profiles can vary significantly depending upon the
device that is being used, but the basic shape remains the same. The peak over pressure of the shock
can range from 10− 100 MPa for the treatments of interest and the maximum negative pressure can
range from 5− 20 MPa.

Previous researchers have modeled the pressure field using linear and nonlinear acoustics as
well as the Euler equations with the Tait equation of state. Hamilton [39] used linear geometrical
acoustics, which holds under the assumption of weak shock strength, to calculate the reflection of
the spherical wave. The diffraction of the wave at the corner of the reflector was calculated using
the Kirchoff integral method. Christopher’s [14] model of the HM3 lithotripter used Hamilton’s
result as a starting point and considered non planar sources. Coleman et al [20], Averkiou and
Cleveland [3] used models based on the KZK equation. Tanguay [77] solved the full Euler equations
and incorporated cavitation effects as well as the edge wave.

Our approach differs from these in that we consider the wave propagation in both the fluid and
solid by solving a single set of equations that can model both materials. This approach allows us
to investigate not only compression and tension effects of ESWT, but also the propagation of shear
waves in the solid. Sapozhnikov and Cleveland [16] have investigated the effect of shear waves on
spherical and cylindrical stones using linear elasticity with a plane wave initial condition. This initial
condition is an unfocused wave, which yields good results for small objects, but would fail to capture
the full ESWT pressure wave interaction with three-dimensional bone geometries. Another benefit
of our model is that we can vary the material properties for the Tait equation of state obtained from
the literature, to incorporate potentially nonlinear behavior due to wave propagation in tissue.

2.3.2 Shock wave steepening

The acoustic waves generated in shock wave therapy are nonlinear and the wave speed is not constant,
but depends on local properties of the fluid. In the models we are using, the sound speed is given by

c2 =
γ(p+ p∞)

ρ
.

If we consider an initial pressure profile in the shape of a Gaussian, then the wave speed at the peak
of the Gaussian will be higher than the wave speed at the base causing the wave to steepen as it
propagates. This is illustrated in Figure 2.3. When the wave develops a discontinuity, a shock has
formed.

2.3.3 Shock wave reflection and transmission, generation of shear stress

When an acoustic wave encounters a medium with a different impedance, then part of the wave will
continue to propagate into the new medium, and part will be reflected back into the original medium.
In the case of normal incidence, where the propagation direction is perpendicular to the surface, the
amplitude of the transmitted and reflected waves depend only on the change in impedance between
the two media. In Figure 2.4, as a shock wave hits an interface, part of the wave is reflected, but
since part of the wave has yet to hit the interface, there will be an interaction of the incoming and
reflected waves. This leads to a larger region of negative pressure near the interface of the two
materials. It has been suggested that this phenomena is the reason cavitation bubbles are prevalent
near the surface of the stones in ESWL [45], and in principle, the same would be true for the interface
between tissue and bone.

The intensity transmission and reflection coefficients measure the intensity or energy of the
transmitted and reflected components of the shock wave. Cleveland and McAteer [15] calculated
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Figure 2.3: Wave steepening as it propagates to the right, components with higher pressure travel
at a greater speed leading to the formation of a shock front.

Figure 2.4: Behavior of the pressure wave at an interface.
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the intensity transmission coefficient for an acoustic wave propagating with normal incidence from
water into soft tissue, kidney stones, bone and air. The transmission from water to soft tissue is
nearly 100% and from water to bone was around 60%. In the case of a water-air interface, 0.1%
of the energy is transmitted from water to air. This is why shock waves for ESWL and ESWT are
generated in water and patients are either submerged in a water bath or a coupling gel is used to
insure maximum energy transmission.

The shear modulus of tissue is very close to zero, and within water it is zero. A zero shear
modulus means these materials do not support shear stresses. However, a wave propagating through
the fluid that then hits a solid can generate shear stresses within the solid. Sapozhnikov, et. al. [72]
investigated the role of compression, tensile and shear stresses on cylindrical kidney stones. They
found that greater tensile stresses in lithotripsy led to break up of the idealized stones with fewer
shocks. Tensile stresses in the stone were maximized when shear stresses were generated at the
corners of the stone. In the absence of this shear stress, the stone required thousands more shocks
before breaking. In ESWT the shear stress generated at the interface between the two materials is
thought to in part lead to bone growth and angiogenesis. It is therefore important to understand
and model the shear stresses generated by the shock wave in ESWL and ESWT.

2.3.4 Shock wave interaction with tissue

The acoustic field of the a lithotripter or shock wave therapy device is typically measured using a
hydrophone, which converts pressure into an electrical signal. Most reference measurements obtained
using a hydrophone have been done through in vitro experiments. There have been few attempts
to collect pressure data from within animals [15]. From experiments done using the HM3 Dornier
lithotripter and a PVDF Hydrophone implanted in a pig, experimentalists have determined that the
resultant wave form is similar in shape to that of an in vitro waveform. The biggest difference is the
positive peak pressure was decreased by 30% and the shock rise time was longer [15]. These effects
are consistent with the higher attenuation that would be associated with a viscoelastic material like
soft tissue.

2.3.5 Cavitation

Cavitation is the formation of bubbles in a liquid that occurs when the pressure in the liquid falls
below a certain threshold. In ESWT, the tensile component of the pressure wave has negative
pressures that are on the order of -15 MPa. These tensile stresses lead to the generation of cavitation
bubbles in soft tissue during treatment, particularly in lithotripsy as the shock wave must travel
through a larger amount of soft tissue.

We do not model cavitation effects with our code. However, we have been able to compare the
results from our calculations with the cavitation fields photographed in laboratory experiments [30].
In order to perform the comparison, we calculate the maximum tensile stresses over the course of the
calculation. This is considered to be a reasonable predictor for where cavitation bubbles are likely
to occur.

In ESWT, the soft tissue component surrounding a broken bone or tendon is significantly smaller
than what is considered in lithotripsy. While cavitation effects probably play a role in the break up of
heterotopic ossifications, it is less clear that it plays a strong part in the healing of non-unions. Delius
et al [64] found that treatment of non-unions in rabbits and sheep with high energy shock waves led
to the generation of microcracks and detatchment of the periosteum from the bone. Further, they
found that the bone marrow content and fat were pressed out of the marrow canal underneath the
periosteum. This suggests compression of the bone as well as shearing at the bone-tissue interface.
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2.3.6 Applications of Shock Wave Therapy

Nonunions

If a bone fracture fails to unite or heal over a period of six months or longer, it is classified as a
nonunion. Some causes of nonunions are insufficient immobilization, infection or inadequate blood
supply. The normal bone healing process has been interrupted and fails to complete. In a few cases,
nonunions will go on to heal, but these fractures are then classified as delayed unions.

Typical treatment for nonunions involves orthopedic surgery where either a bone graft or hard-
ware is used to encourage closure of the fracture. The type of treatment depends on the type of
nonunion. In cases where the gap between the two bones is within a few millimeters, ESWT has
proven to be an effective noninvasive alternative to surgery [64].

Tendonitis and Tendinopathies

Tendons are the anatomic structures that connect muscle to bone and make joint movement possible.
A tendon is composed of bundles of collagen fibers, and when a joint is overused the collagen weakens
and the tendon degenerates leading to pain. If the region is also inflamed, the injury is classified as
tendonitis.

Treatment has traditionally focused on providing anti-inflammatory measures. This has included
nonsteroidal anti-inflammatory drugs (NSAIDs), steroid injections, and physical therapy. Many
clinical trials have been performed to evaluate the efficacy of ESWT for the treatment of tendinitis
in the knee, shoulder and plantar fascia, but the results to date are not conclusive [74]. In some
cases ESWT was found to be effective, in others it performed no better than placebo. ESWT has
been shown to be more effective when patients provide feedback that enables focusing of the shock
wave on the most painful areas, as opposed to using image-guided focusing to direct the wave toward
anatomical structures. This indicates that ESWT is responsible for more of an analgesic effect where
nerves are possibly being damaged leading to the reduction in pain [68].

Heterotopic Ossifications

Heterotopic ossification (HO) is the abnormal formation of true bone within extraskeletal soft tissues.
HO originates from osteoprogenitor stem cells lying dormant within the affected soft tissues [8]. With
the proper stimulus, the stem cells differentiate into osteoblasts and begin the process of osteoid
formation, eventually leading to mature heterotopic bone. Most patients are encouraged to continue
using the joint in an effort to continue having full range of motion. Once the HO has grown to
the point of limiting the patient’s ability to move their limb, doctors use either surgery or radiation
therapy. Surgery can only be undergone once no new bone is forming, otherwise there is a recurrence
rate of nearly 100 percent [76].

ESWT has been used to treat heterotopic ossifications [57]. It is believed that by generating large
shear stresses at the interface between the bone and ossification, the ossification can be dislodged,
causing the patient to regain range of motion in the joint.

2.4 Biology

We are interested not only in how the pressure wave is generated and propagates within an idealized
laboratory setting, but also in wave propagation through biological materials such as bone and soft
tissue. Therefore, it is important that our modeling of these materials be as accurate as possible.
The mechanical properties of materials are specified by constitutive equations. There are a great
many constitutive equations describing an almost infinite variety of materials. According to Fung
[33], three simple, idealized stress-strain relationships describe the mechanical properties of many
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materials. These three models are the Hookean elastic solid, the nonviscous fluid and the Newtonian
viscous fluid. however, most biological materials cannot be described so simply. Here we focus on
the Hookean and viscoelastic models.

2.4.1 Hookean models

If the stress in a material can be linearly related to the strain, or the strains are infinitesimal, that
material is said to obey Hooke’s law. In one-dimension Hooke’s law can be stated as,

σ = Kε,

where σ is the stress, K is the bulk modulus and ε is the strain. In general, σ is a stress tensor that
is linearly related to the strain tensor ε,

σ1 = C11ε1 + C12ε2 + C13ε3 + C14ε4 + C15ε5 + C16ε6

σ2 = C21ε1 + C22ε2 + C23ε3 + C24ε4 + C25ε5 + C26ε6

σ3 = C31ε1 + C32ε2 + C33ε3 + C34ε4 + C35ε5 + C36ε6

σ4 = C41ε1 + C42ε2 + C43ε3 + C44ε4 + C45ε5 + C46ε6

σ5 = C51ε1 + C52ε2 + C53ε3 + C54ε4 + C55ε5 + C56ε6

σ6 = C61ε1 + C62ε2 + C63ε3 + C64ε4 + C65ε5 + C66ε6.

Anisotropic linear coefficients obtained through ultrasound stiffness measurements can be found in
Table (2.1). A bone will typically be anisotropic because bone grows in response to applied loads,
which in the human body, are highly anisotropic[55]. This anisotropic structure would probably
have an effect on the direction of propagation within the bone, but for our modeling efforts we have
assumed bone is an isotropic material.

Table 2.1: Elastic coefficients for the anisotropic linear stress tensor (GPa) [55]

Coefficient plexiform bone (primary bone) haversian (secondary bone)
C11 22.4 ± 0.6 21.2 ± 0.5
C22 25.0 ± 1.0 21.0 ± 1.4
C33 35.0 ± 2.0 29.0 ± 1.0
C44 8.2 ± 0.4 6.3 ± 0.4
C55 7.1 ± 0.3 6.3 ± 0.2
C66 6.1 ± 0.2 5.4 ± 0.2
C12 14.8 ± 0.8 11.7 ± 0.7
C23 13.6 ± 0.7 11.1 ± 0.8
C13 15.8 ± 0.8 12.7 ± 0.8

In the case of a linear, isotropic solid with averaged material properties, the above system sim-
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plifies to

σ1 = C11ε1 + C12ε2 + C13ε3

σ2 = C21ε1 + C22ε2 + C23ε3

σ3 = C31ε1 + C32ε2 + C33ε3

σ4 = C44ε4

σ5 = C55ε5

σ6 = C66ε6.

More information on this form for the stress tensor can be found in Chapter 5.

2.4.2 Viscoelasticity

The most commonly used linear viscoelastic models are the Maxwell, Kelvin-Voigt and Standard
Linear Solid. The Maxwell model combines a spring and dashpot in series, which allows for stress
relaxation. The Kelvin-Voight model combines a spring and dashpot in parallel, thereby incorpo-
rating creep, but losing accuracy in its modeling of stress relaxation. The Standard Linear Solid is
more complicated, but by combining a Maxwell and Kelvin-Voigt type model in parallel, it is able to
incorporate many of the desired viscoelastic effects like creep and stress relaxation. However, there
are more parameters that need to be measured from experiments.

The propagation of shock waves through viscoelastic material in one-dimension was undertaken
in [38]. The authors derived some relations for the relaxation of the material behind the shock, as
well as formulas for the shock speed.

2.4.3 Skeletal Biology

The primary uses of ESWT to date involve the musculoskeletal system. In order to effectively
model the shock wave interaction with the bone, it is important to have a good mathematical
characterization of the different bone tissues. Different treatments will necessitate the modeling of
different parts of the bone geometry, which are comprised of different tissue types. When focused
on a nonunion that has occurred in the long shaft of the bone, the model will consist of primarily
cortical bone and bone geometry is well approximated by a cylinder. However, when treating necrotic
femoral or humeral head, the shock wave interacts with the ends of the bone, which are rounded and
are mostly made up of trabecular bone. In this section I will describe the fundamental differences in
the bone types from a mathematical modeling perspective, as well as the role played by the different
cell types in the healing process.

While the shapes of our bones are quite variable in terms of curvature and length, the skeletal
architecture is fairly stereotypical within a given species [55]. This means that an isolated bone or
fragment of a bone can be identified as human and not belonging to, say, one of the other primates.
This would seem to indicate that the structure of bone is reasonably static with size and shape being
dictated by species. If we examine a bone at the scale of centimeters, then this is true. However, if
we focus instead on the scale of milimeters to microns, it becomes clear that bone is an incredibly
dynamic tissue that is constantly remodeling in response its mechanical environment [55, 28].

If you were to cut open a variety of bones from the body and wash out the marrow, it would
be clear that there are two main types of bone, cortical or compact and trabecular or spongy bone.
The porosity of a single bone can vary from zero to 100%, but most bone tissue has either very
high or very low porosity, with a small amount of the bone having porosity between 25% and 75%
[55]. Trabecular bone is porous bone (75%-95% porosity), found in the vertebrae, flat bones and
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in the ends of long bones. The arrangement of the trabeculae, or components of the bone matrix,
can sometimes be in orthogonal arrays, but more often are randomly arranged. At the other end of
the spectrum, cortical bone is extremely dense and found in the shafts of long bones as well as in
the shells surrounding trabecular bone. Within the cortical bone, there are the following structures,
Haversian canals that contain capillaries and nerves, Volkmann’s canals that connect Haversian
canals and contain blood vessels as well as nerves, and resorption cavities that are temporary spaces
created by bone cells during remodeling.

Within both cortical and trabecular bone, there are two types of bone tissue, lamellar and woven
bone. Lamellar bone has a highly organized structure comprised of parallel layers of anisotropic
mineral crystals and collagen fibers. Woven bone is quickly formed and has a poorly organized
structure in which the mineral crystals and collagen fibers are randomly arranged. In some cases,
woven bone is more highly mineralized than lamellar bone, this may help compensate for its lack of
organization [55]. However, woven bone, while more quickly made, is weaker than lamellar bone.

The shape of the bone and location in the body dictates the underlying composition. The long
shafts of the bone are reasonably static and have a cylindrical shape, while the ends of the bone
(chondyle and epichondyle regions) have more dynamic structures that are primarily composed of
trabecular bone. This is due to the fact that the ends of the bone are components of joints that are
subject to a wider range of directional forces than the bone shafts as we move.

Another important structure involved with bone remodeling, growth and healing is the perios-
teum. This thin layer of soft tissue surrounds each bone. When the periosteum is disturbed, due to
a fracture or some mechanical stress that is applied to the bone, it responds by sending signals to
cells within the bone and within the muscle to draw the necessary blood supply and nutrients.

Bone remodeling

Bones are able to sense changes in the mechanical loads they bear and will modify their structure
to better support these loads. This is known as Wolff’s law and was originally stated as

” Every change in the form and function of... bone[s] or of their function alone is followed by
certain definite changes in their internal architecture, and equally definite secondary alterations in
their external conformation, in accordance with mathematical laws.” - J. Wolff [55, 28, 32]

The idea that bone not only repairs itself, but also adapts to variations in imposed stresses, is one
that has been examined and tested over the years. Three key ideas to arise from studies in this area
are that bones optimize strength with respect to the weight they are bearing; the trabeculae align
with principal stress directions; and cells respond to mechanical stimulus that leads to regulation
and remodeling of the bone structure [55].

In ESWT, we are concerned with the case when bones remodel in response to fracture, an extreme
case were enough force is applied to cause the bone to break. Two tissues provide the cells responsible
for healing a typical fracture, the periosteum and the bone marrow. Ordinarily, the osteoblasts in
an adult periosteum produce lamellar bone at a relatively slow rate. However, even a slight amount
of trauma stimulates the periosteum to produce more osteoblasts that quickly manufacture a large
amount of woven bone. In the event of a break or fracture to the bone, the woven bone forms what
is called the periosteal callus. This is essentially an arch of bone that connects from one side of the
break to another, and is the body’s way of holding the bone together while more woven bone can
be constructed inside the break. The bone lining cells, the same cells that are stimulated to initiate
bone remodeling by mechanical factors, also respond to trauma to the bone marrow. The factors
released by the bone marrow in response to the break, lead to the formation of the endosteal callus
in the gap between the two bones.

It has been demonstrated that mechanical disruption of the marrow, even without the presence
of a cortical fracture, activates the cells necessary for the formation of an endosteal callus [2]. This
must occur in order for blood cell production to return to normal. The periosteal callus is more
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noticeable, but the edosteal callus is thought to be more important in the initial union of the fracture
[55]. If this process is interrupted or incorrect chemical signals are sent to the body, this results
in a nonunion. It seems reasonable to hypothesize that the applied mechanical stress of ESWT,
possible pulsatile flow generated in the bone marrow, and damage done to the bone are some of the
mechanisms that lead to the bone regeneration after treatment.

2.4.4 Soft tissue

The viscoelastic behavior of various fibrous tissues (skin, cartilage, blood vessel walls) has been
studied in depth by Fung [33]. He found that for many tissues, linear viscoelastic models apply as
long as the strains are small. We have assumed (and justified through calculation of the displacements
in our model) for ESWT that the tissue is undergoing small displacements near F2 and can therefore
be modeled as a linear viscoelastic material. We have completed some one-dimensional models of
the pressure wave interacting with a linearly viscoelastic material.

Justification for modeling as water

Though the results from using a viscoelastic stress-strain relationship in our modeling effort yield
some idea of what will happen to the pressure wave as it propagates through soft tissue, we have not
yet determined how to extend this to a multi-dimensional model. Since the shear modulus for tissue
is very nearly zero, we initially used water as the tissue model for all experiments. This has been
done by several research groups [43, 70, 72], and has served as good starting point for investigating
the interaction of the wave with complicated bone geometries. We then extended the model to
include gelatinous tissue using variable parameters for the Tait equation of state.

Tait EOS Parameterization for Tissue

Nakahara, et al [60] measured the Hugoniot data for a series of shock experiments in water, gelatin
and saline solutions. They used the Grüneisen equation of state combined with the Hugoniot and
Gibbs equation to demonstrate that the change of entropy due to shock compression for the range of
pressures applicable to ESWT, only affected the internal energy, not the pressure or sound velocity
[60]. They used this as a justification for modeling the pressure with the modified Tait equation of
state, that was then used to fit experimental data in order to determine the parameters in Table 2.2.

Since we have demonstrated in Chapter 4 that we can use the isentropic equations near F2 in our
calculations, we can utilize the parameters measured by Nakahara, et. al. to model wave propagation
in gelatinous tissue surrounding the bone.

Table 2.2: Material dependent parameters for the Tait equation of state [60]

Material B n
Water 300 MPa 7.15

Saline (10 %) 248 MPa 7.0
Gelatin (10%) 276 MPa 7.0
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Chapter 3

FINITE VOLUME METHODS

In subsequent chapters we provide implementation details for the linear elasticity equations and
the Lagrangian form for the isentropic Euler equations. In order to provide the necessary background
to discuss each of those systems, we introduce the basic numerical method and CLAWPACK by
considering the one-dimensional acoustics equations in this chapter.

3.1 Hyperbolic Systems of Conservation Laws

The general form of a system of m conservation laws in d space dimensions is

∂

∂t
q +

d∑
j=1

∂fj(q)
∂xj

= 0, x = (x1, . . . , xd)T ∈ Rd, t > 0, (3.1)

where q = (q1, . . . , qm)T , qp = qp(x, t), 1 ≤ p ≤ m, is the vector of the state variables, and
fj = (f1j , . . . , fmj)T , 1 ≤ j ≤ d, are called flux functions.

We can see that the system 3.1 expresses the conservation of the m quantities q1, . . . , qp. In fact,
let Ω be an arbitrary domain in Rd, and n = (n1, . . . , nd)T the outward unit normal to the boundary
∂Ω of Ω. Then, from 3.1 we have

d

dt

∫
Ω

qdx+
d∑
j=1

∫
∂Ω

fj(q)nj dS = 0. (3.2)

This balance equation states that the positive time variation of
∫

Ω
q dx is equal to the inward flux

of q through the boundary ∂Ω.
We are interested in studying systems of conservation laws that are hyperbolic,

Definition For j = 1, . . . , d, let

Aj(q) =
(
∂fij
∂qp

)
1≤i,p≤m

be the Jacobian matrix of fj(q); the system 3.1 is called hyperbolic if for any q ∈ Ω and any
ω = (ω1, . . . , ωd)T ∈ Rd, |ω| = 1, the matrix

A(q, ω) =
d∑
j=1

ωjAj(q)

has m real eigenvalues λ1(q, ω) ≤ λ2(q, ω) ≤ · · · ≤ λm(q, ω) and m linearly independent correspond-
ing eigenvectors r1(q, ω), . . . , rm(q, ω), that is

A(q, ω)rp(q, ω) = λp(q, ω)rp(q, ω), 1 ≤ p ≤ m.

If, in addition, the eigenvalues λp(q, ω) are all distinct, then the system 3.1 is called strictly hyper-
bolic.
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For hyperbolic systems introduced here we shall consider the initial value problem consisting
of the equations (3.1) augmented with the initial condition q(x, 0) = q0(x), where q0(x) is a given
function defined on Rd.

3.1.1 Weak Solutions

A classical solution of (3.1) is a smooth function q that satisfies (3.1). An important feature of the
problems of interest is that we must allow for discontinuous solutions. Such functions cannot satisfy
the partial differential equations (3.1), but do satisfy the integral form of the conservation laws∫

T

∫
Ω

qdxdt+
d∑
j=1

∫
T

∫
∂Ω

fj(q)njdSdt = 0, ∀Ω ⊆ Rd, ∀T ⊆ [0,+∞). (3.3)

Hence we appeal to the integral form (3.3) to define a solution q in a generalized sense, or weak
solutions of (3.1).

If we consider a piecewise smooth function q, then in the regions where q is smooth it is a classical
solution, while we can use the integral form of the equations to derive conditions that hold across
discontinuities. Specifically, denoting with q± the limits of q on each side of a surface of discontinuity,
the following Rankine-Hugoniot condition is satisfied

s(q+ − q−) =
d∑
j=1

nj(f(q+)− f(q−)), (3.4)

where s represents the speed of propagation of the discontinuity and n ∈ Rd is a unit vector indicating
the direction of propagation.

A weak solution to a system of conservation laws is not necessarily unique, hence we need to
select among the possible weak solutions the unique physically relevant solution of the problem. This
is called the entropy solution and can be viewed as the limit of the viscous problem associated to
the considered hyperbolic problem as the viscosity parameter goes to zero.

3.1.2 One-Dimensional Riemann Problem

Consider the one-dimensional system

∂q

∂t
+
∂f(q)
∂x

= 0, x ∈ R, t > 0. (3.5)

Here q is a vector of m conserved quantities and f(q) the corresponding flux function. We will assume
that (3.5) is strictly hyperbolic, so the Jacobian matrix A(q) = f ′ has m distinct real eigenvalues
λp(q) and m linearly independent eigenvectors rp(q), 1 ≤ p ≤ m. Most of the results discussed here
will also hold for a non-strictly hyperbolic system as long as the eigenvectors form a complete basis.

For (3.5), we shall consider initial data with the particular form

q0(x) =
{
ql if x < 0
qr if x > 0 . (3.6)

In such a case, problem (3.5), (3.6) is called the one-dimensional Riemann problem.
Note that solutions q(x, t) to this problem are self-similar, that is q(x, t) = qRiem(xt ).
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Linear Systems

For a linear system ∂q/∂t + A∂q/∂x = 0, with a constant coefficient matrix A, the solution of the
Riemann problem consists of (m+ 1) constant states q∗0 = ql, q

∗1, . . . , q∗(m−1), q∗m = qr, separated
by m discontinuities that propagate at speeds given by the eigenvalues of A. Each constant state
can be expressed as q∗p = ql +

∑p
k=1 α

krk, there the coefficients αk are obtained by projecting the
jump qr − ql onto the eigenvectors of A, i.e., qr − ql =

∑m
p=1 α

prp.

Nonlinear Systems

Let us consider a single discontinuity connecting two states ql and qr and traveling at speed s. In
order for this discontinuity to be a weak solution of the Riemann problem, the Rankine-Hugoniot
condition must be satisfied

s(qr − ql) = f(qr)− f(ql). (3.7)

In a genuinely nonlinear field a discontinuous solution of this type is a shock wave, whereas in a
linear degenerate field it is called a contact discontinuity.

Definition The p-th characteristic field is said to be genuinely nonlinear if

∇λp(q) · rp(q), ∀q ∈ Ω. (3.8)

Definition The p-th characteristic field is said to be linearly degenerate if

∇λp(q) · rp(q) = 0, ∀q ∈ Ω. (3.9)

In the case of a shock wave, the Lax entropy condition is used to insure that a physically relevant
solution is selected. The Lax entropy condition requires that λp(q) > s > λp(q), which means that
the characteristics impinge on the shock.

In a genuinely nonlinear field with a smoothly varying solution, a rarefaction wave can occur.
This solutions has the property of lying on integral curves of the characteristic field, i.e. curves
v(ξ) satisfying v′(ξ) = rp(v(ξ)). If the characteristic fields of the system (3.5) are either genuinely
nonlinear or linearly degenerate, the Riemann problem has a unique weak solution, assuming |qr−ql|
is sufficiently small; moreover, this solution consists of at most (m+ 1) constant states separated by
rarefaction waves, shocks, or contact discontinuities.

3.2 Godunov-Type Methods

For the numerical solution of hyperbolic systems of conservation laws we consider Godunov-type
schemes that represent a particular class of finite volume methods.

Consider a discretization in space and time with spatial interval ∆x and time step ∆t. We define
the discrete points (xi, tn) by xi = i∆x, i ∈ Z, and tn = n∆t, n ∈ N. In the finite volume approach,
the numerical solution Qni ∈ Rm at the point (xi, tn) is viewed as an approximation of the average
of the exact solution q(x, t) at time tn over the spatial cell Ci = (xi−1/2, xi+1/2),

Qni ≈
1

∆x

∫
Ci
q(x, tn) dx ≡ Q̄ni . (3.10)

We shall consider 3-point explicit schemes of the following type:

Qn+1
i = Qni −

∆t
∆x

[
F (Qni , Q

n
i+1)− F (Qni−1, Q

n
i )
]
, (3.11)
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where the function F : RmxRm → Rm is called the numerical flux. We know that every weak
solution q(x, t) satisfies the integral form of the conservation law,∫

Ci
q(x, tn+1)dx =

∫
Ci
q(x, tn)dx−

[∫ tn+1

tn
f(q(xi+1/2, t))dt−

∫ tn+1

tn
f(q(xi−1/2, t))dt

]
. (3.12)

Dividing by ∆x and using the cell average (3.10), we have

Q̄n+1
i = Q̄ni −

1
∆x

[∫ tn+1

tn
f(q(xi+1/2, t))dt−

∫ tn+1

tn
f(q(xi−1/2, t))dt

]
. (3.13)

Comparing this to (3.11), it is clear that the numerical flux function F (Qni , Q
n
i+1) plays the role of

the average physical flux through xi+1/2 over the time interval [tn, tn+1)

F (Qni , Q
n
i+1) ≈ 1

∆t

∫ tn+1

tn
f(q(xi+1/2, t))dt. (3.14)

In order to insure that the numerical flux is consistent, we will in general require F (x, x) = f(x), for
all x and that it is Lipschitz continuous.

Godunov-type methods are based on solving Riemann problems between cell averages Qni , Q
n
i+1

in order to define the numerical flux F (Qni+1, Q
n
i ) at the interface xi+1/2. We can either compute

the exact solution of the Riemann problem at each cell interface, as was originally done by Godunov
[35], or we can use an approximate solution. A wide variety of approximate Riemann solvers have
been proposed that can be applied with less computational effort than the exact Riemann solvers,
and in many cases are equally effective.

3.3 Approximate Riemann Solvers

Approximate Riemann solvers are necessary for nonlinear problems where an exact Riemann solver,
while tractable analytically, is too computationally intensive to solve at every grid cell interface. The
general structure of approximate Riemann solver we are interested in consists of m waves W p ∈ Rm
propagating at some speeds sp ∈ R, p = 1, 2, . . . ,m. Given states qr and ql for the right and left
state of the Riemann problem, the vectors W p represent the jump in q across each wave and their
sum must recover the total jump

qr − ql =
m∑
p=1

Wp. (3.15)

The following conservation condition must also be satisfied

f(qr)− f(ql) =
m∑
p=1

spWp. (3.16)

The numerical flux can then be written as

F (Qi, Qi+1) = f(Qi) +
m∑
p=1

(
spi+1/2

)−
Wp
i+1/2 (3.17)

= f(Qi+1)−
m∑
p=1

(
spi−1/2

)+

Wp
i−1/2, (3.18)
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where s+ = max(s, 0),s− = min(s, 0), and the subscript (i+ 1/2) indicates quantities computed for
the Riemann problem at xi+1/2. The updating formula (3.11) then takes the form of the following
first-order upwind scheme

Qn+1
i = Qni −

∆t
∆x

[
m∑
p=1

(
spi+1/2

)−
Wp
i+1/2 +

m∑
p=1

(
spi−1/2

)+

Wp
i−1/2

]
. (3.19)

For stability the CFL condition [51] must hold

∆t
∆x

max
p
|sp| ≤ 1, 1 ≤ p ≤ m. (3.20)

3.3.1 Roe Solver

One of the most extensively used approximate Riemann solvers is due to Roe [67]. The idea is to
determine an approximate Riemann solution by solving a linear system with a constant coefficient
matrix Â = Â(ql, qr), in lieu of the original nonlinear system.

Definition 3.3.1 The matrix Â(ql, qr) is called a Roe linearization if it is endowed with the following
properties:

• Hyperbolicity of the linearized system, Â(ql, qr) has real eigenvalues and complete set of eigen-
vectors;

• Consistency,
Â(ql, qr)→ f ′(q̄) as ql, qr → q̄; (3.21)

• Conservation condition,
f(qr)− f(ql) = Â(ql, qr)(qr − ql). (3.22)

Consider the eigenstructure of Â, with eigenvalues λ̂p and eigenvectors r̂p, and let αp be the weights
of the projection of the jump (qr− ql) onto the eigenvectors. Then the waves W p and corresponding
speeds sp that form the Roe solver are given by

W p = αpr̂p and sp = λ̂p, p = 1, . . . ,m. (3.23)

Roe [67] suggests that Â should have the following form

Â(ql, qr) = A(q̂), q̂ = q̂(ql, qr), (3.24)

where A(q) = f ′ is the Jacobian matrix of the original system and q̂ = q̂(ql, qr) is an average state
defined so that the properties of Definition 3.3.1 will hold. In particular, Roe derives Â(ql, qr) for
the Euler equations of gas dynamics with the ideal gas law. The main drawback to the Roe solver is
that it may compute entropy-violating solutions. This occurs when the true solution of the Riemann
problem contains a transonic rarefaction where λp changes sign through the rarefaction fan. The
failure of the solver is caused by the approximation of the rarefaction by a single discontinuity. This
is typically circumvented by the use of an ’entropy fix’, see for example [51].
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3.4 Linear Acoustics

As a particular example of the type of equations we are interested in, we consider the one-dimensional
linear acoustics equations,

qt +A(x)qx = 0, (3.25)

where

q =
[
p
u

]
, A(x) =

[
0 k(x)

1/ρ(x) 0

]
. (3.26)

In a heterogeneous medium, the density ρ and bulk modulus k, vary in space.
Finite volume methods divide the computational domain into cells that are separated by cell

interfaces. State variables are typically defined as piecewise constant, so that within a given cell all
of the state variables are constant. All variability in the state variables occurs at cell interfaces, so
a cell centered at xi will potentially have jumps in the state variables at the interfaces xi−1/2 and
xi+1/2. In 1D acoustics, the i’th cell has material properties ρi and ki, and the sound speed is given
by ci =

√
ki/ρi.

Ideally, we would have the interface between different materials aligned identically with cell
interfaces. While in 1D it is straight-forward to align the material interfaces with the grid, in 2D
the material interfaces will likely cut the Cartesian grid at some angle, necessitating greater grid
refinement and averaging at the interfaces. In 1D, if the materials do not align with the grid, we use
the arithmetic average of the material properties of each material. For acoustics, we could use the
arithmetic average of ρ, i.e. the value of ρ in the ith cell is ρi = ρ̄i where

ρ̄i =
1

∆x

∫ xi+1/2

xi−1/2

ρ(x) dx. (3.27)

For the bulk modulus, k, we use the harmonic average

k̄i = ∆x

(∫ xi+1/2

xi−1/2

1
k(x)

dx

)−1

. (3.28)

Similarly, the state variables may not be piecewise constant within a given grid cell, so we also use
averaging of these variables to obtain data that vary only at grid cell interfaces. We denote the cell
averages for the state variable q at grid cell i, by Qi. At each cell interface, say xi+1/2 there will be
a difference in the state variables that is governed by equation (3.25). We are therefore interested in
solving the system (3.25) with piecewise constant initial data, with a single discontinuity at xi+1/2,
this is the definition of a Riemann problem. The numerical solution of all the equations we are
interested in, are based on solving Riemann problems.

To solve each Riemann problem at the cell interfaces, we utilize the eigenstructure of the Jacobian
of the flux function of the system we are interested in solving. For the 1D acoustics, the eigenvalues
and eigenvectors are

R =
[
r1 r2

]
=
[ −ρc ρc

1 1

]
, Λ =

[ −c 0
0 c

]
. (3.29)

Since the sound speed, c and impedence ρc vary spatially, it is important to use a local evaluation of
the flux function to calculate the eigenvalues and eigenvectors. For the ith grid cell, the eigenvalues
and eigenvectors would be given by

R =
[
r1 r2

]
=
[ −ρ̄ic̄i ρ̄ic̄i

1 1

]
, Λ =

[ −c̄i 0
0 c̄i

]
. (3.30)
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W2
i+3/2W2

i−1/2 W1
i+1/2W1

i−1/2 W2
i+1/2 W1

i+3/2

xi+1/2 xi+3/2xi−1/2

q = Qn
i

t

t = tn

q = Qn
i+1

From this point forward, we will assume that we are dealing with piecewise constant averages for
the materials in each grid cell and will drop the bar notation.

Consider the interface between the i and i − 1 cells. We would like to solve the hyperbolic
equation qt +A(x)qx = 0 for 1D acoustics with the following initial data

q0(x) =
{
ql if x < 0
qr if x > 0 . (3.31)

The difference between the averaged state variables at the interface, causes a wave to propagate in
each direction. These waves must propagate along the direction of the characteristics in each cell.
The right-going wave, or 2-wave, moves in the direction of the right eigenvector of the matrix Ai,
while the left-going wave, or 1-wave, moves in the direction of the left eigenvector of the matrix
Ai−1. This is illustrated in Figure 3.4 for the interface at xi−1/2 and xi+1/2. Each grid cell has
its own material properties and this information is incorporated into the local definition of the flux
Jacobian. Therefore, the eigenvalues and eigenvectors are defined using the appropriate values in
each grid cell. The difference between qr and ql must be the sum of these two waves, so if we can
determine the waves, we can calculate the solution qm.

Since the characteristic directions, or eigenvectors of the system, are known, we need only to
determine the amplitude of the waves in order to uniquely determine the solution. Recall that the
difference between qr and ql is given as the sum of two waves

qr − ql =W1 +W2. (3.32)

These waves must be eigenvectors of A with some unknown amplitude α,

W1
i−1/2 = α1

i−1/2

[ −ρi−1ci−1

1

]
= α1

i−1/2r
1
i−1, (3.33)

W2
i−1/2 = α2

i−1/2

[
ρici

1

]
= α2

i−1/2r
2
i . (3.34)

For the 1D acoustic system, we must solve the following 2× 2 system for α[
pi − pi−1

ui − ui−1

]
=
[ −ρi−1ci−1 ρici

1 1

]
=

[
α1
i−1/2

α2
i−1/2

]
. (3.35)

Once the waves are determined, we can find the mid-state qm of the Riemann problem by solving
either

qm = qr −W2 or qm = ql +W1.
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These are the basic details for solving a linear hyperbolic system of PDEs and are meant to
provide motivation for the eigendecompositions of the model equations in Chapters 4-6. The details
of the numerical method and a discussion of the wave propagation algorithm are included in Chapter
7.
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Chapter 4

EULER EQUATIONS

The key component in shock wave therapy and lithotripsy is the form of the pressure wave
measured at F2 and the focal region. The wave form is highly nonlinear and necessitates the use of
a nonlinear system of equations where the sound speed varies with the pressure and density. This
allows shocks to develop as illustrated in Figure 2.3. We have followed the example of many other
researchers and utilized the Euler equations with either the Tait or Tammann equation of state
In order to accurately capture the nonlinear pressure wave at F2. In this chapter we provide an
overview of the threee-dimensional form of the equations and the corresponding eigenstructure. As
described in Chapter 3, the eigendecomposition of the system is necessary in order to determine the
waves and speeds that will update our numerical solution.

The initial condition we used in our calculations consists of a large jump in the pressure and
velocity at F1. This can not be accurately modeled by a system derived under the assumption of
infinitesimal deformations, so we use the compressible Euler equations to model the initial propaga-
tion and steepening of the shock wave. Once it reaches the point in the calculation where both the
isentropic and small deformation assumptions are valid, we use the equations of nonlinear elasticity
described in the next chapter.

4.1 Compressible Euler Equations

The Euler equations for a compressible inviscid fluid with no thermal conductivity can be written,
in the one-dimensional case, as the following system of conservation laws

∂

∂t
q +

∂

∂x
f(q) = 0, (4.1)

where

q =

 ρ
ρu
E

 and f(q) =

 ρu
(ρu)2

ρ + p

u(E + p)

 . (4.2)

Here ρ is the fluid density, ρu the linear momentum, with u denoting the velocity along the x axis,
E = ρe + 1

2ρu
2 is the total energy per unit volume, e is the internal energy per unit mass and p is

the pressure.

4.1.1 Equation of State

In order to solve the system of equations for compressible hydrodynamic flow, we need to close
the system with a relation between the pressure and conserved variables. Under the condition of
local equilibrium, the pressure can be expressed as a function of two other thermodynamic variables
through an appropriate equation of state. We have used the Tait [79] and Tammann [43] equations
of state, which are applicable to a wide range of liquids. The Tait equation of state has been more
commonly used for shock wave therapy and lithotripsy [70, 60]. This may seem surprising considering
the treatment relies upon shock waves to deliver energy and mechanical forces, which are typically
non-isentropic processes. The Tammann equation of state is valid for non-isentropic flow and the
two equations of state have been shown to be in good agreement in the isentropic flow regime [79].
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We thought it important to compare the behavior of the ESWT pressure wave when modeled with
both equations of state to insure that we use the correct model.

The Tait equation of state is

p = p(ρ) = B

[(
ρ

ρ0

)n
− 1
]
, (4.3)

where B is a pressure constant that is a weak function of entropy, but is typically treated as a
constant, n is a constant playing a similar role to that of γ in the ideal gas law, ρ is the density, and
p the pressure. The values for water at room temperature are B = 300MPa and n = 7.15. Table
2.2 contains measured values for different biological type materials and values of the constants for a
variety of different fluids can be found in [61].

The Tammann equation of state can be written as

p = p(ρ, e) = (γ − 1)ρe− γp∞, (4.4)

where p,ρ and e are the pressure, density and specific internal energy, respectively. The values in
water for the pressure constant, pc, and polytropic constant, γ, are the same as B and n in the Tait
equation of state. This equation is similar to the ideal gas law, and reduces to the ideal gas law in
the case where p∞ = 0 and 1 < γ < 2.

Assuming that (∂p/∂ρ)s=const > 0, as is required for thermodynamic stability, we can introduce
the speed of sound c,

c =

√
∂p

∂ρ

∣∣∣∣
s

, (4.5)

where s is the entropy. We will assume the equation of state is convex, which implies the density
and pressure of the fluid increase across shock waves. For the Tammann equation of state, the sound

speed is c =
√

γ(p+p∞)
ρ and for the Tait equation of state, it is c =

√
n(p+B)

ρ .

The Jacobian matrix A(q) = f ′(q) of the Euler system is

A(q) =

 0 1 0
1
2 (γ − 3)u2 (3− γ)u γ − 1

1
2 (γ − 1)u3 − uH H − (γ − 1)u2 γu

 , (4.6)

where H = h+ 1
2u

2 is the total specific enthalpy and h = e+p
ρ .

This matrix has eigenvalues

λ1 = u− c, λ2 = u, λ3 = u+ c, (4.7)

with right eigenvectors

r1 =

 1
u− c
H − uc

 , r2 =

 1
u

1
2u

2

 , r3 =

 1
u+ c
H + uc

 . (4.8)

In the case of the Tait equation of state where the pressure can be written as a function of density
only, in which case, the energy equation can be eliminated and the above system simplifies to

∂

∂t

[
ρ
ρu

]
+

∂

∂x

[
ρu

ρu2 + p

]
= 0. (4.9)
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Figure 4.1: Wave diagram showing the structure of a typical solution for the Euler equations.

4.1.2 The Riemann Problem

Recall that the Riemann problem is the initial value problem for a hyperbolic system of conservation
laws,

qt + f(q)x = 0,

with special initial data consisting of two constant states separated by a discontinuity

q0(x) =
{
ql if x < 0
qr if x > 0 .

For the eigenstructure of (4.2), we find that the first and third characteristic fields are genuinely
nonlinear, while the second field is linearly degenerate. Therefore, the solution of the Riemann
problem for the Euler equations will be composed of three waves, where the first and third will
either be shocks or rarefactions, and the second will always be a contact discontinuity, see Figure
4.1. Across the contact discontinuity, the pressure and velocity are constant, but there is a jump in
the entropy.

The solution to the Riemann problem in 1D for the Tait equation of state consists of two nonlinear
waves, corresponding to the two distinct eigenvalues.

4.1.3 Two-Dimensional Euler Equations

In two space dimensions the Euler equations take the form

∂

∂t
q +

∂

∂x
f(q) +

∂

∂y
g(q) = 0, (4.10)
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with

q =


ρ
ρu
ρv
E

 , f(q) =


ρu

ρu2 + p
ρuv

u(E + p)

 , g(q) =


ρv
ρuv

ρu2 + p
v(E + p)

 . (4.11)

Here u and v denote the velocities in the x and y direction, respectively. The total energy is
E = ρe+ 1

2 (u2 + v2), and the total enthalpy is H = h+ 1
2 (u2 + v2).

The Jacobian f ′(q) has four eigenvalues

λ1 = u− c, λ2,3 = u, λ4 = u+ c.

The sound speed is the same as in one spatial dimension, c =
√
γp/ρ. The eigenvectors in the x

direction are

r1 =


1

u− c
v

H − uc

 , r2 =


1
u
v

1
2 (u2 + v2)

 , r3 =


0
0
1
v

 , r4 =


1

u+ c
v

H + uc

 .
The two distinct eigenvalues λ1 and λ4 give genuinely nonlinear fields, while the eigenvalue of
multiplicity 2, λ2 = λ3 = u, correspond to linearly degenerate fields. If we consider a plane-wave
Riemann problem in the x-direction, where data only vary along x, then the solution consists of
at most four constant states separated by three waves. The waves corresponding to the genuinely
nonlinear fields will either be shocks or rarefactions. There will also be a contact discontinuity with
speed u that carry a jump in entropy and a shear wave that carries a jump in the tangential velocity
v. The pressure and normal velocity will not vary across the contact discontinuity.

The 2D isentropic Euler equations are the same as the 2D Euler equations (4.10) without the
energy equation. The solution to the Riemann problem for this system consists of two nonlinear
waves, shocks or rarefactions, and a contact discontinuity. The nonlinear waves carry jumps in the
normal velocity and density. The contact discontinuity carries a jump in the tangential velocity, but
no jump in the entropy since we have assumed the entropy is small enough to be neglected. The 2D
case is illustrated in Figure 4.1.3.

4.1.4 Three-Dimensional Euler Equations with Axial Symmetry

Several of the problems we investigated are axially symmetric and this enabled us to reduce the
three-dimensional equations to a two-dimensional form. If we first rewrite the equations in cylindrical
coordinates (r, θ, z) and then assume no variation and zero velocity in the θ direction, the system
we obtain is reduced to two variables, r and z.

∂

∂t


ρ
ρur
ρuv
E

+
∂

∂r


ρur

ρu2
r + p

ρurwz
ur(E + p)

+
∂

∂z


ρwz
ρurwz
ρw2

z + p
wz(E + p)

 =


−(ρur)/r
−(ρu2

r)/r
−(ρurvz)
ur(E + p)/r

 ,
where ur and wz denote the velocities in the r and z directions, respectively. These equations are of
the same form as (4.10), with the addition of geometric source terms that are a result of the variable
transformation.
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Figure 4.2: Wave diagram showing solution to the Riemann problem for the 2D isentropic Euler
equations with the Tait equation of state.

4.2 Validity of Isentropic Flow in ESWT

In the case of Isentropic flow the equations are simpler because the energy can be excluded. This is
not usually the case when dealing with shocks because it is well-known that entropy must increase
across a shock [79, 51]. However, in the event that the shock is weak, or there is only a very small
change in the entropy, an equation of state that only depends on the density, such as the Tait
equation of state, can be used. Several studies have indicated that in ESWT, there is no significant
change in density or pressure as a result of the change of entropy across the shock [61] for pressures
ranging from 1 − 200 MPa. This indicates that the use of the Tait equation of state should be
sufficient for the study of ESWT.

We performed a numerical investigation of the propagation of the pressure wave when modeled
by both the Tammann and Tait equation of state, and determined there was no significant difference
between the two. Figure 4.3 shows the result from one experiment where a shock wave with peak
over pressure of ≈ 180 MPa has propagated through water. The blue wave represents the result
from solving with the Tammann equation of state and the red represents the solution with the
Tait equation of state, the pressure profiles are nearly identical. This gives us confidence that the
calculations we are interested in can be done using the isentropic form of the Euler equations with
the Tait equation of state.

4.2.1 Shock Strength

In addition to the numerical investigation of the equivalence of the two equations of state, we also
considered the Mach number for the flow and shock strength parameter Π derived by Thompson
[79].

The strength of the shock can be investigated by considering the Mach number for different
pressures, which is defined as the ratio between the speed of the object propagating through the
fluid and the speed of sound in the material at rest, M = u

c0
. The strength of the shock increases

with M . Figure 4.2.1 shows a plot of the Mach number as a function of the pressures typically seen
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Figure 4.3: Comparison of a pressure wave calculation performed using both the Tait and Tammann
equations of state. The results are nearly identical.

in shock wave therapy.
Thompson [79] defines the following quantity, Π as the shock strength

Π =
[p]
ρ1c21

,

where [p] is the jump in pressure across the shock. If

Π� 1 => weak shock (essentially isentropic or change in entropy is small),
Π� 1 => strong shock (non-isentropic).

The entropy across a weak shock is O(Π3), so when Π << 1, the entropy is also very small. The
justification for this depends upon using Taylor expansions of enthalpy and specific volume within
the Rankine-Hugoniot condition and can be found in [79].

The typical pressures found in ESWL and ESWT range from 10-100 MPa. We are interested
in determining whether or not these pressures are great enough to lead to strong shocks, or a large
jump in entropy across the shock. In the case of non-isentropic behavior, we must use the full Euler
equations to model the wave propagation in the fluid.

Table 4.1: Shock Strength in Water

Pressure (MPa) Shock Strength
10 0.007
50 0.033
100 0.068
200 0.136
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The speed of sound for water under a pressure of 1 atmosphere or 0.1 MPa, is 1, 500m/s, and
has a density of 1, 000kg/m3. If we use this in the shock strength criteria above, we find that for a
shock wave with a peak pressure of 50 MPa, Π = 0.0034, which is much less than one. Table 4.1
summarizes the results for the range of values that we are concerned with in our experiments. It is
clear that for values up to 100 MPa, the shock strength will be much less than 1, so the change in
entropy across the shock is small and our flow can be modeled as isentropic. This is less accurate
as the pressure increases even to 200 MPa. It is generally considered that the Tait and Tammann
equations of state will agree up to 100 MPa [79]. We have also tested this hypothesis numerically
using the Tait and Tammann equations of state which showed good agreement up to 180 MPa, see
Figure 4.3.
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Chapter 5

LINEAR ELASTICITY

In this chapter we give a brief description of the 3D numerical method and solutions to the
Riemann problems for heterogeneous linear elasticity. The equations for linear elasticity are used
for validation of the model when comparing the results of laboratory experiments to numerical
calculations, as well as for our model of the bone. In particular, the acrylic cylinders described in
Chapter 9 were modeled as linear, isotropic elastic solids. As discussed in Chapter 2, bone, especially
cortical bone, behaves like a linearly elastic solid [33]. Nonunions typically occur in the long shaft of
the bone which is mostly comprised of cortical bone. Therefore, when we investigated the behavior
of the shock wave with bone geometries, we modeled them as isotropic, linearly elastic materials.

5.1 Three-Dimensional Elasticity Equations

The elasticity equations may be written in conservation law form, which in three space dimensions
looks like

∂

∂t
q(x, y, z, t) +

∂

∂x
f(q(x, y, z, t)) +

∂

∂y
g(q(x, y, z, t)) +

∂

∂z
h(q(x, y, z, t)) = 0, (5.1)

where q is a vector of state variables, f ,g,and h are the flux functions in the x, y and z directions,
respectively.

A complete derivation of the equations of motion in an elastic solid can be found in, for example,
[40]. For the purposes of this work, we will just state the following equations for the momenta

ρ
∂2

∂t2
δi = σij i = 1, 2, 3; j = 1, 2, 3 (5.2)

that are a result of Newton’s second law and relate the particle displacements δ = (δ1, δ2, δ3) to
the stresses σ11, σ22, σ33, σ12, σ23, σ13. Here ρ is the density of the material. Note that the particle
velocities can be written as the time derivative of the displacement

ui =
∂

∂t
δi, (5.3)

where ui and δi are the velocity and displacement in the i-th direction, respectively. So the above
equations for the momenta can also be written as first-order equations in terms of the velocities as

ρ
∂

∂t
ui = σij i = 1, 2, 3; j = 1, 2, 3. (5.4)

In order to solve equation (5.4), we need a constitutive equation that relates the stresses to the
displacements. The simplest form of the constitutive equation assumes a linear relationship between
the stress and strain, this is known as Hooke’s law. For an isotropic, linear elastic material, Hooke’s
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law is 
σ11

σ22

σ33

σ12

σ23

σ13

 =


λ+ 2µ λ λ 0 0 0
λ λ+ 2µ λ 0 0 0
λ λ λ+ 2µ 0 0 0
0 0 0 2µ 0 0
0 0 0 0 2µ 0
0 0 0 0 0 2µ




ε11

ε22

ε33

ε12

ε23

ε13

 . (5.5)

Here λ and µ are the Lamé constants, κ = (λ+ 2µ) where κ is the bulk modulus of the material and
µ is the shear modulus.

The relationship between the strain and displacements in the case of infinitessimal strain can be
written as

εij =
1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (5.6)

If we combine the equations (5.4-5.6) we get the following system for three-dimensional linear
elasticity,

σ11
t − (λ+ 2µ)ux − λvy − λwz = 0

σ22
t − λux − (λ+ 2µ)vy − λwz = 0

σ33
t − λux − λvy − (λ+ 2µ)wz = 0

σ12
t − µ(vx + uy) = 0

σ23
t − µ(vz + wy) = 0 (5.7)

σ31
t − µ(uz + wx) = 0

ρut − σ11
x − σ12

y − σ13
z = 0

ρvt − σ12
x − σ22

y − σ23
z = 0

ρwt − σ13
x − σ23

y − σ33
z = 0

Note that when λ and µ vary spatially, these equations are no longer conservative. However, in our
numerical method we define the solution to these equations locally on each grid cell where λ and µ
are constant, so we can perform the following analysis assuming conservation form.

This system (5.7) can be written as

qt +Aqx +Bqy + Cqz = 0 (5.8)

where

q =



σ11

σ22

σ33

σ12

σ23

σ31

u
v
w


,A =



0 0 0 0 0 0 −(λ+ 2µ) 0 0
0 0 0 0 0 0 −λ 0 0
0 0 0 0 0 0 −λ 0 0
0 0 0 0 0 0 0 µ 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 µ
−1/ρ 0 0 0 0 0 0 0 0

0 0 0 −1/ρ 0 0 0 0 0
0 0 0 0 0 −1/ρ 0 0 0


(5.9)

B and C have a similar structure with nonzero entries in different locations [51]. The matrices A,B
and C do not commute so the equations are usually coupled in the multidimensional case. Recall
that the system is hyperbolic if the matrices A, B, C, and any linear combination of them are
diagonalizable with real eigenvalues and a complete set of linearly independent eigenvectors.
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5.1.1 Eigenstructure for linear elasticity

In the spatially-homogeneous isotropic case, the matrices A, B and C have nine eigenvalues that
correspond to the wave speeds of two P-waves (cp), four S-waves (cs) and three zero-speed waves.
The eigenvalues are

λ1,2 = ±cp, λ3,4 = ±cs, λ5,6 = ±cs, and λ7,8,9 = 0. (5.10)

Where cp =
√

λ+2µ
ρ and cs =

√
µ
ρ . In the heterogeneous case, each of the material properties λ,

µ and ρ may vary spatially. As mentioned in Chapter 3, in this case the waves and speeds are
determined locally by the material properties of each grid cell. The equations are still hyperbolic
assuming the criteria for hyperbolicity is met at any given point (x, y, z).

The right eigenvectors for the matrix A are

r1,2 =



λ+ 2µ
λ
λ
0
0
0
±cp

0
0


, r3,4 =



0
0
0
µ
0
0
0
±cs

0


, r5,6 =



0
0
0
0
0
µ
0
0
±cs


, r7 =



0
0
0
0
1
0
0
0
0


, r8 =



0
1
0
0
0
0
0
0
0


, r9 =



0
0
1
0
0
0
0
0
0


.

The eigenvectors for the B and C matrices are similar, but the entries are shifted.

5.1.2 Solution to Riemann problem

Recall that we were interested in solving the linear system Rα = ∆Q to get the coefficients αp of
the eigenvectors which are used to construct the waves Wp in order to solve the Riemann problem.
This is a straightforward process and can be done exactly in the linear case. Consider the Riemann
problem in the x-coordinate direction. The structure of the solution to this problem will consist of
9 waves. Three of these waves will have speed zero and correspond to jumps in σ12, σ23, and σ13

each of which causes no propagation in the x-direction. Two are P-waves with speed ±cp in the
x-direction. The other four waves S-waves with speed ±cs in the xy- and xz- directions. The solution
will be similar in each of the coordinate directions.

5.2 Axisymmetric Elasticity

We use the two-dimensional axisymmetric equations for linear elasticity to compute the solution
for comparison against the three-dimensional calculations. The equations and eigenstructure are
included here.

5.2.1 Equations

The two-dimensional axisymmetric equations in elasticity are derived in a similar manner to the
Euler equations from Chapter 4. The full three-dimensional system is first written in cylindrical
coordinates and then reduced by assuming no variation and zero velocity in the θ-direction. For
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brevity, I will just write the final two-dimensional system here

∂

∂t


σrr

σθθ

σzz

σrz

ρu
ρv

−
∂

∂r


(λ+ 2µ)ur

λur
λur
µuz
σrr

σrz

−
∂

∂z


λuz
λuz

(λ+ 2µ)uz
µur
σrz

σzz

 =



λur
r

(λ+2µ)ur
r
λur
r
0

σrr−σθθ
r
σrz
r

 (5.11)

5.2.2 Eigenstructure

The flux-Jacobian in the x-direction in this case is

A = −


0 0 0 0 λ+ 2µ 0
0 0 0 0 λ 0
0 0 0 0 λ 0
0 0 0 0 0 µ

1/ρ 0 0 0 0 0
0 0 0 1/ρ 0 0

 . (5.12)

The eigenvalues are

λ1,2 = ±
√
λ+ 2µ
ρ

= ±cp, λ3,4 = ±
√
µ

ρ
= ±cs, λ5,6 = 0, (5.13)

with corresponding right eigenvectors

r1,2 =


λ+ 2µ
λ
λ
±cp

0
0

 , r
3,4 =


0
0
0
µ
0
±cs

 , r
5 =


0
1
0
0
0
0

 , r
6 =


0
0
1
0
0
0

 .

5.3 Determination of Principal Stresses

In order to calculate the maximum and minimum stresses during the calculations in Chapters 9 and
10, as well as the values needed for the photoelastic calculations in Chapter 8, it is important to
calculate the principal stresses in each grid cell after every time step. The principal stresses are
the components of the stress tensor when the basis is changed in such a way that the shear stress
components are zero.

In the case of two-dimensional elasticity, we calculate the eigenvalues (σ1, σ2) of the 2× 2 stress
tensor

σ =
[
σ11 σ12

σ12 σ22

]
, (5.14)

to obtain the maximum compressive stress max(σ1, σ2) and maximum tensile stress min(σ1, σ2).
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The eigenvalues are

σ1 =
σ11 + σ22

2
+

√(
σ11 − σ22

2

)2

+ (σ12)2

σ2 =
σ11 + σ22

2
−
√(

σ11 − σ22

2

)2

+ (σ12)2. (5.15)

The maximum shear stress is given by σsmax = σ1−σ2
2 . In our calculations, we checked these relations

by numerically calculating the eigenvalues of the stress tensor.
The principal stresses in three dimensions are again given by the eigenvalues of the 3× 3 stress

tensor

σ1 =
I1
3

+
2
3

(√
I2
1 − 3I2

)
cosφ

σ2 =
I1
3

+
2
3

(√
I2
1 − 3I2

)
cos
(
φ+

2π
3

)
σ3 =

I1
3

+
2
3

(√
I2
1 − 3I2

)
cos
(
φ+

4π
3

)
(5.16)

(5.17)

where

I1 = σ11 + σ22 + σ33,

I2 = σ11σ22 + σ22σ33 + σ33σ11 − (σ12)2 − (σ23)2 − (σ13)2,

I3 = σ11σ22σ33 − σ11(σ23)2 − σ33(σ12)2 + 2σ12σ23σ13, (5.18)

and

φ =
1
3

cos−1

(
2I3

1 − 9I1I2 + 27I3
2(I2

1 − 3I2)3/2

)
. (5.19)

The quantities I1, I2, and I3 are known as the stress invariants.
The principal stress directions are the eigenvectors associated with each of the eigenvalues.
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Chapter 6

LAGRANGIAN FORM OF THE EULER EQUATIONS

In this chapter I present the details of the equations that we solve in our model of ESWT. The
linear elasticity equations are not sufficient because they do not capture the nonlinear steepening
effects of the fluid. The Euler equations can model the steepening of the wave into a shock, but can
not be used to determine the shear stresses in the solid, which may be important for healing. As
was demonstrated in Chapter 4, the isentropic Euler equations are valid and this, combined with
the small size of the displacements in the fluid, allows us to use the same equations in both the fluid
and solid. It should be noted here that the computational grid is not moving with the flow, but we
are still modeling the displacements of the fluid and solid particles as a result of the pressure wave,
so the fluid and bone are not stationary. In this chapter we provide details on the equations and the
structure of the solution to the Riemann problem.

6.1 One-dimensional form of the equations

6.1.1 Equivalence of Lagrangian formulation with Nonlinear Elasticity

The Lagrangian form for Euler’s equations of gas or hydro dynamics uses a coordinate system that
moves with the velocity field of the fluid. The equations can be written as

ρ
dq

dt
+∇xf = 0 (6.1)

where

q =

 η
u
E

 , f =

 −up
pu

 . (6.2)

Here ρ is the density, η = 1/ρ is the specific volume, u the velocity in the x-direction, E = e+ 0.5u2

the total energy density, e the internal energy density and p = p(ρ, e) the pressure given by an
appropriate equation of state.

The system (6.1) is written in non-conservative form and some work has been done to develop
schemes to solve these equations numerically [75]. We are interested in equations that are written
in conservation form, and the one-dimensional system can be written this way if we introduce the
Lagrangian mass coordinate m =

∫ x1

x0
ρdx, so the above equations become

ηt − um = 0
ut − pm = 0 (6.3)

Et − (pu)m = 0.

Some work has been done on developing numerical methods for this form of the equations, but it
is unclear how to define an appropriate mass coordinate in higher-dimensions [59]. An alternative
approach exists if we can assume that the displacements in our model are small so that ρ(t) ≈ ρ0,
that is the original density does not change over time.

Let X(a, t) be the current position of the fluid particle that was initially at X(a, 0). Following
[75] we can think of the velocity u as effecting a coordinate transformation from the reference
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Figure 6.1: The displacement of the grid due to the pressure wave in ESWT compared to the initial
computational grid. There is virtually no difference between the two, which supports our use of ρ0

throughout the calculation.

configuration in a to the current configuration X with jacobian j(a, t) = X ′(a, t).

If we take an interval (a1, a2), then at time t it has become (X1(a1, t), X2(a2, t)). For any function
g(X, t) ∫ X2

X1

g(X, t)dX =
∫ a2

a1

g(a, t)j(a, t)da. (6.4)

We can apply this integral operator to the differential equations above to get,∫ a2

a1

ρ(a, t)qt(a, t)j(a, t)da = −(f(a2)− f(a1)). (6.5)

If we divide both sides by ∆a = a2 − a1, and take the limit ∆a goes to 0, we get

ρ(a, t)j(a, t)qt(a, t) = −f(q)a. (6.6)

Which is equivalent to
ρ0qt(a, t) = −f(q)a. (6.7)

Thus, in the reference configuration, we can relate the current velocity to the change in pressure
using the original background density, ρ0. In our numerical method, the reference configuration a is
equivalent to the cartesian grid where we are performing our calculations. Consider the diagram in
Figure 6.1, the grid where the calculations are being performed is plotted against one that is being
displaced by the ESWT pressure wave. As you can see, there is virtually no difference between the
two.
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Given that ρ ≈ ρ0, the system 6.1 becomes

ρ0ηt = ux

ρ0ut = −px (6.8)
ρ0Et = −(pu)x.

Let ε be the strain tensor and F the deformation gradient tensor, then it is well-known that in
the case of small displacements

ρ =
ρ0

det(F )
=

ρ0

1 + ε11
. (6.9)

Then this is related to the specific volume by

η =
1
ρ

=
1 + ε11

ρ0
. (6.10)

If we take the derivative with respect to time of both sides we get ηt = εt
ρ0

. Making this substitution
in system (6.8) we have

ρ0(
ε

ρ0
)t − ux = 0

ρ0ut + px = 0 (6.11)
ρ0Et + (pu)x = 0.

We can further simplify this system by assuming an isentropic equation of state, where the pressure
is independent of energy. This eliminates the last equation of (6.11). Now, since ρ0 is constant in
time, we can rewrite the first equation as εt − ux = 0, and it is clear that this system is equivalent
to the equations for nonlinear elasticity. Thus, we can use this system to model both the wave
propagation in both the fluid and the solid. The difference in materials is incorporated through the
equation of state, or equivalently, the stress-strain relationship. A method for solving systems of
hyperbolic equations with spatially-varying stress-strain relationships using f-waves was presented
in [52]. We utilize this same approach to construct the waves and speeds for our solution.

6.1.2 Waves and speeds

The first step in determining the numerical solution to this system is to calculate the waves and
speeds that will be used in the solution of the Riemann problem.

Isentropic Euler Equations

For the system in the previous section, we get the following for the Jacobian

f ′(q) = −
(

0 1/ρ0

σε11 0

)
. (6.12)

The characteristic equation for 6.12 is

[−λ[λ2 − λ+
1
ρ0
σε11 ]] = 0. (6.13)
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Therefore the eigenvalues for the Jacobian are

λ1 = 0, λ2,3 = ±
√
σε11

ρ0
. (6.14)

In the case of the Euler equations with the Tait equation of state, p(ρ) = p(ε) = B[( 1
(1+ε)

γ − 1],
we get the following

σε11 = Bγ

(
1

(1 + ε)

)γ+1

= Bγ
1

(1 + ε)

(
1

(1 + ε)

)γ
(6.15)

=
1

(1 + ε)
γ(p+B).

If we use this and the assumption that ρ(t) ≈ ρ0 in our formula for the eigenvalues (6.15), we get
the following for our wave speeds

±
√
γ(p+B)

ρ0
. (6.16)

These are equivalent to the acoustic wave speeds in the standard form of the isentropic Euler equa-
tions.

Linear Elasticity

For elasticity if we assume that the density ρ is constant throughout a specific material, but can still
vary spatially, and denote it ρ0, then the eigenvalues are

λ1,2 =
[
±
√
−σε11
ρ0

]
, (6.17)

where σε11 = (λ+ 2µ). This means that we have

λ1,2 = ±
√
λ+ 2µ
ρ0

, (6.18)

the correct sound speeds in a linearly elastic material.

Eigenvectors

The eigenvectors for system (6.8) are

r1,2 =
(

1
±√σε11ρ0

)
. (6.19)

F-wave Decomposition

Now, if we want to compute the waves for the solution to our Riemann problem using an f-wave type
approach, we must solve the following system for β in order to get the coefficients for our waves

Rβ = fi(Qi)− fi−1(Qi−1), (6.20)
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where R is the matrix of eigenvectors (6.19) and fj(Qj) is the locally defined flux in the j-th grid
cell.

6.2 Two-dimensional form of the equations

ε11
t − ux = 0

ε22
t − vy = 0

ε12
t −

1
2

(uy + vx) = 0 (6.21)

ρ0ut − σ11
x − σ12

y = 0

ρ0vt − σ22
y − σ12

x = 0.

The Jacobian for the x-direction is the following:

f ′(q) = −


0 0 0 1/ρ0 0
0 0 0 0 0
0 0 0 0 1

2ρ0

σpε11 σpε22 0 0 0
0 0 σsε12 0 0

 . (6.22)

Here σp is the compressional stress and σs the shear stress. We have made use of the fact that the
derivative of σp with respect to the shear strain will be zero in either the Euler or elastic equations.
Similarly, the derivative of σs will be zero except in the case of the shear strain ε12 due to the form
of the stress-strain relationship in elasticity and fluids do not support shear stresses.

6.2.1 Eigenstructure

The eigenvalues for system (6.22) are

λ1,2 =

±
√
σpε11

ρ0

 ; λ3,4 = ±
√
σsε12

2ρ0
; λ5 = 0. (6.23)

The corresponding eigenvectors for system (6.22) are
1
0
0√
ρ0σ

p
ε11

0

 ,


1
0
0

−
√
ρ0σ

p
ε11

0

 ,


0
0
1
0

±√2ρ0σsε12



−σ

p

ε11

σp
ε22

1
0
0
0

 . (6.24)

The weights that we need to determine the wave strengths in the wave propagation algorithm
found by solving Rβ = f(Qr)− f(Ql) are found by solving

1 0 1 0 1

0 0
σp
ε11

σp
ε22

0 0

0 1 0 1 0
−λ1 0 0 0 −λ2

0 −√2σε12 0
√

2σε12 0




β1

β2

β3

β4

β5

 =


f1

f2

f3

f4

f5

 . (6.25)
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Solving system (6.25) for β gives

β1 =
(f1λ2 + f4)
(λ2 − λ1)

β2 =
(f1λ1 + f4)
(λ2 − λ1)

β3 = 0 (6.26)

β5 =
f5 + λ4f3

λ4 − λ5

β6 =
−f3λ5 − f5

λ4 − λ5
.

6.3 Three-dimensional equations

The full three-dimensional system of equations for the Isentropic Euler equations in Lagrangian
coordinates is

(ε11)t =
∂u

∂x

(ε22)t =
∂v

∂y

(ε33)t =
∂w

∂z

(ε12)t =
1
2
∂u

∂y
+
∂v

∂x

(ε23)t =
1
2
∂v

∂z
+
∂w

∂y
(6.27)

(ε13)t =
1
2
∂u

∂z
+
∂w

∂x

ρut =
∂σ12

∂y
+
∂σ11

∂x
+
∂σ13

∂z

ρvt =
1
r

∂σ22

∂y
+
∂σ12

∂x
+
∂σ23

∂z

ρwt =
1
r

∂σ23

∂y
+
∂σ33

∂z
+
∂σ13

∂x
.

The corresponding Jacobian for this system in the x-direction is

f ′(q) = −



0 0 0 0 0 0 1
ρ 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1

2ρ 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1

2ρ

σpε11 σpε22 σpε33 0 0 0 0 0 0
0 0 0 σsε12 0 0 0 0 0
0 0 0 0 0 σsε13 0 0 0


(6.28)

The Jacobians in the y- and z- directions are similar with the entries perturbed appropriately.



40

The eigenvalues for system (6.28) are

λ1,2 =

±
√
σpε11

ρ0

 ; λ3,4 = ±
√
σsε12

2ρ0
; λ5,6 = ±

√
σsε13

2ρ0
; λ7,8,9 = 0. (6.29)

The corresponding eigenvectors for system (6.28) are
1
0
0√
ρ0σ

p
ε11

0

 ,


1
0
0

−
√
ρ0σ

p
ε11

0

 ,


0
0
1
0

±√2ρ0σsε12

 ,


−σ

p

ε11

σp
ε22

1
0
0
0

 . (6.30)

6.4 Axisymmetric form of the Lagrangian Isentropic Equations

We use the axisymmetric form of these equations to verify that the shock wave generated by the
Euler equations as our initial condition, propagates with the same strength and speed as in the
Eulerian frame for the isentropic Euler equations.

The three-dimensional equations in cylindrical coordinates are

(εrr)t =
∂u

∂r

(εθθ)t =
u

r
+

1
r

∂v

∂θ

(εzz)t =
∂w

∂z

(εrz)t =
1
2
∂u

∂z
+
∂w

∂r

(εrθ)t =
1
2
∂v

∂r
+

1
r

∂u

∂θ
− v

r

(εθz)t =
1
2r
∂w

∂θ
+
∂v

∂z
(6.31)

ρut =
1
r

∂σrθ
∂θ

+
∂σrr
∂r

+
σrr − σθθ

r
+
∂σrz
∂z

ρvt =
1
r

∂σθθ
∂θ

+
∂σrθ
∂r

+
2σrθ
r

+
∂σzθ
∂z

ρwt =
1
r

∂σzθ
∂θ

+
∂σzz
∂z

+
∂σrz
∂r

+
σrz
r
.

If we assume that v = εθz = εrθ = 0 and there is no variation in the θ direction, then the system
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(6.31) simplifies to

(εrr)t =
∂u

∂r

(εθθ)t =
u

r

(εzz)t =
∂w

∂z

(εrz)t =
∂u

∂z
+
∂w

∂r
(6.32)

ρut =
∂σrr
∂r

+
σrr − σθθ

r
+
∂σrz
∂z

ρwt =
∂σzz
∂z

+
∂σrz
∂r

+
σrz
r
.

(6.33)

It is interesting to note here that the strain in the θθ direction is non-zero and in this case is called
the hoop strain. A uniform radial displacement is not a rigid body motion, as it would be in the
two-dimensional plane strain case, but instead produces a circumferential strain. This is because the
original circumference of the cylinder is 2πr, but when there is a strain in the radial direction the
circumference grows to 2π(r + ur), inducing a strain 2πur/2πr = ur/r.

The Jacobian for system (6.32) in the z-direction is

f ′(q) = −



0 0 0 1
ρ 0 0

0 0 0 0 0 0
0 0 0 0 1

2ρ 0
σrrεrr σrrεzz 0 0 0 0

0 0 σrzεrz 0 0 0
0 0 0 0 0 0

 , (6.34)

and has an eigen-structure that is equivalent to the 2D system, with the addition of a second zero-
speed eigenvalue. The corresponding eigenvector is

r6 =


0
0
1
0
0
0

 . (6.35)

We solve these equations with the same approach as the axisymmetric form of the Euler equations.
In this case, the equations for the source terms are

(εθθ)t =
u

r

ρut =
σrr − σθθ

r
(6.36)

ρwt =
σrz
r
.
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6.5 Preliminary Calculations

6.5.1 Comparison with the Euler Equations

Given the result in Figure 4.3, we are confident that the two systems of equations should agree for
the weak shocks present in ESWT. In order to verify this, we used an initial condition generated by
a calculation with the Euler equations for both the Lagrangian and Eulerian codes and compared
the pressure wave at F2. In Figure 6.2 we see that the two codes give good agreement, but the wave
from the Lagrangian calculation has been slightly attenuated.

Figure 6.2: Comparison of the pressure pulse at F2 obtained in the Euler calculation (red dashed
curve) and the Lagrangian calculation (blue curve). It is clear that the two sets of equations give
good agreement. The wave in the Lagrangian case is slightly attenuated, but this may be due to
error in initializing the calculation. In these calculations ∆x = 0.5mm.

6.5.2 Initial Condition

As was discussed in Chapter 2, the initial condition for ESWT and ESWL has been the focus of some
study. Prior work used the calculations performed by Hamilton [39, 3, 14] or plane wave initial data
[72, 16] to simulate the ESWT wave at F2. These approaches are insufficient when investigating
general 3D geometries because we are interested in both the focusing of the wave and the shear
waves that may be generated in the solid.

We have modeled the initial wave at F1 as an isothermal expanding spherical wave. This generates
larger negative pressures than what are typically measured at F1, since the typical pressure wave
form measured 10mm from F1 is a decaying exponential with peak over pressure of 40 MPa [16, 14].
It is challenging to analytically calculate the correct theoretical wave form from an explosion in
water generated by a spark plug. Theoretical results exist for strong shocks generated by explosions
[69, 73, 79, 78], but this assumes an explosive source like TNT. In using an initial condition like a
point-source explosion, a rarefaction region is generated as the wave expands, so the pressure wave
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Figure 6.3: Comparison of pressure gauge measurements for different initial conditions in the La-
grangian form of the equations. In a) the blue curve is the spherically expanding pressure wave with
both positive and negative pressure components, whereas the red curve has only positive pressure at
F1 and there is a significantly smaller negative tail. In b) a set of initial conditions generated with
the same all positive initial condition at different resolutions.

will have a negative tail. Something else is occurring with the shock that is generated by the spark
plug source, but accurate modeling of this initial condition is beyond the scope of this work.

In order to generate an initial condition that more closely matches the measured initial pulse at
F1, we simply do not allow the pressure to be negative in the region near F1. The results of this type
of calculation can be seen in Figure 6.3. There is some precendent for this as T. Christopher [14] used
this approach in order to truncate the overly negative tails he obtained in his model of the Dornier
HM3 lithotripter. A rarefaction wave is generated when the direct wave hits the reflector, the largest
tensile component is generated at the corner where the reflector is truncated, but reflection along the
entire ellipsoidal bowl contributes to the tensile component of the pressure wave in our calculations.
Results from the 2D axisymmetric calculation are used as initial data for the three-dimensional
calculations. To do this we simply rotate the initial data about the z-axis, which is actually the
x-axis in the three-dimensional calculations.

As mentioned in Chapter 2, different energy levels are used in the various ESWT treatments, as
these lead to different peak over pressures at F2. The different energy levels correspond to different
initial point source volumes and pressures. A list of the initial explosive pulse radius (centered at F1)
and subsequent peak over pressure at F2 can be found in Table 6.1. The initial data used for each
of our results is available in the ChomboClaw repository [29]. In Figure 6.5.2, we show an example
of a general high pressure initial condition, in this case the figures come from the initialization of a
2D Lagrangian calculation.
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Table 6.1: Initial Condition for Lagrangian Equations, δh = 0.5mm

Initial Radius (mm) Initial Strain (εrr = εzz) Pressure (MPa) at F2
2.0 -0.05 1.0
2.0 -0.25 2.0
4.0 -0.15 15.0
4.0 -0.25 33.0

a) b)

Figure 6.4: Snapshot of a general initial condition for our calculations. In a) an isothermal spherical
pressure pulse is initialized at F1 for an axisymmetric calculation. In b) a slice of the initial data is
plotted to show more clearly how it is being defined. The velocities are initialized to zero.
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Chapter 7

COMPUTATIONAL APPROACH

In this chapter I will describe in greater detail the numerical methods used to solve the hyperbolic
systems of PDEs used in modeling ESWT. This chapter also contains an overview of the CLAWPACK
software package where these methods are implemented, as well as a discussion of adaptive mesh
refinement and computational issues encountered when solving the three-dimensional system.

7.1 High Resolution Finite Volume Methods

The acoustics equations, as well as the equations for linear elasticity and compressible flow are
hyperbolic systems that can be written in the form

qt −A(x, y, z)qx +B(x, y, z)qy + C(x, y, z)qz = 0. (7.1)

This system of equations is written in conservation form where A,B and C are the flux-functions in
the x, y and z directions. This equation essentially states that within a given volume, the change in
the state variables in time is due to fluxes at the boundary of the volume.

Recall that in our finite volume method, the computational domain is broken up into discrete
grid cells, or volumes, and the state variables q are averaged within each grid cell to obtain piecewise
constant data, with variation present only at cell interfaces. If we denote Qni to the the average of
grid cell i at time n+ 1, then

Qn+1
i = Qni −

∆t
∆x

(Fi+1/2 − Fi−1/2) (7.2)

where Fi−1/2 is the contribution of the flux at the i− 1/2 interface and Fi+1/2 is the contribution of
the flux at the i + 1/2 interface. So in order to define our numerical method, we need to calculate
the fluxes at the interfaces of our grid cells. We calculate the fluxes by solving Riemann problems
at the cell interfaces and write the solution of these Riemann problems in terms of left-going and
right-going waves.

In the case of 1D acoustics we obtained the following waves W

W1
i−1/2 = α1

i−1/2

[ −ρi−1ci−1

1

]
= α1

i−1/2r
1
i−1, (7.3)

W2
i−1/2 = α2

i−1/2

[
ρici

1

]
= α2

i−1/2r
2
i , (7.4)

with strengths α determined by[
pi − pi−1

ui − ui−1

]
=
[ −ρi−1ci−1 ρici

1 1

]
=

[
α1
i−1/2

α2
i−1/2

]
. (7.5)

To obtain the new value of the state variables in grid cell i at time t = n + 1, we must add in
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the appropriate contribution to Qn+1
i ,

Qn+1
i = Qni +

∆t
∆x

(λ2
i−1/2W2

i−1/2 + λ1
i+1/2W1

i+1/2). (7.6)

In general, there will be more than one left-going and one right-going wave at each interface. For
a system of m equations will consist of up to m waves each carrying part of the jump in q. If we
assume there are m waves emanating to the left and right of a given interface, then we can define
the left-going fluctuation as

A−∆qi−1/2 =
m∑
p=1

(λp)−Wp
i−1/2. (7.7)

Similarly, the right-going fluctuation would be written as

A+∆qi−1/2 =
m∑
p=1

(λp)+Wp
i−1/2. (7.8)

With this notation, it is clear that updating Qi by adding in the appropriate waves gives the
wave-propagation form of Godunov’s method,

Qn+1
i = Qni −

∆t
∆x

[A+∆Qi−1/2 +A−∆Qi+1/2]. (7.9)

Godunov’s method is only first-order accurate. We use second-order correction terms to achieve
higher order accuracy.

The introduction of second-order correction terms can be motivated by the Lax-Wendroff method
applied to the case of constant-coefficient acoustics. The method can be written as a correction to
the first-order upwind method in terms of the following correction fluxes

F̃i−1/2 =
1
2

2∑
p=1

∣∣∣λpi−1/2

∣∣∣ (1− ∆t
∆x

∣∣∣λpi−1/2

∣∣∣)Wp
i−1/2. (7.10)

The second-order method takes the form..

qn+1
i = qni −

∆t
∆x

[λ2
i−1/2W2

i−1/2 + λ1
i+1/2W1

i+1/2]− ∆t
∆x

[F̃i+1/2 − F̃i−1/2]. (7.11)

This is the update used in the CLAWPACK software [27]. In the special case where Ai = A is
constant, equation (7.11) reduces to the standard Lax-Wendroff method. Flux limiting is used to
appropriately cut off the second order correction terms in order to avoid spurious oscillations.

7.1.1 F-wave Formulation

The definition of the fluctuations A±∆Qi+1/2 is based on a decomposition of the jump in q between
the let and right state in the Riemann problem of the form (7.2). An alternative approach is to
decompose the jump in f into waves Zp, called f-waves,

f(qr)− f(ql) =
m∑
p=1

Zp. (7.12)
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Assuming these waves Zp are moving at speeds sp, we define the fluctuations directly from Zp as

A−∆Qi+1/2

m∑
p:sp

i+1/2< 0

Zpi+1/2 and A+∆Qi+1/2

m∑
p:sp

i+1/2> 0

Zpi+1/2, (7.13)

where the subscript (i + 1/2) refers to quantities resulting from the Riemann problem at the grid
interface xi+1/2. Moreover, in this framework, the high resolution correction fluxes are written as

F̃i+1/2 =
1
2

m∑
p:sp

i+1/2< 0

sgn
(
spi+1/2

)(
1− ∆t

∆x
|spi+1/2|

)
Z̃pi+1/2. (7.14)

If we have a set of m waves Wp and speeds sp satisfying the conservation condition (3.22), then we
can formulate the corresponding scheme in terms of f-waves by setting

Zp = spWp, 1 ≤ p ≤ m. (7.15)

On the other hand, that if we start with a decomposition of the jump in f(q) as f-waves, then the
waves W can only be recovered if the speeds are not zero.

An advantage of the f-wave approach is that by using (7.12) to define Zp guarantees that the
method will be conservative when the fluctuations (7.13) are used. This is true for any linearization
Ā(ql, qr) of the Jacobian matrix A(q) = f ′(q) of the system, such as the simple arithmetic average
Ā(ql, qr) = A( 1

2 (ql + qr)). Whereas condition (3.22), may not be satisfied if the wave splitting is
based on (7.2), unless Ā(ql, qr) is chosen to be a sepcial average such as the Roe average.The f-wave
formulation is also advantageous in the context of spatially-varying flux funtions and problems, like
those discussed in Chapter 6.

7.2 Multi-dimensional Numerical Method

Consider the numerical approximation of a two-dimensional hyperbolic system of conservation laws
of the form

∂q

∂t
+
∂f(q)
∂x

+
∂g(y)
∂y

= 0. (7.16)

Let us assume a uniform Cartesian grid with space intervals ∆x,∆y in the x and y directions,
respectively. Then set xi = i∆x, yj = j∆y with i, j ∈ Z. We will denote with Qni,j the approximate
average of the solution q(x, y, t) at time tn over the cell Ci,j = (xi−1/2, xi+1/2) × (yj−1/2, yj+1/2),
x±1/2 = (i± 1/2)∆x, yj±1/2 = (j ± 1/2)∆y

Qni,j ≈
1

∆x∆y

∫ ∫
C
q(x, y, tn)dxdy. (7.17)

7.2.1 Dimensional Splitting

The simplest way to extend one-dimensional numerical methods to higher space dimensions is to
use dimensional splitting. A fractional-step method is applied to split the multidimensional problem
into a sequence of one-dimensional problems. To solve the two dimensional system (7.16), we might
alternate between solving the one-dimensional problem in the x-direction ∂q

∂t + ∂f(q)
∂x = 0 and the

one-dimensional problem in the y-direction ∂q
∂t + ∂g(q)

∂y = 0. Given the initial values Qni,j at time tn,
we solve the first system along each row of cells Ci,j with j fixed in order to update Q∗i,j . Then,
using the values Q∗i,j as initial data, we solve the second system along each column of cells Ci,j with
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i fixed, which gives Qn+1
i,j at time tn+1.

7.2.2 Flux-Differencing Methods

Consider the integral form of the system (7.16) given by

d

dt

∫ ∫
Ci,j

q(x, y, t)dxdy =
∫ yj+1/2

yj−1/2

f(q(xi+1/2, y, t))dy −
∫ yj+1/2

yj−1/2

f(q(xi−1/2, y, t))dy (7.18)

+
∫ xi+1/2

xi−1/2

g(q(x, yj+1/2, t))dx−
∫ xi+1/2

xi−1/2

g(q(x, yj−1/2, t))dx. (7.19)

If we integrate this expression from tn to tn+1, we are led to a fully discrete flux-differencing method
of the form

Qn+1
i,j = Qni,j −

∆t
∆x

[
F (Qni,j , Q

n
i+1,j)− F (Qni−1,j , Q

n
i,j)
]− ∆t

∆y
[
G(Qni,j , Q

n
i,j+1)−G(Qni,j−1, Q

n
i,j)
]
,

(7.20)
where the numerical fluxes F (Qni,j , Q

n
i+1,j) and G(Qni,j , Q

n
i,j+1) represent an approximation of the

physical fluxes through the edges given by x = xi+1/2, y ∈ (yj−1/2, yj+1/2) and x ∈ (xi−1/2, xi+1/2),
y = yj+1/2, respectively, over the time interval [tn, tn+1)

F (Qni,j , Q
n
i+1,j) ≈

1
∆t∆y

∫ tn+1

tn

∫ yj+1/2

yj−1/2

f(q(xi+1/2, y, t))dydt, (7.21)

G(Qni,j , Q
n
i,j+1) ≈ 1

∆t∆x

∫ tn+1

tn

∫ xi+1/2

xi−1/2

f(q(x, yj+1/2, t))dxdt. (7.22)

To define the numerical fluxes in (7.22), we can solve one-dimensional Riemann problems normal
to each cell interface. If we use the approximate Riemann solvers described in Chapter 3, then we
get

F (Qi,j , Qi+1,j) = f(Qi,j) +
m∑
p=1

(
sx,pi+1/2,j

)−
Wx,p
i+1/2,j (7.23)

= f(Qi+1,j)−
m∑
p=1

(
sx,pi+1/2,j

)−
Wx,p
i+1/2,j , (7.24)

where the set of m waves Wx,p
i+1/2,j and speeds sx,pi+1/2,j is obtained by solving a Riemann problem

in the x-direction for the system ∂q/∂t+ ∂f(q)/∂x = 0 with data Qi,j , Qi+1,j for the left and right
states. If we solve the similar problem in the y-direction, we get the following numerical fluxes

G(Qi,j , Qi,j+1) = g(Qi,j) +
m∑
p=1

(
sy,pi,j+1/2

)−
Wy,p
i,j=1/2 (7.25)

= g(Qi,j+1)−
m∑
p=1

(
sy,pi,j+1/2

)−
Wy,p
i,j+1/2. (7.26)
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We can write the algorithm in terms of fluctuations by setting

A±∆Qi+1/2,j =
m∑
p=1

(
sx,pi+1/2,j

)±
Wx,p
i+1/2,j and B±∆Qi,j+1/2 =

m∑
p=1

(
sy,pi,j+1/2

)±
Wy,p
i,j+1/2. (7.27)

We then obtain the following first-order upwind scheme

Qn+1
i,j = Qni,j −

∆t
∆x

(A+∆Qi−1/2,j + B−∆Qi+1/2,j

)− ∆t
∆y

(B+∆Qi,j−1/2 + B−∆Qi,j+1/2

)
, (7.28)

which is typically stable only for Courant number up to one half. To improve stability we include
second-order correction terms and transverse fluctuations.

7.2.3 Multidimensional Wave Propagation Algorithms

The general form of the wave propagation algorithm for solving two-dimensional hyperbolic systems
is

Qn+1
i,j = Qni,j −

∆t
∆x

(A+∆Qi−1/2,j +A−∆Qi+1/2,j

)
(7.29)

− ∆t
∆y

(B+∆Qi,j−1/2 + B−∆Qi,j+1/2

)
(7.30)

− ∆t
∆x

(
F̃i+1/2,j − F̃i−1/2,j

)
− ∆t

∆x

(
G̃i,j−1/2 − G̃i,j+1/2

)
, (7.31)

where the quantities A±∆Q and B±∆Q represent fluctuations arising from Riemann problems in
the x and y directions, respectively. The F̃ and G̃ fluxes represent the second order corrections.

A method of the form , that is (7.31) with F̃ = G̃ = 0, is based on propagating waves normal
to each interface. In reality, the waves will propagate in a multidimensional manner and affect
cell averages in cells above and below those that are directly adjacent to the interface. In order to
include these transverse effects, each fluctuation A∗∆Qi+1/2,j (similarly B∗∆Qi+1/2,j) for ∗ = + and
− is split into two transverse fluctuations. The so-called down-going waves are B−A∗∆Qi+1/2,j and
similarly the up-going waves are B+A∗∆Qi+1/2,j . This transverse decomposition of the fluctuations
can be viewed as solving a second Riemann problem in the transverse direction, even though it is
not based on left and right states as we normally think of for a Riemann solver. Let us consider, for
example, that the waves and speeds resulting from solving Riemann problems in the normal direction
are based on the eigenstructure of some linearized matrices Ã and B̃ of f ′(q) and g′(q), respectively.
Then we compute the coefficients βp of the projection of A+∆Qi+1/2,j on the eigenvectors rpy of B̃,
so that A+∆Qi+1/2,j =

∑m
p=1 β

prpy , and we get

B±A+∆Qi+1/2,j =
m∑
p=1

(λpy)±βprpy , (7.32)

where λpy are the eigenvalues of B̃.

The transverse fluctuations are used to update the four neighboring G̃ fluxes (and similarly F̃
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fluxes), according to

G̃i+1,j+1/2 = G̃i+1,j+1/2 − ∆t
2∆x

B+A+∆Qi+1/2,j ,

G̃i+1,j−1/2 = G̃i+1,j−1/2 − ∆t
2∆x

B−A+∆Qi+1/2,j ,

G̃i,j+1/2 = G̃i,j+1/2 − ∆t
2∆x

B+A−∆Qi+1/2,j , (7.33)

G̃i,j−1/2 = G̃i,j−1/2 − ∆t
2∆x

B−A−∆Qi+1/2,j .

The transverse correction terms also have the effect of improving the stability limit, allowing for a
Courant number of 1, relative to the maximum wave speed in any direction.

Once the transverse corrections described above have been implemented, it is possible to obtain
second-order accuracy by making one-dimensional flux corrections analogous to (7.11). Here we use
the waves and speeds computed in solving the Riemann problem normal to each interface. The
corrections have the form

F̃i+1/2,j =
1
2

m∑
p=1

|sx,pi+1/2,j |
(

1− ∆t
∆x
|sx,pi+1/2,j |

)
W̃x,p
i+1/2,j , (7.34)

where W̃x,p
i+1/2,j is a limited version of Wx,p

i+1/2,j obtained by comparing Wx,p
i+1/2,j to Wx,p

i−1/2,j or
Wx,p
i+3/2,j depending on the sign of s.
The second-order correction terms can also be propagated in in the transverse direction, thus

improving the stability properties and reducing spurious oscillations in many problems [51]. This is
accomplished by applying the routine that performs the transverse splitting to

A±∆Qi+1/2,j ±
m∑
p=1

|sx,pi+1/2,j |
(

1− ∆t
∆x
|sx,pi+1/2,j |

)
W̃x,p
i+1/2,j , (7.35)

instead of to A±∆Qi+1/2,j .
In the interest of brevity, we only consider the extension of the above methods to two-dimensional

problems. The three-dimensional implementation is analogous to what is done in 2D with the
inclusion of additional doubly-transverse solvers. Discussion of the implementation of the full three-
dimensional system can be found in [51].

7.3 Adaptive mesh refinement

Adaptive mesh refinement (AMR) is a process in a numerical computation where the domain of
computational interest is discretized in such a way that the finest grid is used near features that
require higher resolution. The grid may be statically defined at the beginning of a calculation or it can
be defined dynamically during the course of the calculation. In using AMR, we save computational
time by not using a fine grid over the entire computational domain and the method requires less
storage. As we discuss later, the computational time savings are crucial for effectively modeling
ESWT.

The algorithm used in CHOMBO and AMRCLAW are based on the local adaptive mesh refine-
ment strategy that was first introduced by Berger and Oliger for computing time-dependent solutions
to hyperbolic partial differential equations in multiple space dimensions [5]. In this approach, we
start with the entire computational domain covered with a coarse mesh of Cartesian grid cells. Re-
gions requiring additional resolution are identified or tagged by computing some local measure of
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the original error. The tagged cells are then covered by a disjoint union of rectangles in the domain,
which are then refined by some integer factor. Once the refinement step is completed, an integrator
is used to update the solution on the composite grid. Then a correction procedure is used to fix
up the solution at the coarse-fine grid interfaces. Eventually, the refinement at a grid cell may be
greater than what is required for the calculation, and at this time the fine grid may be removed. An
example of the use of AMR for refinement in a small region of the domain can be seen in Figure 7.1
where the finest grid is used only in refinement about the wave as it propagates.

Figure 7.1: Adaptive mesh refinement allows the use of a fine grid in only a small part of the domain,
in this case the region of interest is where the shock wave is propagating.

The main disadvantage to using block-structured AMR is its relative difficulty to implement when
compared to algorithms defined on a single grid. AMRCLAW is a package developed by Berger and
LeVeque [6] that provides the functionality of adaptive mesh refinement with the solvers for the wave
propagation algorithm that are available in CLAWPACK [27]. This enables users to easily use AMR
for problems they are solving with CLAWPACK. One of the disadvantages of this software is the
lack of data structures available in Fortran 77 and lack of dynamic memory allocation that make it
less useful for large, three-dimensional problems. Specifically, those problems that exceed 2GB in
size.

An alternative software package that we have used for the three-dimensional problems in ESWT
is Chombo, a set of C++ classes designed to support block-structured AMR applications. Chombo
is based in part of the BoxLib toolkit [22]. In order to use this code base with the wave propagation
algorithm implemented in CLAWPACK, Donna Calhoun wrote ChomboClaw[10]. Her work enabled
us to use the same Riemann solvers and other fortran routines within the C++, ChFortran framework
of Chombo. This enabled us to not only take advantage of AMR routines available in Chombo, but
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Figure 7.2: Effect of grid size on shock wave profile

also the routines for parallelization. Chombo contains many libraries, but those used in ChomboClaw
[10] are the AMRTimeDependent and BoxTools libraries.

Something else we should note here is the use of HDF5 for I/O in Chombo. HDF5 is a portable,
self-describing, binary format that has been developed for both serial and parallel applications [37].
Binary I/O is essential for problems generating large data sets that will typically be transferred
to different machines for visualization and processing. The HDF5 output from Chombo can be
visualized using VisIt, a freely available visualization package developed at LLNL [49].

7.3.1 AMR for ESWT

The focal region of most shock wave therapy devices is on the order of 10mm, however, the size of the
lithotripter device and the propagation path of the shock wave is on the order of 100mm. The pressure
jump is on the order of 0.1mm and requires a well-refined grid in order to maintain the correct
strength and speed. These disparate spatial scales necessitate the use of adaptive mesh refinement.
This enables us to use a coarse grid for the majority of the calculation, saving computational cost.

The pressure waveform found in ESWT contains a very thin region of high pressure that can
not be resolved without a highly refined mesh. In Figure 7.3.1 we investigated the effect of grid
refinement on the shock wave profile and found that with grid resolution greater than 0.25mm, the
wave form at F2 was no longer a shock.

7.3.2 Performance

We have done some preliminary timing tests on an ESWT problem where a shock wave hits a
cylinder directly. Figure 7.3 shows the number of minutes required for the job to complete as the
number of processors are increased. It’s clear from the graph that there is significant improvement
from 30 to 64 processors. Near doubling of the processors led to job completion in 39% of the time
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Figure 7.3: Timing data for a shock wave hitting a cylinder.

or ≈ 2.5 times as fast. This greater than 2 speed up is possibly due to the fact that the number of
processors was more than doubled and the number of processors used in the smaller calculation was
not a multiple of 4, which is the number of processors available per node. If we then compare the
improvement from 30 to 128 processors, we see that the job was completed ≈ 3.9 times faster than
with 30 processors. Lastly, if we consider the improvement from 64 to 128 processors, we see that
the job was completed using 128 processors ≈ 1.5 times faster. The general trend seems to be that
the time for job completion is halved as the number of processors is doubled. It should be noted
here that we would have performed additional tests, but we could not request more processors on
the Lonestar system.

7.3.3 Stability issues

There are also some numerical issues with the code. In some cases instability develops that seems
to be related to the conservation fix at the coarse-fine grid boundaries in adaptive mesh refinement.
It may be the case that some of the material properties are being set improperly leading to the
instability. We should emphasize here that this is an extremely rare occurrence and is not related
to the equations used for our model. This will be addressed in the next version of the code.
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Chapter 8

PHOTOELASTICITY AND BIREFRINGENCE

Photoelasticity is an experimental technique for stress and strain analysis. The method is based
on an optical property of some materials called birefringence. The birefringence in a stressed photoe-
lastic object is dictated by the state of stress at each point in the specimen. This technique has been
used by our collaborators at the Applied Physics Lab and others to investigate regions of maximal
stress in ESWL and ESWT experiments [16, 83]. We use these experiments to validate our model.
In this chapter we provide some background on the basic principles of photoelasticity, the governing
equations and the numerical methods we use to solve these equations. In the results section we show
how these methods are applied to our computational results of the strain field.

8.1 Background

The photoelastic effect can be adequately described by the electromagnetic theory of light [66, 1].
According to this theory, light is a transverse electromagnetic wave, where the electric and magnetic
fields are perpendicular to each other and to the direction of propagation. The magnitude of the
light (electric) vector, E, can be expressed in terms of a one-dimensional wave-equation

E = a cos(2π/λ)ct = a cos 2πft = a cosωt. (8.1)

Where a is the amplitude, λ is the wavelength, c is the speed of light, t is the time, f is the frequency
of the light, and ω = 2πf is the circular frequency of the light. For convenience, the amplitude and
phase of a light wave are represented using the real part of

E = ae(i(2π/λ)ct = aeiwt. (8.2)

Superposition of two or more waves having the same frequency but different amplitude and phase is
easily performed using the exponential representation.

Most light sources consist of a large number of randomly oriented atomic or molecular emitters.
The light rays emitted from such a source will have no preferred orientation and these rays make up
an ordinary light beam. If a light beam is made up of rays with their electric fields restricted in a
single plane, the light beam is said to be plane polarized or linearly polarized. The direction of the
light vector is used to describe the polarization. Polarized light can be produced from an ordinary
light source by reflection, scattering, fine grids and passing through a birefringent material.

In a vacuum, light propagates with a velocity, c, that is faster than its velocity in any other
medium. The ratio of the velocity of light in free space to the velocity in a medium, n, is called
the index of refraction. A wave propagating in a material will develop a linear optical path shift, δ,
called retardation, with respect to a similar wave traveling in free space. The absolute retardation
is given by

δ = d(n− 1), (8.3)

where d is the thickness of the material along the path of light propagation. The retardation of one
wave with respect to another is called the relative retardation.
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8.1.1 Linear Polariscope

In photoelasticity, an optical instrument called a polariscope, is used to study the stress effect of
models made of birefringent materials. In experimental work, two types of polariscopes are commonly
used, the linear or plane polariscope and the circular polariscope. We will first focus on the linear
polariscope.

Begin with light of wavelength λ, traveling in the z direction with velocity v, and polarized in
the yz-plane. It’s electric vector will be

E = A cos
(

2π
λ

(z − vt)
)

j. (8.4)

Suppose this ray impinges normally on a birefringent plate of thickness d. Since birefringent materials
resolve a light vector into two orthogonal components, the wave will be split into two components
that propagate through the plate at different velocities, v1 and v2. Figure 8.1 shows the relationships
between the different angles. The two scalar component waves are

E1 = E cos θ = a cos θeiωt

E2 = E sin θ = a sin θeiωt, (8.5)

where θ is the angle between the light vector E and the axis of polarization.

As the two components leave the birefringent plate, they have been retarded by different amounts.
The retardation can be expressed as

δ1 = d(n1 − 1),
δ2 = d(n2 − 1), (8.6)

where n1 and n2 are the indices of refraction for waves vibrating parallel to the principal axes. The
relative retardation is then computed as

δ = δ2 − δ1 = d(n2 − n1). (8.7)

The relative phase shift ∆ between the two components as they emerge from the plate is given
by

∆ = ∆2 −∆1 = (2π/λ)d(n2 − n1). (8.8)

Since only the relative phase shift ∆ affects the interference of the light components, it is common
practice to set ∆1 = 0 and ∆2 = ∆ [1]. Therefore the two components of the light vector are
described by

E′1 = a cos θeiωt,

E′2 = a sin θei(ωt−∆). (8.9)

Many noncrystalline transparent materials are optically isotropic under normal conditions, but
become birefringent when stressed [66]. This effect persists while the loads are present, but disappears
almost instantaneously when the loads are removed [66]. In a three-dimensional stress system, there
are three principal stresses and three principal stress directions at any point. Relations between
stresses and the indices of refraction at a point in a birefringent material were formulated by Maxwell



56

in 1852 as the stress-optic law [1, 66],

n1 − n0 = C1σ1 + C2(σ2 + σ3),
n2 − n0 = C1σ2 + C2(σ1 + σ3), (8.10)
n3 − n0 = C1σ3 + C2(σ1 + σ2).

Here n0 is the index of refraction of the material in its unstressed state, n1, n2 and n3 are the
principal indices of refraction which coincide with the principal stress directions, σ1, σ2 and σ3

are the principal stresses at the point and C1 and C2 are material constants known as stress-optic
coefficients.

Incident light will propagate through a two-dimensional plane-stressed birefringent body and
become polarized in the principal planes. The light will then emerge with a stress-induced relative
retardation that can be determined by the stress-optic law to be

δ = dC(σ1 − σ2), (8.11)

or
∆ = 2πdC(σ1 − σ2)/λ. (8.12)

This is more commonly written as
σ1 − σ2 = Nfσ/d, (8.13)

where N = δ/λ = ∆/2π is the fringe order and fσ = λ/C is the material fringe value. This is
typically used in photoelastic stress analysis since the principal stress difference can be calculated if
the material fringe value of the specimen can be measured at each point.

In three-dimensional photoelasticity, the stress-optic law is typically expressed in terms of the
secondary principal stresses. The secondary principal stresses lie in the plane whose normal vector
is coincident with the path of the light beam and not in the direction of the principal stress σ1, σ2

or σ3. The equations above can be rewritten in terms of the secondary principal stresses σ′1 and σ′2
as

∆ = 2πdC(σ′1 − σ′2)/λ,
σ′1 − σ′2 = Nfσ/d. (8.14)

Since it is relatively simple to understand the form of the light emerging from a linear polarizer,
we can use a polarizer to measures the relative retardation and the principal-stress directions that
occur when polarized light passes through a stressed photoelastic model. When a light wave passes
through the plane polarizer, the plane-polarized light wave emerging from the polarizer is

E = a cos θeiωt. (8.15)

This plane-polarized light then enters the stressed model and is resolved into two components,
E1 and E2, with vibrations parallel to the principal stress directions, σ1 and σ2, at the point it
passes through. The two components of the wave will propagate through the material with different
velocities and emerge with a relative phase shift between them described by (8.12). The phase
difference cannot be observed directly because the eye, cameras, and other sensing devices are not
sensitive to phase of the light. So a portion of the components E1 and E2 are brought together in a
mixing device where they interfere with one another. The phase difference is thereby converted to
an intensity difference, which can be detected and measured.

To accomplish this, a second polarizer (analyzer) is placed in the light path with its transmit-
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a) b)

c)

Figure 8.1: Different components of a circular polarizer, redrawn to mimic figures in [66]. See also
[82].

ting axis at inclination θ from the original axis of polarization. This polarizer will transmit only
components that are parallel to its axis. So the light emerging from the analyzer is given by

Ea = E′2 cos(θ)− E′1 sin(θ) = ia sin(2θ) sin(∆/2)ei(ωt−∆/2). (8.16)

The intensity of light is equal to the product of the light vector and its conjugate, the intensity of
the light emerging from the analyzer is

I = EaE
∗
a = a2 sin2(2θ) sin2(∆/2) = Im sin2(2θ) sin2(∆/2), (8.17)

where Im is the maximum intensity of the light emerging from the analyzer. In this case, the un-
stressed background will appear dark and this configuration is referred to as a dark field polariscope.

If the relative angle between the polarizer and analyzer is 90 degrees, the intensity is

I = Im
(
1− sin2(2θ) sin2(∆/2)

)
. (8.18)

This result describes a simple harmonic wave of wavelength λ and with amplitude dependent on
the relative retardation as well as inclination of the principal stress axes. The irradiance (amplitude
squared) of the emergent light is zero if either

1. φ = mπ (i.e., if the polarizers are aligned with the principal axes of refractive index or stress)
or

2. [(n1 − n2)]/(λn0)]d = 0, 1, 2, ... (i.e., if the relative retardation is an integer multiple of the
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wavelength).

The equations show that two waves of radiation can combine to produce zero light. This interfer-
ence phenomenon is something we can easily observe with our eyes or using a camera. Interference
can occur only when waves of the same wavelength and the same polarization are able to interfere
with one another.

8.1.2 Isoclinic and Isochromatic Fringes

Isoclinic fringes are a loci of points of constant inclination of the principal axes of refraction. When
the birefringence of a material is produced by stress, the isoclinics indicate points at which the
principal stress axes have the same inclination as the polarizer and analyzer. Isochromatic fringes
are points where relative retardation is an integral multiple of the wavelength of the radiation. Using
the equations above, we can relate the isochromatics to the magnitude of the stress. Recall that for
the linear case we have

R = Cσ(σ1 − σ2)d = (
n1 − n2

n0
)d (8.19)

where σ1 and σ2 are the principal stresses, d is the thickness of the material and ni are the indices
of refraction. Along an isochromatic, R = mλ, so along an isochromatic line

Cσ(σ1 − σ2) =
mλ

d
. (8.20)

Thus, isochromatics are lines of constant principal stress difference or lines of constant maximum
shear stress. To see this we write

σ1 − σ2 = 2τmax =
mλ

dCσ
. (8.21)

This is the information that is typically used when inferring the values of the stress from a fringe
pattern obtained in an experiment, or the inverse of the problem we are interested in solving.

To see the difference in the two cases, consider the calculated results in Figure 8.2. The output
from a linear analyzer, as shown in Figure 8.2 a) will contain both the isochromatic and isoclinic
fringes, so it is more of a challenge to invert the image and obtain the stresses in the object. Whereas,
the output from a circular analyzer, Figure 8.2 b), allows for a clearer analysis. The results from
these calculations demonstrate that we are able to handle both cases with our numerical method.

8.2 Equations for General Photoelasticity

This section provides the details of how to derive the equations for photoelasticity that we use
starting with Maxwell’s equations. We also show the derivation of the stress-optic relations and
provide details on when this analysis is valid. This distinction is important when considering the
experiments in ESWT where simple application of the stress-optic law is invalid.

Following Aben [1], the derivation of general equations for the the polarization vector starts with
Maxwell’s equations

∇×H = −1
c

∂D

∂t
(8.22)

∇× E = −1
c

∂H

∂t
(8.23)

where H is the magnetic vector, E is the electric vector and D is the electric induction vector. In
the case of a plane monochromatic wave with frequency ω the light field can be expressed in terms
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a) b)

Figure 8.2: Comparison of fringe output for different polarizer setups calculated using the analytic
expressions for the stress field in a disc undergoing diametral compression. a) The output from
a linear analyzer will contain both the isochromatic and isoclinic fringes, which leads to greater
interference; b) The output from the circular analyzer contains only the isochromatics and is thus
more useful for obtaining information about principal stresses.

of these vectors and complex exponentials (e.g. E = E′eiωt). Assuming solutions of this form and
inserting them into Maxwell’s equations, we get

∇×∇× E′ =
ω2

c2
D′. (8.24)

Then for an orthogonal coordinate system (omitting the primes), we get

d2E1

dz2
+
ω2

c2
D1 = 0 (8.25)

d2E2

dz2
+
ω2

c2
D2 = 0 (8.26)

where Ei and Di are the components of the electric vector and electric induction vector along the xith
coordinate vector in the system. Equations (8.5) describe the propagation of plane monochromatic
electromagnetic waves in a nonhomogeneous dielectric medium in general [1].

The dielectric tensor relates the electric vector and electric induction in the following way

Di =
2∑
j=1

εijEj , i = 1, 2. (8.27)

Using this in equations 1 and 2 above we get

−d
2E1

dz2
=
ω2

c2
(ε11E1 + ε12E2) (8.28)

−d
2E2

dz2
=
ω2

c2
(ε21E1 + ε22E2). (8.29)
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It is sometimes advantageous to write the equations above in terms of the secondary principal
directions. This is done by considering relations that rely on geometric relationships derived from
the intersection of the x1 − x2 plane and the ellipsoid defined by the dielectric tensor (xiεijxj = 1).
This intersection is an ellipse with principal axes that are used to define the secondary principal
values of the dielectric tensor in the x1−x2 plane and are denoted ε1 and ε2. The directions of these
axes form an angle φ with the x1 and x2 axes. If rotation of the secondary axes occurs then the
angle φ is a function of z and this is relevant when considering different properties of the medium
that simplify the equations.

In the x1 − x2 plane, the following relationships hold:

ε11 =
ε1 + ε2

2
+
ε1 − ε2

2
cos(2φ) (8.30)

ε22 =
ε1 + ε2

2
+
ε1 − ε2

2
cos(2φ) (8.31)

ε12 = ε21 =
ε1 − ε2

2
sin(2φ), (8.32)

and the components of the electric vector along secondary principal directions Esi are related to the
components Ei through the following

E1 = Es1 cosφ− Es2 sinφ (8.33)
E2 = Es1 sinφ+ Es2 cosφ. (8.34)

By introducing these relationships into the equations 3 and 4 we arrive at the following:

d2Es1
dz2

+

[
ω2

c2
ε1 −

(
dφ

dz

)2
]
Es1 − 2

dφ

dz

dEs2
dz
− d2φ

dz2
Es2 = 0

d2Es2
dz2

+

[
ω2

c2
ε2 −

(
dφ

dz

)2
]
Es2 − 2

dφ

dz

dEs1
dz
− d2φ

dz2
Es1 = 0. (8.35)

These equations involve the secondary principal directions and are equivalent to (??).
In the case of photoelasticity, the low optical anisotropy and rotation of secondary principal

directions makes the geometrical optics approximation invalid for a number of cases. The condition
for determining the applicability of this approximation can be written as [1]

dφ

dz

λ

2π∆n
� 1, (8.36)

where λ is the wavelength and ∆n is the birefringence. In a photoelastic medium ∆n is typically
on the order of 10−3 and dφ

dz may be unity, the condition (8.36) will probably not hold. Therefore,
we would like to further simplify equations (8.35). This is done by considering the first order
approximation to these equations, which gives a result that agrees well with experimental data [1].

Simplified Photoelastic Equations

Consider solutions to (8.5) of the form

Ej = Aj(z)eikz j = 1, 2k =
ω

c
ε (8.37)

where ε is the dielectric constant of the medium in the absence of stress. This transformation does not
alter the phase retardation or the amplitude ratio of the components of the light vector. Therefore,
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the components Aj of the light vector determine the same light ellipse as the components Ej . If we
substitute this into (8.5) , we get [1]

d2A1

dz2
− 2ik

dA1

dz
+
ω2

c2
(ε11 − ε)A1 +

ω2

c2
ε12A2 = 0

d2A2

dz2
− 2ik

dA2

dz
+
ω2

c2
ε21A1 +

ω2

c2
(ε22 − ε)A2 = 0. (8.38)

Since the optical anisotropy of a photoelastic medium is weak we have that [1]

εjj − ε ≈ 10−3 to 10−4 (8.39)

εij ≈ 10−3 to 10−4 i 6= j. (8.40)

As a result, the functions Aj will vary slowly with z. Note that in the special case where the medium
is isotropic, Aj = constant. The coefficients on the first derivatives and constant terms in equations
(8.38) are on the order of 105 and 106, so we can neglect the second derivatives d2Aj

dz2 . Therefore the
equations (8.38) simplify to

dA1

dz
= −iC(ε11 − ε)A1 − iCε12A2

dA2

dz
= −iC(ε22 − ε)A2 − iCε21A1 (8.41)

where C = ω
2c
√
ε
. In using this system we are neglecting solutions that describe reflected waves whose

influence in a photoelastic medium can be neglected [1].

Similar to what was done in the previous section we can use an additional transformation

A1 = As1 cos(φ)−As2 sin(φ)
A2 = As1 sin(φ) +As2 cos(φ) (8.42)

(recall φ is the angle between the principal coordinate axes and the secondary principal coordinate
axes) to obtain equations for the light vector along the secondary principal directions,

dAs1
dz

= −iC(ε1 − ε)As1 +
dφ

dz
As2

dAs2
dz

= −iC(ε2 − ε)As2 −
dφ

dz
As1. (8.43)

Further simplification of the equations is obtained through the following transformation

Aj = Bj(z) expif(z) j = 1, 2

f(z) =
1
2
C

∫
(ε11 − ε22 − 2ε)dz. (8.44)

This transformation also preserves the phase retardation and amplitude ratio of the components of
the light vector.
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Using this transformation in Equations (8.43) yields

dB1

dz
= −1

2
iC(ε11 − ε22)B1 − iCε12B2

dB2

dz
= −1

2
iC(ε22 − ε11)B2 − iCε21B1. (8.45)

With an equivalent form for the components of the light vector in the secondary principal directions,
Bj [1].

Explicit Stress Dependence

In photoelasticity, we are usually concerned with the stresses occurring within a material, such as the
birefringent models observed in ESWT experiments. In order to derive optical equations in which
the stresses appear directly, we need a relationship between the dielectric tensor εij and the stress
tensor σij . For an isotropic medium undergoing elastic deformations we have the following [1]

εij = εδij + 2Ciσij + 2C2

√
ε

3∑
k=1

σkkδij (8.46)

where δij is the Kronecker delta tensor and C1 and C2 are the photoelastic constants. This form of
the equations was chosen so that the well-known equations of photoelasticity for the case of elastic
deformations follow from equation (8.46).

If we plug equation (8.46) into the system (8.41) we get

dA1

dz
= −iC

(
2C1

√
εσ11 + 2C2

√
ε

3∑
k=1

σkk

)
A1 − 2iCC1

√
εσ12A2

dA2

dz
= −2iCC1

√
εσ21A1 − iC

(
2C1

√
εσ11 + 2C2

√
ε

3∑
k=1

σkk

)
A2. (8.47)

Now we use the transformation

Aj = Wj(z) exp−ig(z) j = 1, 2

g(z) = 2CC2

√
ε

∫ 3∑
k=1

σkkdz (8.48)

to get

dW1

dz
= −iC0σ11W1 − iC0σ12W2

dW2

dz
= −iC0σ21W1 − iC0σ22W2 (8.49)

where C0 = 2CC1
√
ε.

If we introduce equation (8.46) into the system (??) we get

dB1

dz
= −1

2
iC0(σ11 − σ22)B1 − iC0σ12B2 (8.50)

dB2

dz
= −iC0σ21B1 +

1
2
C0(σ11 − σ22)B2, (8.51)
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or in terms of the secondary principal stresses

dBs1
dz

= −1
2
iC0(σ1 − σ2)Bs1 +

dφ

dz
Bs2 (8.52)

dBs2
dz

= −dφ
dz
Bs1 +

1
2
C0(σ1 − σ2)Bs2. (8.53)

Equations (8.51) are the equations we solve numerically in order to determine the light intensity
field that would result from the stresses obtained in our simulations of a shock wave hitting a cylinder,
see Chapter 9. We should also note here that equations (8.51) are equivalent to the classical equations
of photoelasticity derived by Neumann [1], but are more tractable for our purposes.

8.2.1 Special Case

One important special case to note here is that of a homogeneous solid, where in this case we mean
that the stress tensor σ is constant and dφ/dz = 0. This means that the above system (8.53)
simplifies to

dBs1
dz

= −1
2
iC0(σ1 − σ2) (8.54)

dBs2
dz

= −1
2
iC0(σ2 − σ1). (8.55)

It then follows that, in the homogeneous photoelastic medium, two perpendicular independent plane-
polarized vibrations with constant amplitudes are propagated [1]. The phase retardation of these
vibrations ∆ is

∆ = C0(σ1 − σ2)z, (8.56)

where z is the thickness, or region over which the equations were integrated. This is equivalent to
the stress-optic law, and demonstrates that this law is only valid when the principal stress directions
do not change with z. An assumption that is not valid for three-dimensional objects [1].

8.3 Numerical Approach

We are interested in solving (8.51) for stresses generated by an ESWT pressure wave in an acrylic
object. We use the model described in Chapter 6 to calculate the stresses in the object over time,
and then post process these results to determine the appropriate light intensity distribution.

We assume that the monochromatic, polarized light is propagating along the y−axis (0, 1, 0), so
the system we solve is

dB1

dy
= −1

2
iC0(σ11 − σ33)B1 − iC0σ13B2 (8.57)

dB2

dy
= −iC0σ31B1 +

1
2
C0(σ11 − σ33)B2, (8.58)

where we us appropriate stress components and integration is performed with respect to y. This
system can be written as

dB

dy
= M(y)B(y), (8.59)

with initial data B0(y0). In our numerical solution of this problem, the matrix M is constant in each
grid cell.
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8.3.1 Test Case

In order to verify that we are calculating the appropriate intensity field, we first compare our results
with a well-known test case, a circle undergoing diametrical compression. The analytic solution for
the strain field in this case is given by

σrr =
p

πR∆h

(
(1− r

R
2)2( rR

4 + 2 rR
2 − 1− 2 cos(2θ))

)
( rR

4 + 1− 2 cos(2θ))2
(8.60)

σθθ =
p

πR∆h
( rR

8 + 4 rR
4 − 4 rR

2 − 1 + 2(−2 rR
6 + r

R
4 + 1) cos(2θ))

( rR
4 + 1− 2 rR

2 cos(2θ))2
(8.61)

σθr =
p

πR∆h
2(1− r

R
4)(1− r

R
2) sin(2θ)

( rR
4 + 1− 2 rR

2 cos(2θ))2
(8.62)

The solutions (8.60-8.62) for σrr, σθθ and σrθ are plotted in Figures 8.3 a), 8.3 b) and 8.3 c),
respectively. The fringe patterns that researchers typically study are correlated through (8.10) to
the difference in principal stresses σ1 − σ2, the eigenvalues of the stress tensor (see Chapter 4).
This difference for the diametric compression problem are plotted in Figure 8.3.1 a). Ideally, these
will correlate with the fringe patterns observed in the laboratory. By solving equation (8.10), and
calculating the intensity I using equation (8.17), we can predict computationally what these fringe
patterns will look like for this 2D problem in Figure 8.3.1 b).

For a simple, relatively thin two-dimensional model, this is an effective technique for determining
either the fringe patterns from known stress values, or the difference in principal stresses from the
fringe calculation. However, as was discussed in the previous section, relation (8.18) relies on no
variation of the principal directions in the object and for a three-dimensional object, this is rarely
the case [1]. In order to consider the fringe patterns resulting from light propagation in a three-
dimensional object, we had to solve the system (8.58) numerically. We did this using two different
numerical approaches, the trapezoidal method and the matrix exponential. It is important to note
here that the eigenvalues for the matrix M are purely imaginary, so we must be careful to choose a
numerical method with an appropriate stability region. For this reason, the first method we tried
was the trapezoidal method. The results of this calculation are in Figure 8.3.1a). This method only
captures the first order fringe, higher order fringes are damped out. In order to get better results,
we wanted to use a higher-order method that would also capture the oscillatory nature of the fringe
pattern.

Note that in each grid cell at a fixed moment in time, the stress tensor σ is constant. This means
that the matrix M will also be constant, and we can solve equation (8.58) exactly through the use
of a matrix exponential. For a M ∈ C2×2, with eigenvalues λ1 = λ̄2 = a+ ib, the matrix exponential
has the following form

eAt = eat cos(bt)I + eat
sin(bt)
b

(A− aI), (8.63)

where I is the identity matrix. When we use this approach we get the result in Figure 8.3.1b), which
is more accurate than the trapezoidal method, and can be used in three-dimensional object because
it does not rely on any simplifying assumptions.
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a) b)

c)

Figure 8.3: Solution for the diametrically loaded circle a) σ11, b) σ22, c) σ12
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a) b)

Figure 8.4: Comparison of contours of maximum principal stress difference in a) with the Isochro-
matic fringe patterns calculated in b). The two agree reasonably well.

a) b)

Figure 8.5: a) Calculation of the fringes or principal stress contours with the trapezoidal method.
Only one of the fringes is found, the rest are lost due to the inaccuracy of the method. b) Calculation
of the fringes or principal stress contours with the matrix exponential, far more accurate and agrees
reasonably well with Figure 8.3.1 a).
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Chapter 9

VERIFICATION AND VALIDATION

In this chapter we will demonstrate the validity of our mathematical and computational model
for shock wave therapy by comparing a series of numerical calculations to laboratory experiments.

9.1 Final model

9.1.1 Layout for numerical calculations

For the calculations done in comparison with the HM3 Dornier lithotripter, we used the numerical
layout illustrated in Figure 9.1. Following T. Christopher [14], the ellipsoid for the HM3 has a major
axis of 139mm, a minor axis of 78mm and foci at (±115, 0, 0). The material in the reflector is made
of brass, the fluid is water and we are not currently incorporating the interface between air and
water. The material properties needed for the linear elasticity model are included in Table 9.1. The
parameters used for water and tissue in the Tait equation of state are included in Chapter 4.

Table 9.1: Elastic material proprties

Material Bulk modulus (MPa) Shear modulus (MPa) Density (kg/m3)
brass 8650 6624.07 4528.24

acrylic 1850 9305 3126.5
water 2140 0 1000

bone(cortical) 12444 3510 1200

Table 9.2: Citations: bone [55]

Note the following relations between the material properties are given by the following relations
and are provided here for reference [33],

λ =
Eν

(1 + ν)(1− 2ν)
(9.1)

G =
E

2(1 + ν)
(9.2)

ν =
λ

2(λ+G)
(9.3)

E = 2G(1 + ν) (9.4)

9.2 Pressure pulse measurements at F2

One of the key features of both ESWT and ESWL is the pressure wave form as measured at F2.
In order to generate the correct wave form at F2 generated by an explosion in water at F1 by
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Figure 9.1: Numerical layout of the simulated HM3 Dornier Lithotripter with the talus bone at F2.

the HM3 Dornier lithotripter, we followed the same approach as T. Christopher [14]. That group
used a triangular pulse initial condition for the change in density and velocity. The displacements
generated in the fluid during the initial wave propagation and reflection are large, so we used the
Euler equations to model the propagation and steepening of the wave. As demonstrated in Chapter
6, the pressure wave in ESWT can be modeled by an isentropic equation of state.

9.2.1 2-D Axisymmetric Gauge Calculations

In Figure 9.2 we see the shock wave measure at F2 when using the linear elastic code to model
the wave propagation. The pulse is smeared out and does not accurately represent the shock wave
form measured in ESWT. For this reason, we use the equations derived in Chapter 6 to model the
wave propagation and steepening that we expect. The results from an axisymmetric version of this
calculation are presented in Figure 9.3. In this result there is nice steepening of the focused wave
with some variation in the positive peak pressure that depends on the initial condition used. For a
more complete discussion of appropriate initial conditions for ESWT experiments, see Chapter 6.

9.2.2 Focal region

In addition to having the correct rise time for the peak pressure and tensile component of the wave
form, it is important to calculate the focal region where pressures are strong enough to affect the
tissue.
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Figure 9.2: ESWT pulse measured at F2 obtained using the linear elasticity code.
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Figure 9.3: Axisymmetric calculation, Tait EOS for the ESWT pulse measured at F2.
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Linear 2D HM3 Calculation

While not physically relevant, this calculation serves to demonstrate the effect of the geometry on
the focal region of the calculation. In Figure 9.4 it is clear that the calculation produces a nice cigar
shaped focal region when there is no inclusion present at the focus. In addition to this calculation,
we include some additional two-dimensional calculations that demonstrate how the focal region
changes when there is an object present at F2, see Figure 9.5. The change in the focal region due to
objects present in the wave propagation path is to be expected. The impedence change from water to
idealized bone causes part of the pressure wave to be reflected at each interface, see Chapter 2. From
a clinical perspective, it is important to have an idea of where the maximal stresses are deposited
in relation to F2, since it is clear that when treating bone, the focal region will not necessarily be
centered about the focus.

Figure 9.4: The maximal stress in a 2D calculation with no inclusion at the focus.

Nonlinear Calculation

The first results shows the calculation of the maximal stress region using the axisymmetric La-
grangian code. This calculation produces a nice cigar shaped region and the maximum pressure in
this case is 15MPa.

Figure 9.6 shows the three-dimensional result with no inclusion present at F2. The calculation
was performed using an initial condition from an axisymmetric calculation and started at t = 120µs,
which is why the contour lines are not perfectly cigar shaped. What is clear from this calculation is
that the wave does indeed continue to focus as it propagates and deposits the maximal energy, in
this case 25.03 MPa at F2. I have included slices of the three-dimensional contour lines as they are
easier to interpret than the isosurface calculations.

9.3 Cylindrical Calculations

9.3.1 Laboratory experiment

One of the experiments we used to validate the results of our calculations was performed by re-
searchers at the Center for Industrial and Medical Ultrasound at the University of Washington.
They photographed the shock wave from a device simulating the HM3 Dornier lithotripter as it
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Figure 9.5: The maximum stress at each point over the entire calculation. The standard cigar shaped
region is deformed because of the geometry of the bone inclusion. The range of the pressure was
([-15 15]).

Figure 9.6: Results from three-dimensional calculation with focusing wave showing the cigar-shaped
isosurface of maximum stress centered about F2 - (115,0,0)
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propagated through an acrylic cylinder. Since acrylic is a birefringent material, the stresses have a
photoelastic effect that can be captured through the use of a high-speed camera. The photographs
from one of the experiments is in Figure 9.7. In this section, we compare these photographs to our
numerical calculations.

Figure 9.7: Laboratory experiment where a shock wave propagates through an acrylic cylinder and
the stresses are photographed using a high speed camera and polarized filters[30]. Courtesy of Dr.
Michael Bailey’s group in the University of Washington Applied Physics Lab.
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9.3.2 Results from linear elasticity

The first attempt at modeling the wave propagation in the cylinder was performed using linear
elasticity in the fluid and solid [30]. The results in Figure 9.8 show the stress fields calculated using
a plane wave initial condition. This shows that we achieve reasonably good agreement with the
linear calculation even though we did not use a focusing wave or a nonlinear model in the fluid.

Figure 9.8: Axisymmetric calculation of a shock wave hitting a cylinder situated at F2 using linear
elasticity.
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9.3.3 Photoelastic comparison

In this experiment we compared the results from the nonlinear calculation with experiment after
post-processing with the photoelastic equations. The experiment was initialized using the data from
the axisymmetric Euler equations in order to incorporate both the focusing of the wave and the
nonlinearity in the fluid. In Figure 6.2 from Chapter 6 it’s clear that the Lagrangian code works well
with the result from the Euler equations as an initial condition, so this is a reasonable approach.

Figure 9.9: Pressure pulse used to initialize the nonlinear cylinder calculations (plotted in space, not
time)

Results from nonlinear elasticity

A nonlinear axisymmetric calculation was performed to verify that the photoelastic code was working
effectively. The two-dimensional stress fields were rotated about the z-axis in order to compare
with the three-dimensional experiment. We compare the results from the calculations with the
photographs of the cylinders in the laboratory experiments, shown in Figure 9.7. The results in
Figure 9.10 and Figure 9.11 show photographs from the laboratory experiments in the first column
and the results from the calculation in the second column. The images from the calculations are
pseudocolor plots of the light intensity field, assuming a circular polariscope was used. The fringe
patterns then indicate the isoclinic lines of maximum principal stress difference, which is the same
as what is photographed in the lab. The calculation agrees well with the fringe patterns produced
in the experiment, predicting the same v-shaped pattern of greatest stress, usually used to infer the
location where the stone would break. It should be noted here that the results from the calculation
provide similar insight to those obtained using linear elasticity. However, this approach may be more
useful when considering cases with more complex photoelastic patterns such as those produced by
Zhong, et. al. [83].
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Figure 9.10: Nonlinear wave propagation in the fluid and linear elasticity in the solid acrylic cylinder.
The pseudocolor plot captures the isoclinic regions of maximum principal stress difference. The
calculation agrees well with the laboratory experiment.
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Figure 9.11: Nonlinear wave propagation in the fluid and linear elasticity in the solid acrylic cylinder.
The pseudocolor plot captures the isoclinic regions of maximum principal stress difference. The
calculation agrees well with the laboratory experiment.
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9.3.4 Sphere

We performed calculations on the sphere from two different angles in order to confirm that the code
was producing symmetric results with an object that was not aligned with the computational grid. It
is also interesting to note that in calculations on smooth objects, there is no stress concentration that
develops because there are no corners. These calculations could eventually be used in conjunction
with the photoelastic code to compare against additional laboratory experiments.

In order to compare the rotated calculation with the direct calculation, we took two-dimensional
slices along y = 0 in the direct case and at a 60 degree rotation about the y-axis, this is why the axes
are not the same in the plots. In this case, the two regions of compression should be in the same
location, as indicated by the results in Figure 9.12. There is some effect on the maximum stress when
the initial condition is rotated, but these values are approximate because the material properties
are not exact for the biological material. What we do know is the location of stress deposition for
the given geometry is correct, which enables us to investigate the effect of other geometries and
angle of treatment on the location of the focal region. The model could be further improved by the
incorporation of a more accurate model for the bone material.
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Figure 9.12: Comparison of maximum compression deposition for a sphere shot directly along the
x-axis and rotation of 60 degrees about the y-axis.
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9.4 Talus

We performed several fully three-dimensional calculations using the bone geometry of a talus. A
group in the mechanical engineering department at The University of Washington has developed
a rapid prototyping system for building bone models from CT scans [13]. They provided a digital
copy of a talus that we used in our numerical calculations and also constructed a series of talus
bones made out of different materials ranging from polyurethane to acrylic. Dr. Matula’s group
performed some experiments where they photographed the deflection of the cavitation field while
varying the location of the talus at F2. We performed the corresponding calculations with our 3D
code and kept track of the region of maximum negative pressure. This region should correspond to
the cavitation field in the laboratory experiments. We compare the results in Figure 9.14 with the
numerical results in Figure 9.15 and found reasonably good agreement between the cavitation field
and the numerically calculated region of maximum tension. The talus calculations performed using
the 3D linear elasticity code and with a pressure wave form that was more smeared out than the
actual ESWT waveform [30].

Figure 9.13: Digital representation of rapid prototype talus model.
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Figure 9.14: Photographs of experiments performed by Juan Tu, Applied Physics Lab, University
of Washington.
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Figure 9.15: Calculation of the deflection of the ESWT pressure wave versus the location of the
talus relative to F2.
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Chapter 10

PREDICTIONS

In this chapter we provide details on the numerical experiments we performed in order to gain
insight into the ESWT treatment. The first set of experiments were performed to investigate the
pressure deposition in the treatment of nonunions. We used a cylinder comprised of averaged cortical
bone material properties to represent the bone undergoing ESWT.

The calculations were performed on cylinders that are 20 mm in diameter, which is smaller than
most bones in the body, but demonstrate the ability of our code to handle structures that are smaller
than the talus or hip bone geometries. The angle of treatment has an effect on the deposition of the
shear stress, as well as the location of the maximum and minimum principal stresses. To quantify
this, we generated some one-dimensional curves showing the relationship between treatment angle,
focal distance from F2 and principal stress values.

There are four heterotopic ossification experiments. The first involves shooting the HO from two
different angles in order to mimic the treatments performed by Michael Chang. The stress contours
and focal regions were quantitatively different in this case as well. In order to say something more
about the treatment of HOs, I also devised an idealization of the HO experiment. In one case a
sphere is embedded in a cylinder and centered at F2. In the second case, there is a gap between
the sphere and the cylinder, obtained by subtracting the intersection of the sphere with a cylinder
of a slightly larger radius. This is meant to show the importance of characterizing the nature of
the material the HO is comprised of, as well as how attached it is to the skeleton. Currently it is
known that the bone deposits form in the soft tissue and grow until intersecting with the skeletal
system, but it is not clear how strong that attachment is [57]. If the attachment is weak, a gap exists
between the HO and the skeleton, or there is an impedance difference in the two materials, then
the behavior will be more like that of the sphere that is separate from the cylinder. In the fourth
experiment, the material properties of the sphere or idealized HO are changed. We used this change
to determine how much of an effect this has on the wave propagation.

The final set of experiments are axisymmetric calculations with variable parameters for the Tait
equation of state. These experiments demonstrate the predictive capabilities of our mathematical
and computational model of ESWT for materials that are more biological.

10.1 Nonunions

One of the aims of this work was to explore the effect of applying shock wave therapy at different
angles when there is a fracture in the bone. To explore this, we have performed several three-
dimensional experiments where we calculated the maximum stresses present in the cylinder during
the pressure wave propagation. From the variation of the angle and position of F2 relative to
the center of the cylinder, we are able to draw conclusions about the effect of positioning on the
treatment of nonunions. Stress deposition location is dictated by the geometry of the interfaces
between different materials. As discussed in Chapter 2, the reflections at these interfaces give rise to
increases in the stresses as incoming waves interact with their reflected counterparts. This becomes
clear when examining the experimental results which show that even as the object is shifted relative
to F2, the location and shape of the compressive, tensile and shear stresses are determined by the
geometry. The magnitude of the stresses will also be affected by the location of the object relative
to F2
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10.1.1 Initial Condition

These calculations were initialized with a shock wave that was computed from a high-resolution
axisymmetric calculation with positive peak pressure of ≈50 MPa. In order to initialize a three-
dimensional calculation, the initial data was rotated about the x-axis, which corresponded to the
z-axis in the axisymmetric case. The rotation of the initial data was accomplished by rotating by 45
and 60 degrees about the y-axis with a center of (115, 0, 0), the position of F2 for an HM3 Dornier
lithotripter [14]. The following are snap shots of the three different initial conditions.

Figure 10.1: Initial conditions used for the three-dimensional calculations - direct, 45 degree rotation
and 60 degree rotation about the y-axis. These are slices from t = 162µs, the time the calculations
are started.

10.1.2 Cylinder

The first series of experiments were performed on a solid cylinder with the shock wave incident
at three different angles. The cylinder represents a complete bone with corresponding material
properties given in Table 9.1. This was used as a baseline for comparison against the cylinder with
a break in it.
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Figure 10.2: A comparison of the maximum stress deposition relative to the focus. The maximum
shear and compression are the least affected when shot directly, but the location shift increases as
the angle increases. The maximum tension is affected by the presence of an object at the focus, but
less by the angle of treatment. Data from Tables (10.1,10.2,10.3)
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The regions of maximum compression and shear are toward the back side of the cylinder, close
to F2. Whereas the region of maximum tension is largely concentrated in the front of the cylinder
where the first reflection occurs. This behavior is what we would expect from the discussion in
Chapter 2 regarding Figure 2.4.

As the angle of treatment is varied, the region of maximum stress, or focal region, changes
shape. The compression and shear regions are elongated, but still near the back of the cylinder.
The maximum tension is shifted in location along the front of the cylinder, which makes sense since
the incident wave is now interacting with a larger portion of the cylinder/water interface. It is also
important to note that the actual location of the maximum stress region is shifted positively along
the z-axis as the angle of the treatment is increased. This leads to the increase in distance of the
maximum stress location from F2 observed in the compression and shear. However the increased
distance for the tension is smaller as the angle is increased primarily because the presence of the
object at F2 and the impedance difference between the two materials causes the maximum tension
to be deposited at the surface of the object, not at F2.

Stress type Maximum in absolute value (MPa) Location (x,y,z)
Compression 64.83 MPa (77,128,128)

Tension -65.18 MPa (66,128,128)
Shear 53.26 MPa (77,128,128)

Table 10.1: Cylinder stresses for direct wave

Stress type Maximum in absolute value (MPa) Location (x,y,z)
Compression 59.36 MPa (85,128,142)

Tension -78.5 MPa (65,128,118)
Shear 40.40 MPa (83,128,141)

Table 10.2: Cylinder stresses for 45 degree rotation

Stress type Maximum in absolute value (MPa) Location (x,y,z)
Compression 53.77 MPa (84,128,168)

Tension -55.33 MPa (65,128,117)
Shear 38.85 MPa (84,129,146)

Table 10.3: Cylinder stresses for 60 degree rotation
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Figure 10.3: Three-dimensional results for the direct treatment of a complete cylinder. This figure
shows the isosurfaces of maximum compression, tension and shear in the first column with corre-
sponding 2D slices at y=0 in the second column.
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Figure 10.4: Three-dimensional results for 45 degree angles of treatment of a complete cylinder. This
figure shows the isosurfaces of maximum compression, tension and shear in the first column with
corresponding 2D slices at y=0 in the second column.



88

Figure 10.5: Three-dimensional results for 60 degree angles of treatment for a complete cylinder.
This figure shows the isosurfaces of maximum compression, tension and shear in the first column
with corresponding 2D slices at y=0 in the second column.
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10.1.3 Broken Cylinder

The broken cylinder is meant to simulate a break in a bone and give insight about the deposition
of energy in the treatment of a non-union. The deposition of stress varies as both the angle and
position of the bone are changed.

Figure 10.6: A comparison of the location of maximum stress deposition relative to the focus. In
this case all of the locations of stress deposition are affected by the angle, but because of the gap,
the compression and shear location are less affected by the angle of treatment. Data for plots
summarized in Tables (10.4,10.5,10.6)

In the case of the broken cylinder, the maximum stress deposition in the direct experiment is
similar to that of the unbroken cylinder, except that the there are two locations of maximal stress
deposition on either side of the break. The pressures in the bone are much larger than in the fluid,
so the contours of maximum stress are concentrated on either side of the gap. The location on the
x-axis is nearly the same as in the unbroken cylinder, and the distances from F2 are also similar.

As the angle of treatment is varied, there is less of a shift in the z-direction for the shear and
compressive stresses. This is caused by the impedance difference between the fluid and solid material
at the gap. There is also a slight shift in maximum compression and shear stress location along the
x-axis due to reflection at the gap. Geometrically, the shape of the regions of compressive and shear
stress are quite different from the direct case. Instead of being an ellipsoidal type shape, the regions
are compressed into the corner of the lower-half of the cylinder. The region of maximum tension
deposition is similar to that of the unbroken cylinder case, though it is also affected by the gap and
the tension is concentrated on the upper half of the cylinder.
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Stress type Maximum in absolute value (MPa) Location (x,y,z)
Compression 56.02 MPa (78,128,140),(78,128,116)

Tension -66.92 MPa (78,128,130), (78,128,126)
Shear 56.14 MPa (78,128,136), (78,128,136)

Table 10.4: Stresses in broken cylinder for direct wave

Stress type Maximum in absolute value (MPa) Location (x,y,z)
Compression 63.06 MPa (84,128,124)

Tension -67.3 MPa (65,128,134)
Shear 47.73 MPa (81,128,126)

Table 10.5: Stresses in broken cylinder for 45 degree rotation

Stress type Maximum in absolute value (MPa) Location (x,y,z)
Compression 55.33 MPa (78,128,126)

Tension -52.75 MPa (65,128,101)
Shear 42.36 MPa (84,129,124)

Table 10.6: Stresses in broken cylinder for 45 degree rotation
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Figure 10.7: Three-dimensional results for the direct treatment of a broken cylinder. This figure
shows the isosurfaces of maximum compression, tension and shear in the first column with corre-
sponding 2D slices at y=0 in the second column.
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Figure 10.8: Three-dimensional results for the 45 degree treatment of a broken cylinder. This
figure shows the isosurfaces of maximum compression, tension and shear in the first column with
corresponding 2D slices at y=0 in the second column.
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Figure 10.9: Three-dimensional results for the 60 degree treatment of a broken cylinder. This
figure shows the isosurfaces of maximum compression, tension and shear in the first column with
corresponding 2D slices at y=0 in the second column.
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10.1.4 Shifted Broken Cylinder

For this experiment, we shifted the broken cylinder so that the focus of the device was 5mm closer
to the leading edge of the cylinder. This was to investigate the change in stress deposition when the
device is shifted laterally as well as changing the angle of treatment.

Figure 10.10: A comparison of plots of the location of the maximum stresses relative to the focus
of the device for a positive 5mm shift in the cylinder relative to the focus. Data from Tables
(10.7,10.8,10.9)

In the direct case, one thing we can note here is the difference in the magnitude of the stresses that
is a result of the energy of the wave not being as focused before striking the cylinder. Again there
are two locations for maximum stress, shifted approximately 5mm in the the positive direction. The
overall trend in this case is the same as that in the broken cylinder case above, with the exception of
larger distances from F2, as would be expected from the shift in location of the device. The shape
and location of the maximum stress contours relative to the cylinder are similar in both the shifted
and unshifted broken cylinders.

It is also interesting to note that in the case of the region of maximum tension, the energy is no
longer concentrated on the lower half of the cylinder. In this case the region of maximum tension is
actually larger in the lower half of the cylinder, which is due to the shift relative to F2.

Stress type Maximum in absolute value (MPa) Location (x,y,z)
Compression 59.02 MPa (74,128,140))

Tension -71.36 MPa (64,128,126)
Shear 55.87 MPa (73,128,135)

Table 10.7: Stresses in broken cylinder for direct wave shifted by +5mm
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Stress type Maximum in absolute value (MPa) Location (x,y,z)
Compression 65.65 MPa (80,128,124)

Tension -73.34 MPa (60,128,118)
Shear 49.02 MPa (76,128,126)

Table 10.8: Stresses in broken cylinder shifted by +5mm with 45 degree rotation

Stress type Maximum in absolute value (MPa) Location (x,y,z)
Compression 55.22 MPa (79,125,118)

Tension -67.43 MPa (63,128,90)
Shear 45.07 MPa (79,129,124)

Table 10.9: Stresses in broken cylinder shifted by +5mm with 60 degree rotation
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Figure 10.11: Three-dimensional results for the direct treatment of a broken cylinder shifted by
+5mm. This figure shows the isosurfaces of maximum compression, tension and shear in the first
column with corresponding 2D slices at y=0 in the second column.
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Figure 10.12: Three-dimensional results for the treatment of a broken cylinder shifted by +5mm
rotated by 45 degrees. This figure shows the isosurfaces of maximum compression, tension and shear
in the first column with corresponding 2D slices at y=0 in the second column.
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Figure 10.13: Three-dimensional results for the treatment of a broken cylinder shifted by +5mm
rotated by 60 degrees. This figure shows the isosurfaces of maximum compression, tension and shear
in the first column with corresponding 2D slices at y=0 in the second column.
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Direct Shock Wave - Negative 5mm Shift

The following set of experiments were done with a broken cylinder that was shifted −5mm relative
to the focus. The first figure summarizes the shift in location of the maximum compression, tension
and shear as a plot of distance as a function of angle. The second figure summarizes the change in
energy deposition as a function of the angle of treatment.

Figure 10.14: A comparison of the location of maximum stress deposition for a negative 5mm shift
in the cylinder relative to the focus. Data from Tables (10.10,10.11,10.12)

The locations of the maximum stress relative to the focus are similar in distance to those in the
positive 5mm shift case because the geometry of the cylinder has the largest effect on the locations
of maximal stresses. The overall strength of the pressures that are deposited are smaller than the
case where the cylinder was centered precisely at F2, this is due to attenuation of the wave past the
focus.

The shape and location of the maximum stress contours are similar to the two previous cases of
the broken cylinder. In this case the tension is again concentrated in the upper half of the cylinder
as in the unshifted case.

Stress type Maximum in absolute value (MPa) Location (x,y,z)
Compression 58.41 MPa (83,128,138)

Tension -67.99 MPa (70,127,126)
Shear 56.74 MPa (83,128,121)

Table 10.10: Stresses in broken cylinder for direct wave shifted by −5mm
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Stress type Maximum in absolute value (MPa) Location (x,y,z)
Compression 59.04 MPa (89,128,124)

Tension -68.84 MPa (70,128,134)
Shear 42.64 MPa (86,128,126)

Table 10.11: Stresses in broken cylinder shifted by −5mm for 45 degree rotation

Stress type Maximum in absolute value (MPa) Location (x,y,z)
Compression 52.68 MPa (83,128,126)

Tension -57.17 MPa (70,128,141)
Shear 39.04 MPa (89,129,124)

Table 10.12: Stresses in broken cylinder shifted by −5mm for 60 degree rotation
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Figure 10.15: Three-dimensional results for the direct treatment of a broken cylinder shifted by
−5mm. This figure shows the isosurfaces of maximum compression, tension and shear in the first
column with corresponding 2D slices at y=0 in the second column.
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Figure 10.16: Three-dimensional results for the treatment of a broken cylinder shifted by −5mm
rotated by 45 degrees. This figure shows the isosurfaces of maximum compression, tension and shear
in the first column with corresponding 2D slices at y=0 in the second column.
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Figure 10.17: Three-dimensional results for the treatment of a broken cylinder shifted by −5mm
rotated by 60 degrees. This figure shows the isosurfaces of maximum compression, tension and shear
in the first column with corresponding 2D slices at y=0 in the second column.
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10.2 Tissue

There are references in the literature that contain measurements for idealized biological materials
[70, 61, 36]. Since we can easily vary the material properties of the grid cells in our model, we used
these measured parameters to investigate their effect on the shock wave propagation.
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Figure 10.18: Comparison of a wave propagating through water (blue curve) and tissue (red curve).
The wave propagating through tissue was both attenuated and moved at a slower speed as we would
expect from the form of the sound speed.

In this series of calculations I compared the focal region and pressure waveform measured near
F2 to what would be obtained using pure water. I varied the thickness of the tissue region and in
one calculation included a wall with the material parameters of bone. These calculations were all
performed using the axisymmetric form of the Lagrangian Euler equations. The maximum expected
pressure at F2 in just water is 18 MPa and the maximum compression region should contain F2.

One conclusion from this series of experiments is that the material properties used for the tissue
do have an effect on the wave propagation, but not as much as the bone material. This is due to the
relative difference in material properties. The difference between tissue and water is not as great as
the difference between tissue and bone, therefore the wall will have a larger effect on the focal region
and therefore, a larger effect on our modeling efforts.
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Figure 10.19: Included for ease of comparison. The calculated focal regions for maximum com-
pression and tension in water alone. Note that maximum principal stress corresponds to maximum
negative pressure and minimum principal stress corresponds to maximum positive pressure.

Figure 10.20: The material is water to the left of z=100 and tissue-like gel to the right. We use the
parameters for the Tait equation of state from Nakahara 2008 for 20% gel.

Figure 10.21: The material is water to the right of z=90 and tissue-like gel to the left. We use the
parameters for the Tait equation of state from Nakahara 2008 for 20% gel.
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Figure 10.22: The material is water to the right of z=110 and isotropic homogeneous bone to the
left. The parameters for cortical bone can be found in Table 9.1. Since bone has a non-zero shear
modulus, we also calculate the contours of maximum shear stress.
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Figure 10.23: The material is water to the right of z=90, tissue between z=90 and z=110, and bone
to the right of z=110. We performed this calculation in order to investigate the effect of tissue on
maximum, compression, tension and shear.
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Figure 10.24: Hip heterotopic ossification

10.3 Heterotopic Ossification

We have obtained 3D bone geometry data from Dr. Michael Chang that contains a hip bone and
ossification, we used our code to look at the difference in maximal stresses when the ossification is
treated at two different angles. In the first few figures we show the calculation performed on the
actual ossification geometry reconstructed from CT data, as seen in Figure 10.24. The experiments
show that the two treatments have different locations of maximal stress deposition, but this is
dependent upon the geometry of the ossification.
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a)

b)

Figure 10.25: Isosurface of a) Maximum Compression and b) Maximum Tension in the HO shot
directly.
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Figure 10.26: Idealized ossification - sphere embedded in a cylinder

10.3.1 Idealized Ossification

In order to better understand the implications of the composition of the heterotopic ossification as
well as the strength in attachment to the hip bone on the regions of maximum stress, we also per-
formed three idealized calculations. In these calculations, the heterotopic ossification is represented
by a sphere embedded into a cylindrical bone. Using this simplified geometry, we can easily vary
the material properties of the sphere, as well as its attachment to the cylinder by the introduction
of a gap between the two objects. The use of this idealized geometry also allows for straight-forward
comparison with the cylindrical geometry considered in the nonunion experiments. We should note
here that these are just one set of calculations performed on one idealized geometry. For complete-
ness, subsequent experiments should be performed on geometries with ossifications that vary in size
and shape.

The presence of the ossification had a greater effect on the region of maximum tension, which
makes sense because the greatest tensile stresses are present at the first interface between the bone
and fluid. The compressive stresses were less affected, but there was an additional small region of
compressive stress that was concentrated at the corners where the sphere intersects the cylinder.

The strength of attachment to the bone is important in predicting where the maximum stresses
will be deposited. It is interesting to note that in the case of maximum tension, the gap created a
buffer region where there was less tensile stress. On the other hand, larger compressive stresses were
generated within the gap. The presence of the gap had very little affect on the shape of the shear
stress region and location. The magnitudes of all stresses were decreased by the presence of the gap.

Changing the material properties of the ossification had small effect on the location and shape
of the maximum shear and compressive stresses, but a large effect on the location of the maximum
tensile stress. In the case of maximum tension, the stress in this case is concentrated at the interface
between the ossification and bone, as opposed to the interface between the ossification, bone and
water. This has to do with the relative strength in impedance mismatch between the two materials.
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Figure 10.27: Idealized ossification - Isosurface of Max Compression, Tension and Shear
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Figure 10.28: Idealized ossification with a gap between the ossification and the bone.
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Figure 10.29: Idealized ossification with a gap - Isosurface of Max Compression, Tension and Shear
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Figure 10.30: Idealized ossification where the ossification has different material properties from the
bone cylinder.
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Figure 10.31: Two-dimensional slices of heterotopic ossification with material properties that differ
from the bone cylinder.
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Chapter 11

CONCLUSIONS

11.1 Summary

In this work we have developed a mathematical model and numerical scheme for the simulation
of extracorporeal shock wave therapy. We have taken the Euler equations with the modified Tait
equation of state in a Lagrangian frame. This form of the equations allows us to model the wave
motion in the solid and fluid with the same set of equations by varying the stress-strain relationship.

In Chapter 2, we provided background on the physics of shock wave therapy and mathematical
models for biological tissues. In Chapter 3 we provided details on the numerical solution of hyperbolic
systems of partial differential equations using finite volume methods. As a specific example we include
a detailed solution of the one-dimensional acoustic equations in heterogeneous materials. Then in
Chapters 4 and 5 we provide background on the Euler equations and linear elasticity as both are
used in the model of ESWT.

Details are provided on the system of equations for the Lagrangian form of the Euler equations
in Chapter 6. We demonstrate that assuming that the displacements in the calculation are small,
the density in each grid cell will remain nearly constant, and this form of the Euler equations is
equivalent to the elasticity equations.

Further details on the numerical methods used to solve these equations are included in Chapter
7. We also provide the motivation for using adaptive mesh refinement by considering the effect of
grid size on resolution of the pressure wave. A minimum grid of 0.25mm is required in order to
resolve the shock wave. This would be computationally intractable without the use of a refined grid
only near the pressure wave and a coarse grid in the rest of the domain. There is a clear region for
refinement near the shock, so we use error in the pressure as our refinement criteria. Furthermore,
by using ChomboClaw, we are able to run three-dimensional calculations in parallel.

The connection between birefringence, photoelasticity and laboratory experiments is introduced
in Chapter 8. We also include the derivation of the photoelastic equations that describe changes in
the polarization of the electric vector upon passing through a birefringent material. These equations
are solved numerically using the stresses calculated in our simulation of ESWT and used to obtain
the fringe patterns observed in laboratory experiments. We validated our calculations using the
analytic expression for stress in a diametrically compressed disc. This is a well-known case that is
typically used for the calibration of photoelastic experiments. It is interesting to note that numerical
integration of this system has some challenges because the eigenvalues are purely imaginary and can
be on the order of 100i, so the stability region for the method must contain the entire imaginary
axis.

In Chapter 9 we provide results that validate our model and numerical approach. We provide
gauge calculations validating that we obtain the correct pressure wave form at F2. We also keep
track of the maximum compression, tension and shear for comparison with published data regarding
the focal region of the HM3 Dornier lithotripter[14]. The three-dimensional results clearly show
that we obtain the correct focal region about F2. In this chapter we also validated the shock wave
propagation by calculating the pressure wave propagation in a cylinder and comparing the results
with laboratory experiments. We were able to use our photolelastic post-processing technique to
produce plots that agree reasonably well with the photographs.

In addition to these validation techniques we compared calculations on a symmetric geometry,
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the sphere, in order to verify that the focal regions are the same in both cases. We found that the
focal regions were essentially identical, but the values for maximum peak over and under pressure
were not the same. This is due to some attenuation caused by rotation of the initial condition. For
this reason we did not compare maximal stress values as we varied the angle of treatment, but we
were able to compare the various focal regions in order to draw conclusions about the treatment. of
non-unions.

In Chapter 10 we used the code that we have developed to make predictions about the treatment
of non-unions using ESWT. Clinicians have a certain amount of freedom when applying shock waves
using a hand-held ESWT device. The angle of application as well as the location of the focus relative
to the break will influence the amount of energy that is deposited and the location. We found that
there is a corresponding shift in the maximal stress deposition when the device is shifted laterally,
as indicated by moving the bone in the positive or negative x-direction relative to the focus.

When the angle of treatment is varied by rotation about the y-axis, the location of the maximum
stresses will change relative to the z-axis. When the bone is broken, there is an interface separating
the two halves of the bone that causes the stress to be deposited primarily in the lower half, except
in the case of maximum tension. The location of maximum tension will change depending upon the
lateral and angular shift, and more of the stress may be deposited in the upper half of the bone.

One of the benefits of our model is the incorporation of different materials through the stress-
strain relationship. Parameters for the Tait equation of state have been measured in the laboratory
for different biological-like materials. We have incorporated these tissue parameters into our model
and studied the subsequent changes on the pressure wave form. We found that the amplitude of
the wave is decreased and is slightly slower in arrive at F2, which corresponds well to measurements
taken in a pig liver[15]. We then used this model to examine changes in the stress distribution
when the bone from the nonunion is surrounded by soft tissue and found that the tissue had a much
smaller effect on the pressure distribution than the bone. This may indicate that the tissue modeling
is less important when considering the pressure distribution at the bone-fluid interface. However, it
may be much more important for obtaining the correct attenuation within a more accurate model
of the bone containing fluid-filled cavities.

In the case of heterotopic ossifications, a great deal is still unknown about their composition and
attachment to the bone surface. Our preliminary calculations indicate that treatment from different
angles will induce stresses at different locations in the HO, which is due to the different geometry and
interfaces encountered by the wave. In order to better understand the importance of the attachment
strength and material properties, we performed experiments where these properties were varied. We
found that the location of the maximum tensile stress was greatly affected by the change in material
properties. The gap influenced the location of both the maximum tensile and compressive stresses.
A secondary region of compressive stress was deposited within the gap, which was devoid of strong
tensile stresses. We also found that in all cases, the maximum shear stress was largely unaffected.
However, if you remove shear stresses from the model, the overall magnitude of compressive and
tensile stress in the system is weakened, as seen in the work of Sapozhnikov [72]. Therefore, shear
stresses do play a fundamental role in these calculations and should be included.

The results from this thesis and subsequent work done using the model we have presented will
help provide insight to clinicians as they consider ways to optimize ESWT treatments.

11.2 Future Work

11.2.1 Application to additional treatments

One common use for ESWT is the treatment of plantar fasciitis [63]. It would be interesting to
obtain a CT scan of the calcaneous in order to investigate the treatment of the plantar fascia from
two different angles. This is also a treatment with only a small amount of soft tissue between the
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treatment area and the skin, but the the treatment is thought to have the largest effect in the soft
tissue [64, 63], so it would be interesting to combine this with a better model for thick tendon [33].

Traumatic brain injury (TBI) is the result of head trauma that causes damage to the brain,
usually after repeated exposure to explosions or concussive events[34]. It has the potential to cause
symptoms slowly over the period of months, the cause of which is not yet well-understood. Some
proposed mechanisms of this delay are axonal damage to the brain and intracranial bleeding [26, 34].
If left untreated, it can cause severe limitations in a persons physical and cognitive abilities. TBI has
become a prevalent problem as more military personnel are exposed to improvised explosive devices
(IEDs) in the field, and as the survival rate increases. Researchers would like to better understand the
effect of blast waves and repeated collisions on the brain in an effort to protect soldiers and athletes
from TBI. Numerically there are issues with modeling the air/skull interface present in modeling
blast waves originating from an IED. However, our code could be used to model the interaction of
a shock wave at the brain-skull interface, which is also important for understanding TBI.

11.2.2 Model Improvements

There are a wide variety of material properties for tissue that are available in the literature, but it
is unclear what the effect is on the wave propagation. We used published data for our calculations,
but it would be interesting to know how sensitive our results are to perturbations in these data. In
the case of the heterotopic ossification, we tested two different cases where the material properties
in the bone and ossification were the same, and where the two were significantly different. This did
not have a large effect on the location of shear and compressive stress deposition in the calculation,
but with a larger object, such as the actual heterotopic ossification, the different properties could
have a greater impact.

We have considered three different treatment angles in our model for a non-union. We found that
this has a strong effect on the deposition stresses in the calculation. Using this as an optimization
criteria, we could set up our code in such a way that we could determine the optimal angle for
treatment.

As discussed in Chapter 2, the structure of bone is highly heterogeneous in nature. We have
access to some trabecular bone segments that have been scanned by researchers in the Mechanical
Engineering department at UC Berkeley. It would be interesting to take an averaged value of the
material properties of bone, determined through a homogenization procedure, and use that for a
homogeneous segment of bone. Then we could compare results from that experiment to modeling
the a wave propagating through the porous bone structure. Our model for ESWT enables us to model
the bone and fluid in the same model, but care must be taken to accurately model the fine-scale
structures.

11.2.3 Additional applications

We have developed a three-dimensional code for modeling wave propagation in fluids and solids in the
event that the displacements in each case are small. The applications mentioned above are biological
in nature, but there many potential projects that we yet to consider. The software, experimental
data and documentation for this work will be available online [29], so it can be used by anyone
interested in solving a problem of this nature.
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