read clawpack
parameters from
claw.data

l

read AMR parameters
from amr.data

call setprob() to set user
defined problem
parameters

call set_regions() to read
regions.data to get regions
specified for refinement

call set_gauges() to read
gauges data from
gauges.data

call stst1() to
(1) initialize the array for all grid
nodes
(2) allocate memory for alloc

call domain() to set up |
initial base level
(coarsest level) grid
domain

A 4

call setgrd() to setup the
entire grid (tree) structure

Y
call outtre() to output all

grids that have been
created so far

Y
call conck() for
conservation check, for
debugging

A 4

call tick() to drive the
computation

A 4

output timing data

A 4

call cleanup() to clean up

1
R

NO

lev :

For each grid mptr that's on this level,

should be reset to 0 and their tlevel should be set
to equal to tlevel(base) :
for i = Ibase to Ifine:
icheck(i) =0
for i = Ibase+1 to Ifine:

L tlevel(i) = tlevel(lbase)

to the 2nd finest

renew listofgrids (list of all grids)
and bndlist (array implementation of
multiple linked lists, each of which is
a list of grids (at the same level) that
can provide ghost cell for a grid)

assign storage for solution at store1
for all new generated grids.

\

]

OR each level lev(from Ibase+1 to

For each side of the grid mptr, call
filrecur() to fill the ghost region,

v

ATe there any grid remaining s
the list?

NO

done

have a look at next grid in the list

r
I call bound() to set boundary values for = = = = == -
I grid mptr if necessary 1 . _)
I I If any portion is outside physical
I = = | boundary, call bc2amr() to fill that
I portion
[If spatial gradients or user-specified
N criteria is used for flagging, call
I [flag2refine2() to flag cells for
I 1 refinement
I [
I [
I [
[
! : If richardson error estimates is used
! - = | for flagging, call errest() to flag cells
: for refinement
[
[
[
[create a grid node (by assigning one from | : - -
. . I For each grid, call flagregions2().
the free node list and by calling nodget()) to I This will modify its flag array if part of
represent the base level grid and set node ! r = | itis constrained by min refine level
parameters [[and/or max refine level defined by
1 I "region”
v . .
. I I
call birect() to split the grid if it's too large - - I I (—froreacnh grd kﬁﬁﬁ ontever—)
[[["Icheck"), if any grid that's two levels
¢ ! allocate space for q and auxiliary [[finer.(level "Icheck"+2) exists, gall
call ginit() to initialize solution g and auxiliary ! array for ALL base level grids ' : projec2(..., Icheck, ...) to modify
b | laidsl -~~~ —--- - [I mptr's flag array if part of it is under
2l Ol Sl 1S LSUa] gliier ! : - — I ! those finer grids. This is to ensure
v : call user defined .q.lnlt() to initialize q [[level "Icheck+1" that's to be
call arrangeGrids() to sort all grids on this level : hnte] WY B : o _: generated will properly contains level
based on number of cells in the grid. Larger grid - : : , \ Icheck’+2 grids. J For a grid mptr passed into
is put in the front of the linked list of grid nodes 1 I l setdomflags(), check if it intersect
¥ call flagger(..., Icheck,) to flag all t 11 (Foreach gfd (on level Mioheck), call WéTa?Qeyérﬁfp?Qg'SZﬁ') e el
. 11 " " i i 1 shiftset2() to flag cells that are at
call makeGridList() to update the array, level "Icheck" grids, based on spatial | _ _ - . . .
listOfGri hich 0 P £ all ari Y gradient, user specified criteria or ! ! most mbuff cells away ; ~ |portion of the grid mptr overlaps with
istOfGrids, which stores index of all grids on - - Richardson efror estimation I 1 from previously flagged cells for | [lbase grids (described by Ibase index
all levels compactly ! ! : creating buffer zone A\ space))
[[
¢ [[1 l :
. . . 1 1 | 4)
bndList, that stores information of ! call bufnst2(..., Icheck, ...) to flag all : I |'lcheck"), call setdomflags(..., Icheck, : :
neighboring grids for each grid on level 1 1 |level "Icheck grids for reasons other , 192356, 1) 10 SR UMD UG CLTENT - |
, [than accuracy, eg. forced refinement, |- = = = fflag_s, node(dofmflagsz, gt e ! . .
call figivi2(..., Icheck, ...) to flag cells : and properly nesting of grids on Iag_f|§t§et_ to_; (I)r 2 ﬁﬂ' el 9”_3 mptr I ~ Then transfer this overlapping
- = |on all level "Icheck" grids, which is to I different levels IT1tIS Insiae [evel lbase grids. I_ | information from Ibase index space
1 be refined to generate level Icheck+1| = = = = = = == 7 . 4 to Icheck index space
I :
I grids : (For each grid mptr on level "Icheck",)
[l I r= look at its domain flags (in N 4
start from level 1: set lev = 1 [r — ! node(domflags2, mptr) to tell which
[. : el CO'?‘GZO 19 o gt [pelnis ! cell on it is not inside level "lbase"
: call smartbis() to cluster flagged cells on all grids on level Icheck and pack [A N
. ; . I 2 s g
I into multiple new level Icheck+1 grids : their (i,j) centered indices mto an [flagged". This is to ensure level
I I b:érig :?gz(?sga:opri: th:'aesgg'gt: cl>r:1e - T T : "lcheck+1" that's to be generated will
1 l ! I dp onal Ki t their 2D =TT be properly nested in level "lbase"
S ! N I |menS|ona_p3_c ing ot their : grids which stay fixed during this
Is lev the finest level specified? ! generate nodes for these new level - \ Indices. J I \ regridding.)
! Icheck+1 grids and call nestck2() to I
_——— = check if each of them is properly I
YES ! ! nested in base level grids which stay I Pack all flagged cells into badpts
: : fixed during this regridding and in - array, free memories for storing
y : : level Icheck-1 grids to make sure the regular flags and domain flags, sort
call grdfit(loase=lev, Icheck=lev, ...) to generate I I Icheck grids to be generated at next points in badpts etc.
all level lev+1 grids e I step will properly contain Icheck+1
I grids. Start from a rectangle that covers all
l I If any grid fail to pass the check, ;' - flagged cells
I bisect it in long direction and check I
call ginit() to initialize these new generated level I the two new grids again. I
lev+1 grids ! T 1
g [¢ 1 [
¢ 1 call birect() to check all new [
: 1 i
call arrangeGrids() to sort these new generated -- r?]z%at%?n?g'?r? ;?ﬁ;%{;%f;gﬁg : v
level lev+1 grids based on number of cells in the Biszct the grids if needed. ' I s eltieteney -
grid. Larger grid is put in the front of the linked list ! of this grid higher than NO pisectit tort]wo reCtﬁ n?-les and add
of grid nodes : ! threshold? them to the list
[
¢ e e e e e e e e = = = -
call makeGridList() to update the array, : YES
listOfGrids, which stores index of all grids on all :
levels compactly I
! have a look at next grid in the list
_ v _ _ _ ! the list? YES
call makeBndList() to create a linked list, bndList, !
that stores information of neighboring grids for :
each grid on this new level (level lev+1) : NO
v : ¥
[
lev :=lev + 1 - done
I
(' . . . L)
For grids at each existing level, lev, starting
from level finest-1 to level 1, call update(...,
lev, ...) to synchronize solutions between
level lev and lev+1 grids. Since this is at
initial time, only averaging operation is
conducted (conservation fix-up not
conducted):
If any portion of a grid that is overlapped by
a finer grid, average the solution on finer
\grid down to that portion of the coarse grid)
Y
’Erom level 1 to level finest-1, for each Ievel\
lev:
step 1: call prepf(lev+1) to allocate space
for saving fluxes at boundary after each
integration step. These fluxes are for future
conservative fixing of coarse grids (level lev
grids).
and
step 2: call prepc(lev) to modifies boundary
list of each level lev grid such that each level
lev grid knows that along its boundary, what
fine cells its cell borders and where (in the
space assigned in step 1) to get saved flux
for conservation fix-u
Q > J
Set up several parameters that control the)
regridding and advancing of the solution:
e ntogo(lev): number of time steps level lev
grids still need to take before it catches up
with level lev-1 grids
¢ icheck(lev): number of time steps advanced
on level lev grids since last time it was
regridded.
e kcheck: If grids on a certain level has been
advanced for kcheck steps, it should be
regridded.
g J
r = | For each grid mptr that's on this level,
Has | |1 arids b I call bound() to set boundary values for = :
as level 1 grias been I grid mptr if necessary
advanced for maximum steps or simulation I
time larger than final time? I l
[
[If spatial gradients or user-specified
-1 criteria is used for flagging, call
YES ! I flag2refine2() to flag cells for
v : 1 refinement
. . : . 1
Slightly adjust current time step size on level 1 1 I
such that after this time step the simulation time 1 I
will hit exactly output time or checkpoint time. ! 1 . . .
Adjust time step size on all finer levels, too ! ! if richardson error estimates is used
) ’) I = = | for flagging, call errest() to flag cells
¢ [for refinement
Set: :
lev =1 (current grid level working on) I
ntogo(lev) = 1 [
! [For each grid, call flagregions2().
: This will modify its flag array if part of
: r = | itis constrained by min refine level
: [and/or max refine level defined by
["region"
. . : . . : I
Have grids on this level “ave grids on level lev+1 (if exist ave grids on level lev+2 (if exis I I
(level lev) been advanced enough NO been advanced enough times NO been advanced enough times NO 1 :
. N S et b . o O . v
times (so it's time to regrid)~ (so it's time to regrid)” (so it's time to regrid)” : : "lcheck"), if any grid that's two levels
I 1 finer (level "lcheck"+2) exists, call
: I projec2(..., Icheck, ...) to modify
I I mptr's flag array if part of it is under
YES YES YES : ! those finer grids. This is to ensure
¢ v ¢ 1 ! level "Icheck+1" that's to be
I ! generated will properly contains level
set Ibase = lev set Ibase = lev+1 set Ibase = lev+2 oy ': \ “lcheck"+2 grids. J
(will regrid based on level lev) (will regrid based on level lev+1) (will regrid based on level lev+2) B l
[
I : 1 For each grid (on level "Icheck"), call
. ! shiftset2() to flag cells that are at
1, ! most mbulff cells away
(I ! from previously flagged cells for
(I : creating buffer zone
[
-- =T . \ L | l
I call figlvl2(..., Icheck, ...) to flag cells ! '
[e R it e o ! call flagger(... Icheck, ..) toflagall 4~y 1 ¢)
: i gnas, . - - - I level "Icheck" grids, based on spatial | ! For each grid mptr (on level
: be refined to generate level Icheck+1 : I gradient, user specified criteria or : I |'lcheck"), call setdomflags(..., Icheck,
: grids : I Richardson error estimation : Ibase, ...) to set up their domain |
I I [I flags, node(domflags2, mptr). This
-— . I A 4 I [I flag is set to 1 for a cell on grid mptr
| For Icheck from level finest-1 to | call SmartbiS() to cluster flagged cells | : call bufnst2(..., !CheCk,) to flag all) | if it is inside level Ibase gl"ldS.
: Ibase, call grdfit(Ilbase, Icheck,...) to 1 into multiple new level Icheck+1 grids| ~ | I : level "Icheck" grids for reasons other I \ J
regenerate grids from finest level to | = = = = : I (I | than accuracy, eg. forced refinement, ! E Forg TovaT ToReak™)
! level Ibase+1. Finer levels are I ! I I 1 and properly nesting of grids on 1 or each gric e on level Ficheck’,
: generated earlier than coarser levels. : ! l ! : different levels STt T . Ioc?k aftl s gomaltn f{agtslfln o
i) | I - N I node(omflags2, mp r) to e" w |c"
! I generate nodes for these new level [! 1 cell on it is not inside level "Ibase
! ! I Icheck+1 grids and call nestck2() to | ! . \ ! grids and mark those cells as "not
! ! ! check if each of them is properly [! el colgte2() o take flagged points ! flagged". This is to ensure level
I b= - esed D eas Dove) gree e Sey I | on all grids on level Icheck and pack I "lcheck+1" that's to be generated will
: () ! fixed during this regridding and in 1 ! e i) cemisien elEes Ik el ! be properly nested in level "lbase"
: - - I [jevel Icheck-1 grid k he| 1 ! sttt Bl Tiofeiieln | ety 4 rids which stay fixed during this
call gfixup(lbase, ...) to interpolate evel Icheck-1 grids to make sure the I I 9 y Tixed during
N 4 [e _ I P b d I badpts are also sorted based on one ekl
_ _ I initial values for newly created grids, I check grids to be generated at next : I dimensional packing of their 2D 1\ 9 g. J
Call regrid(..., Ibase,...) to regrid based on level 1 |whose levels start from level Ibase+1[1 : step will properly contain Icheck+1 | I indices. I
Ibase grid. Grid from Ibase+1 level up to finest - - I to the finest. 1 I ~ grids. I -\ / 1
level are regenerated. Level Ibase stays fixed. I I I I If any grid fail to pass the check, : I Pack all flagged cells into badpts
I I . g I I bisect it in long direction and check : I array, free memories for storing
I I l I I the two new grids again. I t — | regular flags and domain flags, sort
I I . N\ I I I _ points in badpts etc.
: I Prepare flux array (stored at ffluxptr) I | ¢
A I for (for conservation fixup) for grids I : call birect() 1o check all new ! Start from a rectangle that covers all
I from level Ibase+1 to the finest. I : generated grids has no more than : flagged cells
! FIRE(pens slourikaly lisi, llitof (9ierae ! 1 max1d points in either dimensions I
I at cfluxptr) for grids from level Ibase [I S i s e ' I
I to the 2nd finest [1 - g ' I
I \ J I
! | : - : |\Io ¥
o Y ! free space in cfluxptr and ffluxptr for [Is the efficiency i i
Prepare flux array (stored at ffluxptr) I 2288 P P > e = bisect it to two rectangles and add
[:
1 [for (for conservation fixup) for grids I all OLD grids from level Ibase to the : gl thlst?]rrfszglzir L them to the list
p A 4 < I from level Ibase+1 to the finest. [=S . . I '
Since all grids finer than level Ibase are new 1 |Prepare boundary list, listbc (stored I ;:grenslzs:f’léggé‘fﬁﬁ; :lllircl)eléltjlg\r/lgls |
generated in subroutine regrid(), their icheck : at cfluxptr) for grids from level Ibase : : o YES YES
[[
[[
[[
[[
[[
[[
[[
[[
= |
[
[
[

A 4

Call advanc(..., lev, ...) to advance solution on all
level lev grids. Set:
ntogo(lev) = ntogo(lev) - 1
tlevel(lev) = tlevel(lev) + possk(lev)
ickeck(lev) = icheck(lev) + 1

Is lev the finest level?

NO

Has level lev
caught up with coarser level
ntogo(lev) = 0) *

YES

v

Level lev has caught up with level lev-1. Thus we
need to call update(...,lev-1,...) to synchronize
solution between level lev and level lev-1.

set lev :=lev -1

= = == = = m d mmmm- - -

Finish advancing one step on level 1 grids. pdate

current simulation time and time steps size

For each grid mptr that's on this level
(level lev), call bound() to set boundary
values for grid mptr if necessary

call saveqc(lev+1,...) to fill boundary
array (ffluxptr) of all grids on level
lev+1, with solution on level lev+1

For each grid mptr on level lev, call
par_advanc(mptr,...) to advance

il e et |

solution on this grid.

[For each grid on level lev-1, called)
upbnd() to do conservation fix-up by
adding flux saved associated with
interfaces between that grid and level
lev grids to cells that border the
interfaces

I__.I.__I

Y

If any portion of a grid on level lev-1
is overlapped by a level lev grid,
average the solution on finer grid
down to that portion of the coarse

grid

- e k- -y

the finest):

FOR each grid on that level:
call filval(..., mptr, lev ...)
to fill solution on the grid
(stored at store1) by
either interpolating
solution from coarser
grids or simply copying
from old grids at the same
level

END FOR

free space at store1 for all OLD

level lev grids

END FOR

_ J

allocate storage for the 2nd (old time)
copy of solution at store2 for all new
generated grids (from level Ibase+1
to the finest)

For each side of the grid mptr, call
filrecur() to fill the ghost region,

v

If any portion is outside physical
boundary, call bc2amr() to fill that
portion

For each grid mkid on level lev+1,
do:

v

storing solution on a rectangle on
level lev, which is enlarged from grid
mkid by one level lev cell on
each side.

v

call icall() to copy solution from
overlapping level lev grids to
this rectangle.

v

fill node(ffluxptr, mkid) with solutions
in cells that are on the rectangle and
border the boundary of grid mkid.

call gad() to compute and add (part
of) the values needed for
conservation fix-up to
node(ffluxptr,mptr) array of grid mptr

|

call stepgrid() or stepgrid_dimSplit()
to advance the solution on this grid
for one time step

|
stepgrid()

l

e w

call fluxsv() to:

For any cell on grid mptr that borders
a finer cell, store flux at that interface
to the listbc (node(ffluxptr, mkid)) of
that finer grid, mkid

l

()

call fluxad() to:
Store fluxes at the border of grid mptr
to its own listbc (node(ffluxptr, mptr)),
such that a coarser grid that contains
grid mptr can use these for
conservation fixup

|

update simulation time of grid mptr,
rnode(timemult,mptr)

-_—— e e e e m e e .. —-—--ay

(call intcopy(..., lev-1, ...) to copy)
solution from OLD coarse grids (level
lev-1) to a rectangle that is made up
with coarse level cells and enlarged
by one coarse level cell from grid
mptr in each direction. It is enlarged
for linear interpolation later.

v

call bc2amr() for this rectangle in

case part of it is ouside physical

boundaries, since it's enlarged by
one cell at the step above.

v

call intcopy(..., lev, ...) to copy
solution from OLD level lev grids to
grid mptr. Use flags to indicate which

cells on mptr didn't get solution.

v

for those cells on mptr that didn't get
solution at last step, interpolate
solution from the those on the

J

rectangle prepared at the first step.

call b4step2() if needed. The default
version does nothing.

call step2() to get fluxes (fm, fp, gm,

gp) at cell edges, get maximum CFL

number on the grid, and update cells
values with these fluxes

call src2() to handle source term

compute allowable new time step,
dtnew, with based on maximum CFL
number found on this grid

U

Perform X-sweeps:

For each row of cells (dq = q_{i,j} -
q_{i-1,j}), call flux2(ixy=1,...) to get
fluxes contributed by these cells at all
cell edges (F and G),
accumulate these fluxes to fm, fp,

gm, gp

Perform Y-sweeps:

For each column of cells (dg = q_{i,j}
- q_{i,j-1}), call flux2(ixy=2,...) to get
fluxes contributed by these cells at all
cell edges (F and G),
accumulate these fluxes to fm, fp,

gm, gp

return fm, fp, gm, gp

- o e = = ny
i

[= = = = = o= o o m m e e e e om om omom om th e o e e e e o e e e = =gy

For each side of the grid mptr, call
filrecur() to fill the ghost region,

v

If any portion is outside physical
boundary, call bc2amr() to fill that
portion

For a grid mptr passed into
setdomflags(), check if it intersect
with any grid on level Ibase. If so, call
coarseGridFlagSet() to mark which
portion of the grid mptr overlaps with
Ibase grids (described by Ibase index

space)

\, J

Then transfer this overlapping
information from Ibase index space
to Icheck index space

call rpn2() to solve normal Riemann
problem in x direction and get wave
speed s, wave, amdq and apdq

A 4

find maximum wave speed and
corresponding CFL number

call wave limiter add add second
order corrections

7

call rpt2(..., amdq, ...) to invoke
transverse Riemann solver, which
splits left-going waves, amdq, into
up-going and down-going transverse
wave. Then store these waves in

corresponding \tilde{G} fluxes

e D

call rpt2(..., apdq, ...) to invoke
transverse Riemann solver, which
splits right-going waves, apdq, into
up-going and down-going transverse
wave. Then store these waves in

corresponding \tilde{G} fluxes

