|
rpt2bu.f.html |
|
|
Source file: rpt2bu.f
|
|
Directory: /Users/rjl/git/rjleveque/clawpack-4.6.3/book/chap20/burgers
|
|
Converted: Mon Jan 21 2013 at 20:15:37
using clawcode2html
|
|
This documentation file will
not reflect any later changes in the source file.
|
c
c
c =====================================================
subroutine rpt2(ixy,maxm,meqn,mwaves,mbc,mx,
& ql,qr,aux1,aux2,aux3,
& imp,asdq,bmasdq,bpasdq)
c =====================================================
implicit double precision (a-h,o-z)
c
c # Riemann solver in the transverse direction for 2D Burgers' equation
c # u_t + cos(theta)*(0.5*u^2)_x + sin(theta)*(0.5*u^2)_y = 0
c
c # Split asdq into eigenvectors of Roe matrix B.
c # For the scalar equation, this simply amounts to computing the
c # transverse wave speed from the opposite Riemann problem.
c
dimension ql(1-mbc:maxm+mbc, meqn)
dimension qr(1-mbc:maxm+mbc, meqn)
dimension asdq(1-mbc:maxm+mbc, meqn)
dimension bmasdq(1-mbc:maxm+mbc, meqn)
dimension bpasdq(1-mbc:maxm+mbc, meqn)
common /comrp/ theta
c
if (ixy .eq. 1) then
b = 0.5d0*dsin(theta)
else
b = 0.5d0*dcos(theta)
endif
c
do 10 i = 2-mbc, mx+mbc
sb = b*(qr(i-1,1) + ql(i,1))
bmasdq(i,1) = dmin1(sb, 0.d0) * asdq(i,1)
bpasdq(i,1) = dmax1(sb, 0.d0) * asdq(i,1)
10 continue
c
return
end