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Introduction Resolving the Seawall - Adaptive Mesh Refinement
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conditions and refinement criteria based on the physics of A <

the problem. This re-gridding occurs at user defined

Flooding in many coastal communities has
become a central concern due to the growing
threat of climate change, in particular sea level
rise. To combat this effective adaptation strategies
are needed that are optimized for flood risk
reduction but the question remains as to what
strategies are the most effective. In this poster we
present a methodology for including sea walls,

intervals taking into account clustering of flagged cells.
Grid boundaries are handled by the code automatically.
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As a demonstration of the capabilities of AMR we
simulated the storm surge due to Hurricane lke with the
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Subgrid Seawall Model
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seawalls. Here we concentrate on sea-walls as they are the most difficult structure to include in a storm
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