Seismic Modeling to Improve Tsunami Prediction in Geoclaw Christopher J Vogl, Randall J LeVeque

Department of Applied Mathematics

Motivation

Cascadia Subduction Zone

- 1. land mass is added to the Juan de Fuca plate
- 2. plate subducts under North American plate
- 3. locking/unlocking \Rightarrow earthquakes
- 4. tsunamis are generated as a result

Model

Governing Equations

$$ar{\sigma}_t = \lambda (
abla \cdot ec{u}) \mathbf{I} + \mu (
abla ec{u} +
abla^T ec{u})$$
 $ho ec{u}_t =
abla \cdot ar{\sigma} - rac{g
ho}{2 \lambda} \mathrm{tr}(ar{\sigma})$
 $ar{\sigma}$ - stress $ec{u}$ - velocity \mathbf{I} - identity tensor
 ho - density λ, μ - Lamé params g - gravity

The Riemann Problem

Interfaces between materials are handled naturally in Clawpack (denote $\vec{f} = \bar{\sigma}.\vec{n}$):

$$egin{aligned} ec{f}_L \cdot ec{n} &= ec{f}_R \cdot ec{n} \ ec{u}_L \cdot ec{n} &= ec{u}_R \cdot ec{n} \ ec{f}_L \cdot ec{ au} &= ec{f}_R \cdot ec{ au} \ ec{d}_L \cdot ec{ au} &= ec{d}_R \cdot ec{ au} \ ec{d}_R \cdot ec{ au} &= ec{u}_R \cdot ec{ au} \end{aligned}$$

where \vec{n} and $\vec{\tau}$ are the normal and tangent vectors to the interface.

Incorporating Slip

To induce slip at the fault, modify the Riemann problem as follows:

W UNIVERSITY of WASHINGTON

Software & References

Email: chris.j.vogl@gmail.com