|
rp1bu.f.html |
|
|
Source file: rp1bu.f
|
|
Directory: /Users/rjl/git/rjleveque/clawpack-4.6.3/book/chap12/nonconservative
|
|
Converted: Mon Jan 21 2013 at 20:15:33
using clawcode2html
|
|
This documentation file will
not reflect any later changes in the source file.
|
c
c
c =========================================================
subroutine rp1(maxmx,meqn,mwaves,mbc,mx,ql,qr,auxl,auxr,
& wave,s,amdq,apdq)
c =========================================================
c
c # solve Riemann problems for the 1D Burgers' equation.
c # On input, ql contains the state vector at the left edge of each cell
c # qr contains the state vector at the right edge of each cell
c # On output, wave contains the waves,
c # s the speeds,
c # amdq the left-going flux difference A^- \Delta q
c # apdq the right-going flux difference A^+ \Delta q
c
c # Note that the i'th Riemann problem has left state qr(i-1,:)
c # and right state ql(i,:)
c # From the basic clawpack routine step1, rp is called with ql = qr = q.
c
c
implicit double precision (a-h,o-z)
dimension ql(1-mbc:maxmx+mbc, meqn)
dimension qr(1-mbc:maxmx+mbc, meqn)
dimension s(1-mbc:maxmx+mbc, mwaves)
dimension wave(1-mbc:maxmx+mbc, meqn, mwaves)
dimension amdq(1-mbc:maxmx+mbc, meqn)
dimension apdq(1-mbc:maxmx+mbc, meqn)
logical efix
c
c
efix = .true. !# Compute correct flux for transonic rarefactions
c
do 30 i=2-mbc,mx+mbc
c
c # Compute the wave and speed
c
wave(i,1,1) = ql(i,1) - qr(i-1,1)
s(i,1) = 0.5d0 * (qr(i-1,1) + ql(i,1))
c
c
c # compute left-going and right-going flux differences:
c ------------------------------------------------------
c
amdq(i,1) = dmin1(s(i,1), 0.d0) * wave(i,1,1)
apdq(i,1) = dmax1(s(i,1), 0.d0) * wave(i,1,1)
c
if (efix) then
c # entropy fix for transonic rarefactions:
if (qr(i-1,1).lt.0.d0 .and. ql(i,1).gt.0.d0) then
amdq(i,1) = - 0.5d0 * qr(i-1,1)**2
apdq(i,1) = 0.5d0 * ql(i,1)**2
endif
endif
30 continue
c
return
end