Clawpack Tutorial Part 2

Randall J. LeVeque Applied Mathematics
University of Washington

Slides posted at http://www.clawpack.org/links/tutorials http://faculty.washington.edu/rj//tutorials

Outline

- Boundary conditions
- Python plotting tools
- Specifying plotting parameters
- Options for viewing plots:

Web pages
Interactive

- Two space dimensions

Normal and transverse Riemann solvers

Boundary conditions and ghost cells

In each time step, the data in cells 1 to $N=\mathrm{mx}$ is used to define ghost cell values in cells outside the physical domain.

The wave-propagation algorithm is then applied on the expanded computational domain, solving Riemann problems at all interfaces.

The data is extended depending on the physical boundary conditons.

Boundary conditions

Periodic:

$$
Q_{-1}^{n}=Q_{N-1}^{n}, \quad Q_{0}^{n}=Q_{N}^{n}, \quad Q_{N+1}^{n}=Q_{1}^{n}, \quad Q_{N+2}^{n}=Q_{2}^{n}
$$

Boundary conditions

Periodic:

$$
Q_{-1}^{n}=Q_{N-1}^{n}, \quad Q_{0}^{n}=Q_{N}^{n}, \quad Q_{N+1}^{n}=Q_{1}^{n}, \quad Q_{N+2}^{n}=Q_{2}^{n}
$$

Extrapolation (outflow):

$$
Q_{-1}^{n}=Q_{1}^{n}, \quad Q_{0}^{n}=Q_{1}^{n}, \quad Q_{N+1}^{n}=Q_{N}^{n}, \quad Q_{N+2}^{n}=Q_{N}^{n}
$$

Boundary conditions

Periodic:

$$
Q_{-1}^{n}=Q_{N-1}^{n}, \quad Q_{0}^{n}=Q_{N}^{n}, \quad Q_{N+1}^{n}=Q_{1}^{n}, \quad Q_{N+2}^{n}=Q_{2}^{n}
$$

Extrapolation (outflow):

$$
Q_{-1}^{n}=Q_{1}^{n}, \quad Q_{0}^{n}=Q_{1}^{n}, \quad Q_{N+1}^{n}=Q_{N}^{n}, \quad Q_{N+2}^{n}=Q_{N}^{n}
$$

Solid wall:

$$
\begin{array}{lll}
\text { For } Q_{0}: & p_{0}=p_{1}, & u_{0}=-u_{1} \\
\text { For } Q_{-1}: & p_{-1}=p_{2}, & u_{-1}=-u_{2} .
\end{array}
$$

Setting BCs in Clawpack

In setrun. py, at each boundary
(xlower, xupper, ylower, yupper)
must specify for example:

$$
\begin{aligned}
& \text { clawdata.mthbc_xlower }=3 \quad \text { \# solid wall } \\
& \text { clawdata.mthbc_xupper }=1 \quad \text { \# extrapolation }
\end{aligned}
$$

Set to 2 at both boundaries for periodic.

Setting BCs in Clawpack

In setrun. py, at each boundary
(xlower, xupper, ylower, yupper)
must specify for example:

$$
\begin{aligned}
& \text { clawdata.mthbc_xlower }=3 \quad \text { \# solid wall } \\
& \text { clawdata.mthbc_xupper }=1 \quad \text { \# extrapolation }
\end{aligned}
$$

Set to 2 at both boundaries for periodic.
Set to 0 if you want to impose something special.
In this case need to copy \$CLAW/clawpack/1d/lib/bc1.f to application directory and modify (along with Makefile).

Extrapolation boundary conditions

If we set $Q_{0}=Q_{1}$ then the Riemann problem at $x_{1 / 2}$ has zero strength waves:

$$
Q_{1}-Q_{0}=\mathcal{W}_{1 / 2}^{1}+\mathcal{W}_{1 / 2}^{2}
$$

So in particular the incoming wave \mathcal{W}^{2} has strength 0 .

Extrapolation boundary conditions

If we set $Q_{0}=Q_{1}$ then the Riemann problem at $x_{1 / 2}$ has zero strength waves:

$$
Q_{1}-Q_{0}=\mathcal{W}_{1 / 2}^{1}+\mathcal{W}_{1 / 2}^{2}
$$

So in particular the incoming wave \mathcal{W}^{2} has strength 0 .
The outgoing wave perhaps should have nonzero magnitude, but it doesn't matter since it would only update ghost cell.

Ghost cell value is reset at the start of each time step by extrapolation.

Extrapolation boundary conditions

If we set $Q_{0}=Q_{1}$ then the Riemann problem at $x_{1 / 2}$ has zero strength waves:

$$
Q_{1}-Q_{0}=\mathcal{W}_{1 / 2}^{1}+\mathcal{W}_{1 / 2}^{2}
$$

So in particular the incoming wave \mathcal{W}^{2} has strength 0 .
The outgoing wave perhaps should have nonzero magnitude, but it doesn't matter since it would only update ghost cell.

Ghost cell value is reset at the start of each time step by extrapolation.

In 2D or 3D, extrapolation in normal direction is not perfect but works quite well.

Extrapolation boundary conditions

Examples:

- One-dimensional acoustics: \$CLAW/book/chap3/acousimple \$CLAW/apps/acoustics/1d/example2
- Tsunami propagation: \$CLAW/apps/tsunami/chile2010
- Seismic waves in a half-space on following slides,

Seismic wave in layered medium

Red $=\operatorname{div}(u)[P$-waves], \quad Blue $=\operatorname{cur}(\mathrm{u})[\mathrm{S}$-waves]

Seismic wave in layered medium

Red $=\operatorname{div}(u)[P$-waves], \quad Blue $=\operatorname{curl}(u)[S$-waves $]$

Seismic wave in layered medium

Red $=\operatorname{div}(u)[P-$ waves], \quad Blue $=\operatorname{curl}(u)[S$-waves]

Seismic wave in layered medium

$$
\text { Red }=\operatorname{div}(u)[P-\text { waves }], \quad \text { Blue }=\operatorname{curl}(u) \text { [S-waves] }
$$

Seismic wave in layered medium

$$
\text { Red }=\operatorname{div}(u)[P-\text { waves }], \quad \text { Blue }=\operatorname{curl}(u) \text { [S-waves] }
$$

Seismic wave in layered medium

Red $=\operatorname{div}(u)[P-$ waves], \quad Blue $=\operatorname{curl}(u)[S$-waves]

Seismic wave in layered medium

Red $=\operatorname{div}(u)[P-$ waves], \quad Blue $=\operatorname{curl}(u)[S$-waves]

Div (red) and Curl (blue) at $t=0.70$

Seismic wave in layered medium

Red $=\operatorname{div}(u)[P-$ waves], \quad Blue $=\operatorname{curl}(u)$ [S-waves]

Div (red) and Curl (blue) at $t=0.80$

Seismic wave in layered medium

Red $=\operatorname{div}(u)[P-$ waves], \quad Blue $=\operatorname{curl}(u)[S$-waves]

Div (red) and Curl (blue) at $t=0.90$

Seismic wave in layered medium

Red $=\operatorname{div}(u)[P-$ waves], \quad Blue $=\operatorname{curl}(u)[S$-waves]

Div (red) and Curl (blue) at $t=1.00$

Python plotting tools

Directory _output contains files fort.t000N, fort.q000N of data at frame N (N'th output time).
fort.t000N: Information about this time, fort. q000N: Solution on all grids at this time

There may be many grids at each output time.
Python tools provide a way to specify what plots to produce for each frame:

- One or more figures,
- Each figure has one or more axes,
- Each axes has one or more items, (Curve, contour, pcolor, etc.)

setplot function for speciying plots

The file setplot.py contains a function setplot
Takes an object plotdata of class ClawPlotData, Sets various attributes, and returns the object.

Documentation: www.clawpack.org/users/setplot.html

Example: 1 figure with 1 axes showing 1 item:

```
def setplot(plotdata):
    plotfigure = plotdata.new_plotfigure(name,num)
    plotaxes = plotfigure.new_plotaxes(title)
    plotitem = plotaxes.new_plotitem(plot_type)
    # set attributes of these objects
    return plotdata
```


setplot function for speciying plots

Example: plot first component of q as blue curve, red circles.
plotfigure = plotdata.new_plotfigure('Q', 1)
plotaxes = plotfigure.new_plotaxes('axes1')
plotitem = plotaxes.new_plotitem('1d_plot')
plotitem.plotvar $=0$ \# Python indexing!
plotitem.plotstyle = '-'
plotitem.color = 'b' \# or [0,0,1] or '\#0000ff'
plotitem = plotaxes.new_plotitem('1d_plot') \# plotitem now points to a new object!
plotitem.plotvar $=0$
plotitem.plotstyle = 'ro'

Plotting examples and documentation

General plotting information: www.clawpack.org/users/plotting.html

Use of setplot, possible attributes: www.clawpack.org/users/setplot.html

Examples:
1d: www.clawpack.org/users/plotexamples.html
2d: www.clawpack.org/users/plotexamples2d.html
FAQ: www.clawpack.org/users/plotting_faq.html
Gallery of applications:
www.clawpack.org/users/apps.html

Plotting options

Create a set of webpages showing all plots:
\$ make . plots

Disadvantages:

- May take a while to plot all frames
- Can't zoom in dynamically or explore data

View plots interactively:

```
$ ipyclaw # alias defined in setenv.bash
In[1]: ip = Iplotclaw()
In[2]: ip.plotloop()
PLOTCLAW>> ?
PLOTCLAW>> q
In[3]: Quit
```


First order hyperbolic PDE in 2 space dimensions

Advection equation: $\quad q_{t}+u q_{x}+v q_{y}=0$
First-order system: $\quad q_{t}+A q_{x}+B q_{y}=0$
where $q \in \mathbb{R}^{m}$ and $A, B \in \mathbb{R}^{m \times m}$.

Hyperbolic if $\cos (\theta) A+\sin (\theta) B$ is diagonalizable with real eigenvalues, for all angles θ.

First order hyperbolic PDE in 2 space dimensions

Advection equation: $\quad q_{t}+u q_{x}+v q_{y}=0$
First-order system: $\quad q_{t}+A q_{x}+B q_{y}=0$
where $q \in \mathbb{R}^{m}$ and $A, B \in \mathbb{R}^{m \times m}$.

Hyperbolic if $\cos (\theta) A+\sin (\theta) B$ is diagonalizable with real eigenvalues, for all angles θ.

This is required so that plane-wave data gives a 1d hyperbolic problem:

$$
q(x, y, 0)=\breve{q}(x \cos \theta+y \sin \theta) \quad(\backslash \text { breve } \quad \mathrm{q})
$$

implies contours of q in $x-y$ plane are orthogonal to θ-direction.

Acoustics in 2 dimensions

$$
\begin{aligned}
p_{t}+K_{0}\left(u_{x}+v_{y}\right) & =0 \\
\rho_{0} u_{t}+p_{x} & =0 \\
\rho_{0} v_{t}+p_{y} & =0
\end{aligned}
$$

Note: pressure responds to compression or expansion and so p_{t} is proportional to divergence of velocity.

Second and third equations are $F=m a$.

Acoustics in 2 dimensions

$$
\begin{aligned}
p_{t}+K_{0}\left(u_{x}+v_{y}\right) & =0 \\
\rho_{0} u_{t}+p_{x} & =0 \\
\rho_{0} v_{t}+p_{y} & =0
\end{aligned}
$$

Note: pressure responds to compression or expansion and so p_{t} is proportional to divergence of velocity.

Second and third equations are $F=m a$.
Gives hyperbolic system $q_{t}+A q_{x}+B q_{y}=0$ with
$q=\left[\begin{array}{l}p \\ u \\ v\end{array}\right], \quad A=\left[\begin{array}{ccc}0 & K_{0} & 0 \\ 1 / \rho_{0} & 0 & 0 \\ 0 & 0 & 0\end{array}\right], \quad B=\left[\begin{array}{ccc}0 & 0 & K_{0} \\ 0 & 0 & 0 \\ 1 / \rho_{0} & 0 & 0\end{array}\right]$.

Acoustics in 2 dimensions

$$
q=\left[\begin{array}{l}
p \\
u \\
v
\end{array}\right], \quad A=\left[\begin{array}{ccc}
0 & K_{0} & 0 \\
1 / \rho_{0} & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad B=\left[\begin{array}{ccc}
0 & 0 & K_{0} \\
0 & 0 & 0 \\
1 / \rho_{0} & 0 & 0
\end{array}\right]
$$

Plane waves:

$$
A \cos \theta+B \sin \theta=\left[\begin{array}{ccc}
0 & K_{0} \cos \theta & K_{0} \sin \theta \\
\cos \theta / \rho_{0} & 0 & 0 \\
\sin \theta / \rho_{0} & 0 & 0
\end{array}\right]
$$

Acoustics in 2 dimensions

$q=\left[\begin{array}{l}p \\ u \\ v\end{array}\right], \quad A=\left[\begin{array}{ccc}0 & K_{0} & 0 \\ 1 / \rho_{0} & 0 & 0 \\ 0 & 0 & 0\end{array}\right], \quad B=\left[\begin{array}{ccc}0 & 0 & K_{0} \\ 0 & 0 & 0 \\ 1 / \rho_{0} & 0 & 0\end{array}\right]$.
Plane waves:

$$
A \cos \theta+B \sin \theta=\left[\begin{array}{ccc}
0 & K_{0} \cos \theta & K_{0} \sin \theta \\
\cos \theta / \rho_{0} & 0 & 0 \\
\sin \theta / \rho_{0} & 0 & 0
\end{array}\right]
$$

Eigenvalues: $\lambda^{1}=-c_{0}, \quad \lambda^{2}=0, \lambda^{3}=+c_{0}=\sqrt{K_{0} / \rho_{0}}$ Independent of angle θ.

Isotropic: sound propagates at same speed in any direction.

Acoustics in 2 dimensions

$q=\left[\begin{array}{l}p \\ u \\ v\end{array}\right], \quad A=\left[\begin{array}{ccc}0 & K_{0} & 0 \\ 1 / \rho_{0} & 0 & 0 \\ 0 & 0 & 0\end{array}\right], \quad B=\left[\begin{array}{ccc}0 & 0 & K_{0} \\ 0 & 0 & 0 \\ 1 / \rho_{0} & 0 & 0\end{array}\right]$
Plane waves:

$$
A \cos \theta+B \sin \theta=\left[\begin{array}{ccc}
0 & K_{0} \cos \theta & K_{0} \sin \theta \\
\cos \theta / \rho_{0} & 0 & 0 \\
\sin \theta / \rho_{0} & 0 & 0
\end{array}\right]
$$

Eigenvalues: $\lambda^{1}=-c_{0}, \quad \lambda^{2}=0, \lambda^{3}=+c_{0}=\sqrt{K_{0} / \rho_{0}}$ Independent of angle θ.

Isotropic: sound propagates at same speed in any direction.
Note: Zero wave speed for "shear wave" with variation only in velocity in direction $(-\sin \theta, \cos \theta)$. (Fig 18.1)

Acoustics in 2 dimensions

$$
\begin{aligned}
& p_{t}+K_{0}\left(u_{x}+v_{y}\right)=0 \\
& \rho_{0} u_{t}+p_{x}=0 \\
& \rho_{0} v_{t}+p_{y}=0 \\
& A=\left[\begin{array}{ccc}
0 & K_{0} & 0 \\
1 / \rho_{0} & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad R^{x}=\left[\begin{array}{rrr}
-Z_{0} & 0 & Z_{0} \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
\end{aligned}
$$

Solving $q_{t}+A q_{x}=0$ gives pressure waves in (p, u). x-variations in v are stationary.

Acoustics in 2 dimensions

$$
\begin{aligned}
p_{t}+K_{0}\left(u_{x}+v_{y}\right) & =0 \\
\rho_{0} u_{t}+p_{x} & =0 \\
\rho_{0} v_{t}+p_{y} & =0
\end{aligned}
$$

$$
A=\left[\begin{array}{ccc}
0 & K_{0} & 0 \\
1 / \rho_{0} & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad R^{x}=\left[\begin{array}{rrr}
-Z_{0} & 0 & Z_{0} \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

Solving $q_{t}+A q_{x}=0$ gives pressure waves in (p, u).
x-variations in v are stationary.

$$
B=\left[\begin{array}{ccc}
0 & 0 & K_{0} \\
0 & 0 & 0 \\
1 / \rho_{0} & 0 & 0
\end{array}\right] \quad R^{y}=\left[\begin{array}{rrr}
-Z_{0} & 0 & Z_{0} \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

Solving $q_{t}+B q_{y}=0$ gives pressure waves in (p, v).
y-variations in u are stationary.

Advection: Donor Cell Upwind

With no correction fluxes, Godunov's method for advection is
Donor Cell Upwind:

$$
\begin{aligned}
Q_{i j}^{n+1}= & Q_{i j}-\frac{\Delta t}{\Delta x}\left[u^{+}\left(Q_{i j}-Q_{i-1, j}\right)+u^{-}\left(Q_{i+1, j}-Q_{i j}\right)\right] \\
& -\frac{\Delta t}{\Delta y}\left[v^{+}\left(Q_{i j}-Q_{i, j-1}\right)+v^{-}\left(Q_{i, j+1}-Q_{i j}\right)\right]
\end{aligned}
$$

Stable only if $\left|\frac{u \Delta t}{\Delta x}\right|+\left|\frac{v \Delta t}{\Delta y}\right| \leq 1$.

Advection: Corner Transport Upwind (CTU)

Correction fluxes can be added to advect waves correctly.
Corner Transport Upwind:

Stable for $\max \left(\left|\frac{u \Delta t}{\Delta x}\right|,\left|\frac{v \Delta t}{\Delta y}\right|\right) \leq 1$.

Advection: Corner Transport Upwind (CTU)

Need to transport triangular region from cell (i, j) to $(i, j+1)$:

$$
\text { Area }=\frac{1}{2}(u \Delta t)(v \Delta t) \Longrightarrow\left(\frac{\frac{1}{2} u v(\Delta t)^{2}}{\Delta x \Delta y}\right)\left(Q_{i j}-Q_{i-1, j}\right)
$$

Accomplished by correction flux:

$$
\tilde{G}_{i, j+1 / 2}=-\frac{1}{2} \frac{\Delta t}{\Delta x} u v\left(Q_{i j}-Q_{i-1, j}\right)
$$

$\frac{\Delta t}{\Delta y}\left(\tilde{G}_{i, j+1 / 2}-\tilde{G}_{i, j-1 / 2}\right)$ gives approximation to $\frac{1}{2} \Delta t^{2} u v q_{x y}$.
$\frac{\Delta t}{\Delta x}\left(\tilde{F}_{i+1 / 2, j}-\tilde{F}_{i-1 / 2, j}\right)$ gives similar approximation.

Wave propagation algorithms in 2D

Clawpack requires:
Normal Riemann solver rpn2.f
Solves 1d Riemann problem $q_{t}+A q_{x}=0$
Decomposes $\Delta Q=Q_{i j}-Q_{i-1, j}$ into $\mathcal{A}^{+} \Delta Q$ and $\mathcal{A}^{-} \Delta Q$.
For $q_{t}+A q_{x}+B q_{y}=0$, split using eigenvalues, vectors:

$$
A=R \Lambda R^{-1} \Longrightarrow A^{-}=R \Lambda^{-} R^{-1}, A^{+}=R \Lambda^{+} R^{-1}
$$

Input parameter ixy determines if it's in x or y direction.
In latter case splitting is done using B instead of A.
This is all that's required for dimensional splitting.

Wave propagation algorithms in 2D

Clawpack requires:
Normal Riemann solver rpn2.f
Solves 1d Riemann problem $q_{t}+A q_{x}=0$
Decomposes $\Delta Q=Q_{i j}-Q_{i-1, j}$ into $\mathcal{A}^{+} \Delta Q$ and $\mathcal{A}^{-} \Delta Q$.
For $q_{t}+A q_{x}+B q_{y}=0$, split using eigenvalues, vectors:

$$
A=R \Lambda R^{-1} \Longrightarrow A^{-}=R \Lambda^{-} R^{-1}, A^{+}=R \Lambda^{+} R^{-1}
$$

Input parameter ixy determines if it's in x or y direction.
In latter case splitting is done using B instead of A.
This is all that's required for dimensional splitting.
Transverse Riemann solver rpt2.f
Decomposes $\mathcal{A}^{+} \Delta Q$ into $\mathcal{B}^{-} \mathcal{A}^{+} \Delta Q$ and $\mathcal{B}^{+} \mathcal{A}^{+} \Delta Q$ by splitting this vector into eigenvectors of B.
(Or splits vector into eigenvectors of A if $\mathrm{ixy}=2$.)

Wave propagation algorithm for $q_{t}+A q_{x}+B q_{y}=0$

Decompose $A=A^{+}+A^{-}$and $B=B^{+}+B^{-}$.
For $\Delta Q=Q_{i j}-Q_{i-1, j}$:

Wave propagation algorithm for $q_{t}+A q_{x}+B q_{y}=0$

Decompose $A=A^{+}+A^{-}$and $B=B^{+}+B^{-}$.
For $\Delta Q=Q_{i j}-Q_{i-1, j}$:

Wave propagation algorithm for $q_{t}+A q_{x}+B q_{y}=0$

Decompose $A=A^{+}+A^{-}$and $B=B^{+}+B^{-}$.
For $\Delta Q=Q_{i j}-Q_{i-1, j}$:

Wave propagation algorithm for $q_{t}+A q_{x}+B q_{y}=0$

Decompose $A=A^{+}+A^{-}$and $B=B^{+}+B^{-}$.
For $\Delta Q=Q_{i j}-Q_{i-1, j}$:

Wave propagation algorithm for $q_{t}+A q_{x}+B q_{y}=0$

Decompose $A=A^{+}+A^{-}$and $B=B^{+}+B^{-}$.
For $\Delta Q=Q_{i j}-Q_{i-1, j}$:

Wave propagation algorithm on a quadrilateral grid

Wave propagation algorithm on a quadrilateral grid

Acoustics in heterogeneous media

$$
q_{t}+A(x, y) q_{x}+B(x, y) q_{y}=0, \quad q=(p, u, v)^{T}
$$

where
$A=\left[\begin{array}{ccc}0 & K(x, y) & 0 \\ 1 / \rho(x, y) & 0 & 0 \\ 0 & 0 & 0\end{array}\right], \quad B=\left[\begin{array}{ccc}0 & 0 & K(x, y) \\ 0 & 0 & 0 \\ 1 / \rho(x, y) & 0 & 0\end{array}\right]$.
Note: Not in conservation form!

Acoustics in heterogeneous media

$$
q_{t}+A(x, y) q_{x}+B(x, y) q_{y}=0, \quad q=(p, u, v)^{T}
$$

where
$A=\left[\begin{array}{ccc}0 & K(x, y) & 0 \\ 1 / \rho(x, y) & 0 & 0 \\ 0 & 0 & 0\end{array}\right], \quad B=\left[\begin{array}{ccc}0 & 0 & K(x, y) \\ 0 & 0 & 0 \\ 1 / \rho(x, y) & 0 & 0\end{array}\right]$.
Note: Not in conservation form!
Wave propagation still makes sense. In x-direction:
$\mathcal{W}^{1}=\alpha^{1}\left[\begin{array}{c}-Z_{i-1, j} \\ 1 \\ 0\end{array}\right], \quad \mathcal{W}^{2}=\alpha^{2}\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right], \quad \mathcal{W}^{3}=\alpha^{3}\left[\begin{array}{c}Z_{i j} \\ 1 \\ 0\end{array}\right]$.
Wave speeds: $s_{i-1 / 2, j}^{1}=-c_{i-1, j}, \quad s_{i-1 / 2, j}^{2}=0, \quad s_{i-1 / 2, j}^{3}=+c_{i j}$.

Acoustics in heterogeneous media

$$
\mathcal{W}^{1}=\alpha^{1}\left[\begin{array}{c}
-Z_{i-1, j} \\
1 \\
0
\end{array}\right], \quad \mathcal{W}^{2}=\alpha^{2}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], \quad \mathcal{W}^{3}=\alpha^{3}\left[\begin{array}{c}
Z_{i j} \\
1 \\
0
\end{array}\right]
$$

Decompose $\Delta Q=(\Delta p, \Delta u, \Delta v)^{T}$:

$$
\begin{aligned}
& \alpha_{i-1 / 2, j}^{1}=\left(-\Delta Q^{1}+Z \Delta Q^{2}\right) /\left(Z_{i-1, j}+Z_{i j}\right) \\
& \alpha_{i-1 / 2, j}^{2}=\Delta Q^{3} \\
& \alpha_{i-1 / 2, j}^{3}=\left(\Delta Q^{1}+Z_{i-1, j} \Delta Q^{2}\right) /\left(Z_{i-1, j}+Z_{i j}\right)
\end{aligned}
$$

Acoustics in heterogeneous media

$$
\mathcal{W}^{1}=\alpha^{1}\left[\begin{array}{c}
-Z_{i-1, j} \\
1 \\
0
\end{array}\right], \quad \mathcal{W}^{2}=\alpha^{2}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], \quad \mathcal{W}^{3}=\alpha^{3}\left[\begin{array}{c}
Z_{i j} \\
1 \\
0
\end{array}\right]
$$

Decompose $\Delta Q=(\Delta p, \Delta u, \Delta v)^{T}$:

$$
\begin{aligned}
& \alpha_{i-1 / 2, j}^{1}=\left(-\Delta Q^{1}+Z \Delta Q^{2}\right) /\left(Z_{i-1, j}+Z_{i j}\right) \\
& \alpha_{i-1 / 2, j}^{2}=\Delta Q^{3} \\
& \alpha_{i-1 / 2, j}^{3}=\left(\Delta Q^{1}+Z_{i-1, j} \Delta Q^{2}\right) /\left(Z_{i-1, j}+Z_{i j}\right)
\end{aligned}
$$

Fluctuations: (Note: $s^{1}<0, s^{2}=0, s^{3}>0$)

$$
\begin{aligned}
& \mathcal{A}^{-} \Delta Q_{i-1 / 2, j}=s_{i-1 / 2, j}^{1} \mathcal{W}_{i-1 / 2, j}^{1} \\
& \mathcal{A}^{+} \Delta Q_{i-1 / 2, j}=s_{i-1 / 2, j}^{3} \mathcal{W}_{i-1 / 2, j}^{3}
\end{aligned}
$$

Acoustics in heterogeneous media

Transverse solver: Split right-going fluctuation

$$
\mathcal{A}^{+} \Delta Q_{i-1 / 2, j}=s_{i-1 / 2, j}^{3} \mathcal{W}_{i-1 / 2, j}^{3}
$$

into up-going and down-going pieces:

Decompose $\mathcal{A}^{+} \Delta Q_{i-1 / 2, j}$ into eigenvectors of B. Down-going:

$$
\mathcal{A}^{+} \Delta Q_{i-1 / 2, j}=\beta^{1}\left[\begin{array}{c}
-Z_{i, j-1} \\
0 \\
1
\end{array}\right]+\beta^{2}\left[\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right]+\beta^{3}\left[\begin{array}{c}
Z_{i j} \\
0 \\
1
\end{array}\right]
$$

Transverse solver for acoustics

Up-going part: $\mathcal{B}^{+} \mathcal{A}^{+} \Delta Q_{i-1 / 2, j}=c_{i, j+1} \beta^{3} r^{3}$ from

$$
\begin{aligned}
& \mathcal{A}^{+} \Delta Q_{i-1 / 2, j}=\beta^{1}\left[\begin{array}{c}
-Z_{i j} \\
0 \\
1
\end{array}\right]+\beta^{2}\left[\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right]+\beta^{3}\left[\begin{array}{c}
Z_{i, j+1} \\
0 \\
1
\end{array}\right] \\
& \beta^{3}=\left(\left(\mathcal{A}^{+} \Delta Q_{i-1 / 2, j}\right)^{1}+\left(\mathcal{A}^{+} \Delta Q_{i-1 / 2, j}\right)^{3} Z_{i, j+1}\right) /\left(Z_{i j}+Z_{i, j+1}\right) \\
& \hline \begin{array}{l|l|l|l}
& \\
\hline & & & B^{+} A^{+} \Delta Q
\end{array} \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

Transverse Riemann solver in Clawpack

rpt 2 takes vector asdq and returns bmasdq and bpasdq where
asdq $=\mathcal{A}^{*} \Delta Q$ represents either

$$
\begin{aligned}
& \mathcal{A}^{-} \Delta Q \text { if imp }=1, \text { or } \\
& \mathcal{A}^{+} \Delta Q \text { if imp }=2 .
\end{aligned}
$$

Returns $\mathcal{B}^{-} \mathcal{A}^{*} \Delta Q$ and $\mathcal{B}^{+} \mathcal{A}^{*} \Delta Q$.

Transverse Riemann solver in Clawpack

rpt 2 takes vector asdq and returns bmasdq and bpasdq where
asdq $=\mathcal{A}^{*} \Delta Q$ represents either

$$
\begin{aligned}
& \mathcal{A}^{-} \Delta Q \text { if imp }=1, \text { or } \\
& \mathcal{A}^{+} \Delta Q \text { if imp }=2 .
\end{aligned}
$$

Returns $\mathcal{B}^{-} \mathcal{A}^{*} \Delta Q$ and $\mathcal{B}^{+} \mathcal{A}^{*} \Delta Q$.
Note: there is also a parameter ixy:
ixy $=1$ means normal solve was in x-direction,
ixy $=2$ means normal solve was in y-direction, In this case asdq represents $\mathcal{B}^{-} \Delta Q$ or $\mathcal{B}^{+} \Delta Q$ and the routine must return $\mathcal{A}^{-} \mathcal{B}^{*} \Delta Q$ and $\mathcal{A}^{+} \mathcal{B}^{*} \Delta Q$.

