rp1bu.f.html CLAWPACK  
 Source file:   rp1bu.f
 Directory:   /Users/rjl/git/rjleveque/clawpack-4.6.3/book/chap12/nonconservative
 Converted:   Mon Jan 21 2013 at 20:15:33   using clawcode2html
 This documentation file will not reflect any later changes in the source file.

 
c
c
c =========================================================
      subroutine rp1(maxmx,meqn,mwaves,mbc,mx,ql,qr,auxl,auxr,
     &		       wave,s,amdq,apdq)
c =========================================================
c
c     # solve Riemann problems for the 1D Burgers' equation.
c     # On input, ql contains the state vector at the left edge of each cell
c     #           qr contains the state vector at the right edge of each cell
c     # On output, wave contains the waves, 
c     #            s the speeds, 
c     #            amdq the  left-going flux difference  A^- \Delta q
c     #            apdq the right-going flux difference  A^+ \Delta q
c
c     # Note that the i'th Riemann problem has left state qr(i-1,:)
c     #                                    and right state ql(i,:)
c     # From the basic clawpack routine step1, rp is called with ql = qr = q.
c
c
      implicit double precision (a-h,o-z)
      dimension   ql(1-mbc:maxmx+mbc, meqn)
      dimension   qr(1-mbc:maxmx+mbc, meqn)
      dimension    s(1-mbc:maxmx+mbc, mwaves)
      dimension wave(1-mbc:maxmx+mbc, meqn, mwaves)
      dimension amdq(1-mbc:maxmx+mbc, meqn)
      dimension apdq(1-mbc:maxmx+mbc, meqn)
      logical efix
c
c
      efix = .true.   !# Compute correct flux for transonic rarefactions
c
      do 30 i=2-mbc,mx+mbc
c
c        # Compute the wave and speed
c
         wave(i,1,1) = ql(i,1) - qr(i-1,1)
         s(i,1) = 0.5d0 * (qr(i-1,1) + ql(i,1))
c
c
c        # compute left-going and right-going flux differences:
c        ------------------------------------------------------
c
	 amdq(i,1) = dmin1(s(i,1), 0.d0) * wave(i,1,1)
	 apdq(i,1) = dmax1(s(i,1), 0.d0) * wave(i,1,1)
c
	 if (efix) then
c           # entropy fix for transonic rarefactions:
            if (qr(i-1,1).lt.0.d0 .and. ql(i,1).gt.0.d0) then
	       amdq(i,1) = - 0.5d0 * qr(i-1,1)**2
	       apdq(i,1) =   0.5d0 * ql(i,1)**2
	       endif
	    endif
   30   continue
c
      return
      end