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Objectives

The AMRClaw and GeoClaw software use block-structured adaptive mesh refinement to
selectively refine around propagating waves [2]. For problems where a small region of the
solution is of primary interest, solving the time−dependent adjoint equation and using
a suitable inner product with the forward solution allows more precise refinement of the
relevant waves.

Clawpack and Adaptive Mesh Refinement

Clawpack is a collection of finite volume methods to solve hyperbolic systems of conserva-
tion laws. Adaptive mesh refinement (AMR), implemented for Clawpack in AMRClaw,
clusters grid points in areas of interest, such as discontinuities or regions where the solu-
tion has a complicated structure.
The mesh refinement used in AMRClaw utilizes various strategies for determining which
areas of the solution need refinement. These strategies include:

•A Richardson error estimation procedure that compares the solution on the existing
grid with the solution on a coarser grid, and refines cells where this error is greater
than a specified tolerance [2].
•For geophysical flows, refining cells where the surface elevation of the water is
perturbed from sea level above some set tolerance [1].

The Adjoint Method

Suppose we are interested in calculating the value of a functional

J =
∫ b
a
ϕ(x)Tq(x, tf)dx,

where the q is the solution to the time dependent equation

qt + A(x)qx = 0

subject to some initial and boundary conditions. Note that
∫ b
a

∫ tf
t0
ϕ(x)T (qt + A(x)qx) dxdt = 0.

If we
• integrate by parts,
• set ϕ(x) = q̂(x, tf),
• require that q̂t + (A(x)T q̂)x = 0,
• and select the appropriate boundary terms for q̂

this equation simplifies to
∫ b
a
q̂T (x, tf)q(x, tf) dx =

∫ b
a
q̂T (x, t0)q(x, t0) dx.

Note that this requires solving the adjoint equation backward in time since data is given
at the final time tf .
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Implications

•The integral over the inner product between q̂ and q at the final time is equal to this
integral at any earlier time t = t0.

•The locations where the inner product q̂(x, t0)Tq(x, t0) is large at time t0 are the areas
that will have a significant effect on the inner product at time t = tf .

•Hence, the adjoint approach identifies at any given time step the areas that will most
influence the final inner product.

•We can apply AMR to only these areas.

Acoustics Example

Consider the linear acoustics equations in one dimension in a piecewise constant medium,

qt(x, t) + Aqx(x, t) = 0,

with wall boundary conditions and some initial condition. Here,

A(x) =
 0 K(x)

1
ρ(x) 0

 , q(x, t) =
p(x, t)
u(x, t)

 ,
p is the pressure, u is the velocity, K is the bulk modulus, and ρ is the density. The
adjoint problem for this system is

q̂t +
(
AT q̂

)
x

= 0 x ∈ [a, b], t > 0
û(a, t) = 0, û(b, t) = 0 t ≥ 0,

where we can pick the function ϕ(x) = q̂(x, tf) to highlight some region of interest.
Consider an example where a = −5, b = 3, K = 1 and

ρ =
1 if x < 0,

4 if x > 0.

As initial data for q(x, t) we take a Gaussian hump in pressure about x = −2 and a zero
velocity. For q̂(x, tf) we take a square pulse in p̂ centered about x = 2, and û = 0 at
tf = 20. The results below show that:
•The inner product clearly identifies which regions will influence our region of interest
at the final time.

•Using AMR in all the regions where the 1-norm of q is large would result in refinement
of areas that will have no effect on our area of interest at the final time.

Figure 1: One-dimensional acoustics. The 1-norm
of q (forward) and q̂ (adjoint) in the (x, t) plane
are shown in the left and right figures respectively.

Figure 2: The 1-norm of q and q̂ in the (x, t)
plane are overlayed in the left figure, and their
inner product is shown in the right, showing the
region needing refinement.

Incorporating a Time Range

Suppose we want good accuracy in a
region of interest over a range of times
ts ≤ t ≤ tf . Then at time t we should
refine where

max
T (t)≤τ≤t

∫ b
a
q̂(x, τ )q(x, τ ) dx

exceeds some tolerance, where
T (t) = max(t + ts − tf , 0).
(Using the fact that the adjoint for this
problem is autonomous in time.)

Figure 3: Left: 1-norm of q and q̂ for ts = 18.
Right: Max inner product over time range, show-
ing additional wave that must be refined.

Tsunami Propagation

This approach has been applied in GeoClaw, shown below for a tsunami originating on
the Aleutian-Alaska Subduction Zone. The function ϕ is a square pulse around the tide
gauge in Crescent City, California.
Note that using the adjoint method to guide AMR focuses the refinement on the parts
of the wave that will actually reach the gauge. For this example, the linearlized shallow
water equations were used for the adjoint problem.

Conclusion

Using the adjoint method to guide adaptive mesh refinement can reduce the computa-
tional expense of solving a system of equations by enabling targeted refinement of the
regions of the domain that will influence a specific area of interest. A paper is in prepa-
ration [3] to present this work.
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