Dispersion of acoustic waves in a layered medium

Impedance: $Z = \sqrt{K\rho}$

Dispersion of normally-propagating waves is caused by **reflection** and depends on **impedance** variation (Z-dispersion)

Dispersion of transverse-propagating waves is caused by diffraction and depends on sound **speed** variation (c-dispersion)

Shallow water waves

Shallow water equations:

$$\begin{aligned} h_t + (hu)_x + (hv)_y &= 0 \\ (hu)_t + (hu^2 + gh^2/2)_x + (huv)_y &= -ghb_x \\ (hv)_t + (huv)_x + (hv^2 + gh^2/2)_y &= -ghb_y \end{aligned}$$

h: depth

u, v: velocity

g: gravitational constant

b: bottom elevation

characteristic velocity: $c = u \pm \sqrt{gh}$

Shallow water waves propagate in a nonlinear way, leading to wave breaking

Shallow water waves over periodic bathymetry

Faster propagation over channels Slower propagation over ridges

-> leads to diffractive dispersion

Shallow water "diffractons"

Numerical methods

- Godunov-type finite volume methods
- Parallelism via PyClaw
- f-wave shallow water Riemann solver

- Shading: wave height
- Black curve: trace of solution at fixed y-value

Nonlinearity + effective dispersion => solitary waves

No wave breaking

Any initial pulse evolves into a train of solitary waves:

Try it yourself: http://nbviewer.jupyter.org/gist/ketch/9250942

Main findings

- Both reflection and diffraction can create a dispersive effect in periodic media
- Strong reflection or diffraction can prevent shock formation and lead to solitary wave formation
- This is predicted to occur in a broad range of physical models, including nonlinear elasticity, shallow water waves, and compressible fluid dynamics

References

- Santosa & Symes, SIAP 1991
- LeVeque & Yong, SIAP 2003
- Ketcheson & LeVeque,
 Comm. Math. Sci. 2012
- Quezada de Luna &
 Ketcheson, SIAP 2014
- Ketcheson & Quezada de Luna, MM&S 2015

See http://davidketcheson.info/publications.html (click "nonlinear waves")

