[BaleLevMitRoss]D. S. Bale, R. J. LeVeque, S. Mitran, and J. A. Rossmanith. A wave-propagation method for conservation laws with spatially varying flux functions, SIAM J. Sci. Comput 24 (2002), 955-978.
[BergerColella89]Berger, M J, and P Colella. 1989. Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82, 64–84.
[BergerLeVeque98]Berger, M J, and R J LeVeque. 1998. Adaptive Mesh Refinement using Wave-Propagation Algorithms for Hyperbolic Systems. SIAM J. Numer. Anal. 35, 2298–2316.
[BergerOliger84]Berger, M, and J Oliger. 1984. Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53, 484–512.
[BergerRigoutsis91]Berger, M J, and I Rigoutsos. 1991. An Algorithm for Point Clustering and Grid Generation. IEEE Trans. Sys. Man & Cyber. 21, 1278–1286.
[LangsethLeVeque00]Langseth, J O, and R J LeVeque. 2000. A wave-propagation method for three-dimensional hyperbolic conservation laws. J. Comput. Phys. 165, 126–166.
[LeVeque97]LeVeque, R J. 1997. Wave propagation algorithms for multi-dimensional hyperbolic systems. J. Comput. Phys. 131, 327–353.
[LeVeque-FVMHP]R. J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge, UK, 2002.
[LeVeque09]R. J. LeVeque. Python Tools for Reproducible Research on Hyperbolic Problems Computing in Science and Engineering (CiSE) 11(2009), pp. 19-27.
[CalHelLeV08]Donna A. Calhoun, Christiane Helzel, and Randall J. LeVeque. Logically Rectangular Grids and Finite Volume Methods for PDEs in Circular and Spherical Domains, SIAM Review 50 (2008), 723-752.

This Page