|
rpn2sw.f.html |
|
|
Source file: rpn2sw.f
|
|
Directory: /Users/rjl/git/rjleveque/clawpack-4.6.3/book/chap21/radialdam
|
|
Converted: Mon Jan 21 2013 at 20:15:39
using clawcode2html
|
|
This documentation file will
not reflect any later changes in the source file.
|
c
c
c =====================================================
subroutine rpn2(ixy,maxm,meqn,mwaves,mbc,mx,ql,qr,auxl,auxr,
& wave,s,amdq,apdq)
c =====================================================
c
c # Roe-solver for the 2D shallow water equations
c # solve Riemann problems along one slice of data.
c
c # On input, ql contains the state vector at the left edge of each cell
c # qr contains the state vector at the right edge of each cell
c
c # This data is along a slice in the x-direction if ixy=1
c # or the y-direction if ixy=2.
c # On output, wave contains the waves, s the speeds,
c # and amdq, apdq the decomposition of the flux difference
c # f(qr(i-1)) - f(ql(i))
c # into leftgoing and rightgoing parts respectively.
c # With the Roe solver we have
c # amdq = A^- \Delta q and apdq = A^+ \Delta q
c # where A is the Roe matrix. An entropy fix can also be incorporated
c # into the flux differences.
c
c # Note that the i'th Riemann problem has left state qr(i-1,:)
c # and right state ql(i,:)
c # From the basic clawpack routines, this routine is called with ql = qr
c
c
implicit double precision (a-h,o-z)
c
dimension wave(1-mbc:maxm+mbc, meqn, mwaves)
dimension s(1-mbc:maxm+mbc, mwaves)
dimension ql(1-mbc:maxm+mbc, meqn)
dimension qr(1-mbc:maxm+mbc, meqn)
dimension apdq(1-mbc:maxm+mbc, meqn)
dimension amdq(1-mbc:maxm+mbc, meqn)
c
c local arrays -- common block comroe is passed to rpt2sh
c ------------
parameter (maxm2 = 603) !# assumes at most 600x600 grid with mbc=3
dimension delta(3)
logical efix
common /param/ g !# gravitational parameter
common /comroe/ u(-2:maxm2),v(-2:maxm2),a(-2:maxm2),h(-2:maxm2)
c
data efix /.true./ !# use entropy fix for transonic rarefactions
c
if (-2.gt.1-mbc .or. maxm2 .lt. maxm+mbc) then
write(6,*) 'Check dimensions of local arrays in rpn2'
stop
endif
c
c # set mu to point to the component of the system that corresponds
c # to momentum in the direction of this slice, mv to the orthogonal
c # momentum:
c
if (ixy.eq.1) then
mu = 2
mv = 3
else
mu = 3
mv = 2
endif
c
c # note that notation for u and v reflects assumption that the
c # Riemann problems are in the x-direction with u in the normal
c # direciton and v in the orthogonal direcion, but with the above
c # definitions of mu and mv the routine also works with ixy=2
c # and returns, for example, f0 as the Godunov flux g0 for the
c # Riemann problems u_t + g(u)_y = 0 in the y-direction.
c
c
c # compute the Roe-averaged variables needed in the Roe solver.
c # These are stored in the common block comroe since they are
c # later used in routine rpt2sh to do the transverse wave splitting.
c
do 10 i = 2-mbc, mx+mbc
h(i) = (qr(i-1,1)+ql(i,1))*0.50d0
hsqrtl = dsqrt(qr(i-1,1))
hsqrtr = dsqrt(ql(i,1))
hsq2 = hsqrtl + hsqrtr
u(i) = (qr(i-1,mu)/hsqrtl + ql(i,mu)/hsqrtr) / hsq2
v(i) = (qr(i-1,mv)/hsqrtl + ql(i,mv)/hsqrtr) / hsq2
a(i) = dsqrt(g*h(i))
10 continue
c
c
c # now split the jump in q at each interface into waves
c
c # find a1 thru a3, the coefficients of the 3 eigenvectors:
do 20 i = 2-mbc, mx+mbc
delta(1) = ql(i,1) - qr(i-1,1)
delta(2) = ql(i,mu) - qr(i-1,mu)
delta(3) = ql(i,mv) - qr(i-1,mv)
a1 = ((u(i)+a(i))*delta(1) - delta(2))*(0.50d0/a(i))
a2 = -v(i)*delta(1) + delta(3)
a3 = (-(u(i)-a(i))*delta(1) + delta(2))*(0.50d0/a(i))
c
c # Compute the waves.
c
wave(i,1,1) = a1
wave(i,mu,1) = a1*(u(i)-a(i))
wave(i,mv,1) = a1*v(i)
s(i,1) = u(i)-a(i)
c
wave(i,1,2) = 0.0d0
wave(i,mu,2) = 0.0d0
wave(i,mv,2) = a2
s(i,2) = u(i)
c
wave(i,1,3) = a3
wave(i,mu,3) = a3*(u(i)+a(i))
wave(i,mv,3) = a3*v(i)
s(i,3) = u(i)+a(i)
20 continue
c
c
c # compute flux differences amdq and apdq.
c ---------------------------------------
c
if (efix) go to 110
c
c # no entropy fix
c ----------------
c
c # amdq = SUM s*wave over left-going waves
c # apdq = SUM s*wave over right-going waves
c
do 100 m=1,3
do 100 i=2-mbc, mx+mbc
amdq(i,m) = 0.d0
apdq(i,m) = 0.d0
do 90 mw=1,mwaves
if (s(i,mw) .lt. 0.d0) then
amdq(i,m) = amdq(i,m) + s(i,mw)*wave(i,m,mw)
else
apdq(i,m) = apdq(i,m) + s(i,mw)*wave(i,m,mw)
endif
90 continue
100 continue
go to 900
c
c-----------------------------------------------------
c
110 continue
c
c # With entropy fix
c ------------------
c
c # compute flux differences amdq and apdq.
c # First compute amdq as sum of s*wave for left going waves.
c # Incorporate entropy fix by adding a modified fraction of wave
c # if s should change sign.
c
do 200 i=2-mbc,mx+mbc
c check 1-wave
him1 = qr(i-1,1)
s0 = qr(i-1,mu)/him1 - dsqrt(g*him1)
c check for fully supersonic case :
if (s0.gt.0.0d0.and.s(i,1).gt.0.0d0) then
do 60 m=1,3
amdq(i,m)=0.0d0
60 continue
goto 200
endif
c
h1 = qr(i-1,1)+wave(i,1,1)
hu1= qr(i-1,mu)+wave(i,mu,1)
s1 = hu1/h1 - dsqrt(g*h1) !speed just to right of 1-wave
if (s0.lt.0.0d0.and.s1.gt.0.0d0) then
c transonic rarefaction in 1-wave
sfract = s0*((s1-s(i,1))/(s1-s0))
else if (s(i,1).lt.0.0d0) then
c 1-wave is leftgoing
sfract = s(i,1)
else
c 1-wave is rightgoing
sfract = 0.0d0
endif
do 120 m=1,3
amdq(i,m) = sfract*wave(i,m,1)
120 continue
c check 2-wave
if (s(i,2).gt.0.0d0) then
c #2 and 3 waves are right-going
go to 200
endif
do 140 m=1,3
amdq(i,m) = amdq(i,m) + s(i,2)*wave(i,m,2)
140 continue
c
c check 3-wave
c
hi = ql(i,1)
s03 = ql(i,mu)/hi + dsqrt(g*hi)
h3=ql(i,1)-wave(i,1,3)
hu3=ql(i,mu)-wave(i,mu,3)
s3=hu3/h3 + dsqrt(g*h3)
if (s3.lt.0.0d0.and.s03.gt.0.0d0) then
c transonic rarefaction in 3-wave
sfract = s3*((s03-s(i,3))/(s03-s3))
else if (s(i,3).lt.0.0d0) then
c 3-wave is leftgoing
sfract = s(i,3)
else
c 3-wave is rightgoing
goto 200
endif
do 160 m=1,3
amdq(i,m) = amdq(i,m) + sfract*wave(i,m,3)
160 continue
200 continue
c
c compute rightgoing flux differences :
c
do 220 m=1,3
do 220 i = 2-mbc,mx+mbc
df = 0.0d0
do 210 mw=1,mwaves
df = df + s(i,mw)*wave(i,m,mw)
210 continue
apdq(i,m)=df-amdq(i,m)
220 continue
c
c
900 continue
return
end