

PROJECT DESCRIPTION

Essential Concepts for Building Interactive Computer Graphics Applications 1

1. GOALS AND OBJECTIVES
Many Computer Science (CS) and engineering students seek an education with a direct applicability. This is

especially true in a high-profile field like Computer Graphics (CG), where students are familiar with many popular
applications (e.g. graphical editors, games, and special effects). Many students are motivated and enthusiastic about
the CG field because they want to understand how to build such fascinating applications.

As educators, we would like to concentrate on fundamental principles and competencies where there is potential
applicability throughout students’ careers. Many educators align these needs by relating fundamental principles to
real-world applications. It has been demonstrated that in many CS domains that this pedagogical approach is
effective and welcomed by students. For example, relating knowledge in introductory programming courses to real-
world case studies [1,2]; or relating programming projects to real-world experiences in Software Engineering and
Databases [3]; or relating algorithms to internet applications [4].

In alignment with these observations, we have developed CG courses based on analyzing the design and
implementation requirements of familiar interactive CG applications [5,6]. In these courses, functional modules of
moderately complex CG applications are studied, and students synthesize the concepts learned by building their own
applications based on these modules. The learning outcomes of these courses are for students to understand the
essential CG concepts, to gain practical hands-on implementation experience, and to be able to relate concepts
learned to real-world applications.

Over the past few years, the enrollments in these CG courses have increased steadily while student populations
in our program remained somewhat constant. In addition, an increasing number of students are pursuing careers in
the CG field after these courses. Our approach has been well received by the CG education community [7,8], where
recently we have been invited and published our extended findings in a full-length journal article [9]. Currently, we
are working with other educators in organizing public forums to compare and contrast our different approaches to
teaching CG [10].

This DUE CCLI-EMD Proof-of-Concept project proposes activities to assess, refine, and facilitate the
dissemination of our course materials, and to assist other educators facing similar challenges adapting this new
approach. More specifically, we seek funding to support: (1) refining our existing course materials such that they
can be suitable for public access; (2) independently assessing the effectiveness of the refined course materials by
other educators; (3) updating the course materials based on these assessments; and (4) disseminating the top-down
approach and associated course materials.

2. BACKGROUND AND MOTIVATION
When we taught the introductory CG course following the traditional textbooks (e.g. [11-15]), our students were

disengaged. According to our student population, we have found the cause of the problems to be: (1) unclear
relevancy of knowledge; (2) unrealistic hands-on exercises.

2.1. Relevancy of Knowledge
‘‘while I appreciate that the DDA line drawing algorithm is part of the foundation building blocks of 3D
applications like Maya, I also notice the complexity of the software system, and wonder if time may not be
better spent learning other more interesting aspect of the graphics system’’ – CSS450 Student, Fall 1999.
Among CG educators there is a collective understanding of the essential fundamental principles and concepts

that define the field [17,18]. Constrained by the time limit in academic terms, traditional CG courses cover subsets
of these essential principles and concepts based on respective student learning outcomes (e.g. [19,20]). In the course
of a term, these courses present to students most of the foundation building blocks of modern CG systems and
students gain knowledge of what is “under the hood” of modern graphics coprocessors. These approaches
([18,21-23]) are characterized as bottom-up because they present the CG field focusing on the individual low-level
foundation building blocks [7]. While the strength of the bottom-up approach is that it teaches the basic mathematics
and methodology of graphics engine design, this approach seldom addresses application-level issues and does not
enable students to use a powerful graphics API to design a complex application. In the near term, the bottom-up
approach may seem to lack practical relevancy.

PROJECT DESCRIPTION

Essential Concepts for Building Interactive Computer Graphics Applications 2

2.2. Practicality of Hands-on Exercise
‘‘while it was interesting to practice multi-way symmetry in mid-point ellipse algorithm, I still do not
understand how these exercises relate to the graphics programs I use’’ – CSS450 Student, Fall 1999.
This sentiment is shared by many educators. Kubitz suggested that the traditional (bottom-up) approach to

teaching CG is ‘‘mostly wrong’’, that CG courses should study higher level issues based on latest APIs [23]. To
provide students with a holistic understanding of the CG field, [24] traded depth for breadth of coverage and
described strategies to cover Rendering, Modeling, Animation, and Postprocessing in one introductory CG course.
Others [25-29] point out that API-based CG courses that cover high-level issues reach a wider audience and thus are
more suitable for students who only take one CG course in their undergraduate education.

2.3. API-Based Approaches to Teaching CG
The existing API-based approaches to teaching CG use case studies to demonstrate individual CG concepts. The

two widely accepted API-based CG textbooks [25,26] present these knowledge from opposite perspective. Hills [25]
extends the traditional bottom-up approach by relating the low-level algorithms to higher-level CG concepts found in
a popular 3D API. While Angel [26] takes the alternate approach where he first presents individual high-level CG
concepts in simple case studies, and then proceeds to describe the underlying low-level algorithms required to
support these concepts.

When compared with the traditional approaches to teaching CG, API-based approaches traded covering the
depth of fundamental principles for the concept-level issues and the associated case studies. The API-based
approaches are pragmatic bottom-up because they concentrate on studying individual issues (bottom) of general CG
applications (up) based on modern APIs. Real-world CG applications require the collaboration of many concepts.
For example, a practical interactive CG application must integrate CG concepts with independent user and timer
events based on the best practices in software design and architecture. API-based pragmatic bottom-up approaches
to teaching CG do not attempt to demonstrate the complex interaction of the CG concepts in practical settings.

3. TOP-DOWN APPROACH TO TEACHING CG
Our top-down approach to teaching CG [7,9] turns the pragmatic bottom-up approach around by identifying a

category of applications and decomposing the applications into functional modules. The course would then cover the
modules while relating each module back to the target applications. In this way, students learn the foundations and
structure of graphics applications, practice implementing the more visible application-level skills, and more
importantly, study and experiment with issues involved in integrating multiple CG concepts in complex applications.

Ideally the functional modules from the top-down approach should be continuously decomposed into smaller
units until the units become the essential concepts identified in the bottom-up approach. However, given the
sophistication of the modern graphics applications, this ideal decomposition process is non-trivial and typically
cannot be accomplished in a 16 week semester (or 10 week quarter). This is the same reason why a typical
bottom-up CG course does not have time to complete a moderately complex graphics application starting from the
foundations. The popular graphics API libraries can serve as a convenient convergence point for the two
approaches. A top-down approach would teach students to implement functional modules based on the popular
graphics APIs. Besides serving as a practical skills training, using an API extensively in building a moderately
complex system helps students understand the design and appreciate the pros and cons of the API.

Top-down is complementary to the traditional bottom-up approaches [30,31] because it trades high-level system
architecture understanding (e.g. scene graph design) for low-level foundational knowledge (e.g. rasterization
algorithms). Of course, the two approaches are not strictly mutually exclusive. For example, the bottom-up
approach often uses a simple target application framework (case studies) for students to investigate the
implementation of different algorithms, whereas, in the top-down approach, it is possible to cover some basic low-
level algorithms.

One of the difficulties in designing a top-down syllabus for introductory CG courses is in identifying an
appropriate top. The top in this context refers to a target software system. As mentioned, in the bottom-up approach
CG educators have a collective understanding of what are the essential philosophy and concepts that defines the field
[18]. These concepts are the basic building blocks of general CG systems, whether it is a hardware CG system, a
batch software CG system, or an interactive CG system, etc. The key is that the basic building blocks are suitable
for building any of these CG systems. In a top-down approach, where a system is decomposed for identifying the

PROJECT DESCRIPTION

Essential Concepts for Building Interactive Computer Graphics Applications 3

supporting requirements, the ‘‘target software system’’ must be well defined. It is important to identify a target
system that demands a sufficiently large set of common supporting requirements shared by many CG applications.

As cautioned [27], courses based on popular applications (e.g. Maya) and/or APIs (e.g. DirectX, OpenGL) run
the risk of teaching students to be users rather than practitioners of CG. As an example, the top-down approach
should identify major functional modules in Maya (e.g. user interaction module, or hierarchical modeling module)
and examine how to design and implement these modules based on functionality supported by OpenGL or DirectX.
This is different from learning how to use Maya [32], or learning how to use specific APIs (e.g. [33-36]). As newer
versions of the software and/or APIs are released, the knowledge students gained must continued to be valid and
applicable.

4. PRIOR WORK AND PRELIMINARY RESULTS
We have developed and refined a sequence of two 10-week-Quarter CG programming courses: a 2D

introductory course [5], and a more advanced 3D Programming course [6]. The objectives of both courses are for
students to gain knowledge and experience in designing and implementing “popular interactive graphics
applications”. Being a small department in a preliminary undergraduate institution, our students have very limited
opportunities in taking elective courses in CG. Our choice of “popular interactive graphics applications” as the top
in the top-down approach is based on the fact that most students are familiar with such software systems. This
choice assists us in relating students’ personal experiences to CG concepts in the limited time.

4.1. CSS450: 2D Introductory CG Course
We observed that most of the “popular interactive graphics applications” (e.g. Microsoft PowerPoint) can be

described as applications that allow users to interactively update their internal states. These applications provide
real-time visualization of their internal states with the graphics subsystem. In addition, these applications typically
support some mechanisms that allow the user to define simple animations. Figure 1 shows one way of decomposing
these types of applications into major functional modules. Figure 2 depicts an implementation architecture based on
the identified functional modules. The syllabus of our introductory CG course is a mapping of the requirements to
understand and implement these functional modules into specific topics in CG.

Three general topic areas are identified: (1) Event and Simulator Driven Programming; (2) Graphics API
Abstraction; and (3) Transformation. Topic 1 allows students to learn the external-control programming model while
practicing new Graphics User Interface tools. Topic 2 introduces students to the idea of interaction with behavior of
abstract objects independent from Graphics API, and prepares students for large-scale software development. Topic
3 covers coordinate transformation pipeline and leads naturally to hierarchical modeling and scene graph design.
These topics are covered in the first 6 weeks’ of class. At this point students commence to work on their final
project. The remaining 4 weeks are divided between discussions of topics related to students’ final project
development (e.g. collision detection algorithms, texture mapping, etc.) and the fundamental algorithms in CG (e.g.
color models, raster level scan conversions, etc).

4.2. CSS451: 3D CG Programming Course
By this point, from the 2D course, students understand and have synthesized event/simulator-driven interactive

applications that contained hierarchical models defined in appropriate coordinate systems, and supported displaying
with multiple viewing windows. The 3D course is designed around topics in Viewing, Rendering, and Modeling that
allow students to continuously and seamlessly bring their applications into 3D world.

Figure 2: Architectural Framework

User Events Timer Events

Graphics API

Application
State

Event
Handler

Triggers
Redraw

Triggers
Simulation

User
Actions

Changes

Simulator
Driver

Updates

Figure 1: Components of Interactive Applications

 User Interface API
(e.g. FlTk, MFC)

Application

Simulator
Driver

Graphics API
(e.g. OpenGL, D3D)

Graphics
Library

Event
Handler

PROJECT DESCRIPTION

Essential Concepts for Building Interactive Computer Graphics Applications 4

We begin by studying 3D viewing and camera manipulations. After that students are able to upgrade and
examine their multiple-view 2D systems with multiple cameras in 3D space. We then cover topics in rendering
(illumination, shading, and texture mapping). This allows students to properly illuminate their hierarchical models.
Lastly we cover polygonal and mesh modeling, which allow students to work with more interesting models in their
applications. The simulator-driven component of their applications ensures students are aware of and constantly
working with simple topics in animations (e.g. motion from continuously updated matrices, simple elastic-collisions,
etc.). Similar to that of the introductory course, these topics are covered in the first half of the 10-week-quarter so
that students can commence with their final projects. Once again, the remaining of the quarter is divided between
discussions of topics related to students’ final project development (e.g. search structures, levels of details, view
culling, etc.) and the more advanced topics/effects in CG (e.g. transparencies, reflections, shadows, etc).

4.3. Results
We have experienced enthusiastic student comments and observed effectiveness in student learning in these

courses. In the past four years the overall student population in our department has remained somewhat constant and
yet the enrollment of the 2D CG course has increased over 100%: from 10 in 2000, to consistently more than 251.
Students’ further interests in the field can be observed from the enrollments of the follow-up 3D course: from 1 in
2001, to consistently around 20. Of these students, about 20 are currently working or interning at local
graphics/games companies. Although these numbers are based on relatively small sample size, they do reflect
success and show encouraging and consistent trends. Our institution is impressed with our results, and is supportive
of our efforts in refining the course materials. Recently we were awarded a seed funding [37] to complement this
NSF proposal. This modest funding allows us to upgrade some of our laboratory development environments and
begin engaging some student hourly as will be required in this project.

We have received positive feedback from the general CG education community. The initial publication of this
work [7] was well received, where we were invited and published our extended findings in the Computer & Graphics
Journal [9]. Recently we condensed our top-down philosophy into a book summary, and organized the outline of our
lecture notes into an extended table of content. We sent these materials to colleagues in the fields and to a
commercial textbook publisher (AK-Peters). The book summary, extended table of content, and
endorsement/support letters are included in the supplementary section of this proposal. Currently we are engaging in
and collaborating with other CG educators in healthy discussions of comparing and contrasting the different
approaches to teaching CG [10].

Our courses materials should be formally assessed and refined to effectively support the defined student learning
outcomes. So far, the majority of the materials were prototyped during the courses; and these materials were re-
organized/refined based solely on students’ course evaluations and the PI’s self-reflection.

A textbook should be developed for our top-down approach. Traditional textbooks in the field
(e.g. [11-15,38-41]) are designed for bottom-up approaches with focus on individual low-level algorithms. Recent
API-based textbooks (e.g. [25,26,42]) exemplify these low-level algorithms with one popular graphics API
(OpenGL). All these textbooks cover the details of foundational algorithms in isolation and seldom attempt to relate
the concepts to modern CG applications. On the opposite end of the spectrum, existing application-level text/trade
books (e.g. [43-46]) concentrate exclusively on discussing one software system and on “how to become a proficient
user” of a system. A textbook for our top-down approach would cover CG knowledge on how to build a general
interactive-graphics-application based on an abstract-3D-API.

5. PROJECT OBJECTIVES AND PLAN
Our project is designed to accomplish two major objectives: first, formally evaluate, develop, and refine our

existing course materials to ensure effective support of the top-down approach; second, disseminate the refined
course materials, share our results with other CG educators, and begin facilitating those that face similar challenges
adopting a similar approach. Our ultimate goal is to develop a textbook based on the results of this project
supporting straightforward adaptation of the top-down approach to teaching and learning CG.

1 At the time of writing this proposal (June 2004), the 2D Computer Graphics course for Fall 2004 is fully enrolled (40), with additional students
on the waiting list.

PROJECT DESCRIPTION

Essential Concepts for Building Interactive Computer Graphics Applications 5

Our procedures to achieve these objectives are informed by the most recent and comprehensive assessment
scholarship [47-50]. As depicted in Figure 3, we have a four prong implementation plan: (1) independent
evaluation of course materials: evaluate the organization and technical materials by an independent expert CG
educator; (2) development of course materials: develop, refine and reorganize the course materials continuously
based on evaluation and assessment feedbacks; (3) assessments of student learning: monitor the classroom teaching
and student learning outcomes by expert scholars in student learning assessments; (4) dissemination of our results
and course materials.

5.1. Independent Evaluation of Course Materials
The objectives are to independently evaluate the student learning outcomes, and effectiveness of the course

materials. These objectives will be achieved via three phase assessments: pre-analysis, continuous monitoring, and
post-analysis by an experienced educator in CG from outside of our institution.

Pre-analysis will be performed before the courses are offered where the experienced CG educator will critically
examine existing course design and materials: including articulation of course goals, syllabi, past
examinations/assignments/final projects, and the existing on-line concept-demonstrating-applications. These
materials will be evaluated against students’ demonstrated ability to design and implement moderately complex
interactive CG applications. An evaluation report including recommendations will be provided to the PI for
appropriate refinements to the materials. During the offering of the courses, the refined course materials will be
continuously monitored and feedback provided for the PI to make further adjustments. As part of the monitoring
effort, the experienced CG educator will attend some classes to obtain first-hand feedback from students. After the
courses, post-analysis will be performed based on the refined course materials, and a final report with
recommendations will be provided to the PI.

Peter Shirley, a campus-wide teaching award winning [51,52] CG Professor from University of Utah has agreed
to serve as our independent evaluator. Professor Shirley is the author of two books [15,53] in the CG field. In his
most recent bottom-up approach CG textbook [15], Professor Shirley pointed out that both top-down and bottom-up
approaches have their merits. Professor Shirley’s distinguished teaching experience, pedagogical position, and book
writing experience uniquely qualify him to be our independent evaluator.

5.2. Development/Refinement of Course Materials
Over the past four years, our implementation of the top-down approach has been developed into: (1) lecturing

the CG concepts; (2) demonstrating the concepts with applications; (3) analyzing the source codes involved in
implementing the concepts; (4) having students synthesize the concepts into their own applications.

These 4 steps are followed for each of the CG concepts covered in both of the courses. The lecture notes for
these courses are unique because CG concepts are presented based on two 3D APIs (Direct-3D and OpenGL). In
addition, the lecture notes include extensive references to the source code of the accompanied library modules
highlighting issues involved in integration with other CG concepts and techniques in implementation. Most of the
existing lecture notes for the courses are hand-written and organized in an ad hoc manner. These lecture notes are

Spring 2005

Fall 2005

Spring 2006

Summer 2006

Fall 2006

Spring 2007

Summer 2007

Final Refinement:
Follow up with publisher

Development of
Course Material:
Transcribe lecture notes,
develop code base. Courses
taught with draft materials.

Refinement of
Course Material:
Analyze assessment
results. Refine/extend
materials. Courses taught
with refined materials.

 Assessment of Draft
Materials:
Student learning from
draft materials.

Assessment of Refined
Materials:
Student learning from
refined materials.

Figure 3: Project Schedule

Summer 2006

Independent
Evaluation:
Professor
Shirley will
evaluate
existing
materials,
visit
classrooms,
and analyze
assessment
results.

 SIGCSE/
CCSC/
SIGGRAPH:
Tutorial based
on course
materials.
Papers on
evaluations and
comparisons.

PROJECT DESCRIPTION

Essential Concepts for Building Interactive Computer Graphics Applications 6

hand-edited, updated, amended, each time the courses were taught. After four years of updating the lecture notes
contents have somewhat stabilized. However, they have also become relatively difficult to parse. These lecture
notes should be transcribed into electronic format for public access.

We choose to custom develop the concept-demonstration-applications (CDAs) of step 2 and 3, even though there
are other existing systems. There are three reasons for our choice. First, as practitioners of CG, it is important for
students to understand/experience with implementation of CG concepts, and not be mere users of CG concepts.
Second, we want to ensure students’ familiarity with the source code base. In the beginning of the course the CDAs
are relatively simple and the source codes are straightforward to understand. The complexity of the CDAs increase
gradually as each new concept is introduced. In this way, students can follow the development of the source codes
closely and concentrate on analyzing the implementation of each new concept. Third, we want to demonstrate CG
concepts with same CDAs based on different graphics APIs. For example, we have implemented 2 versions of the
same application demonstrating “coordinate transformation pipeline” using “matrix stacks” where the first version
was based on OpenGL and the second one was based on Direct3D. We find this to be a valuable tool in emphasizing
the independence of CG concepts from the underlying supporting APIs.

Maintaining the CDAs is becoming very difficult and time consuming. We have designed an API independent
Object Oriented Graphics Library (OOGL) to support the development of the CDAs. However, in practice, more
than one version of OOGL is needed because the sophistication of the CDAs varies greatly throughout different
stages in the two courses. In addition, many existing CDAs were rapidly prototyped during the courses on per-need
basis. For these reasons, individual CDAs are typically developed based on slightly modified OOGL interfaces.
Currently the existing 100+ CDAs have similar and yet completely independent source code bases with an average
size of about 2000 lines of C++ code per CDA.

The effective reorganization and consolidation of these CDAs is very important to the continual success of our
approach. The exact work involved will depend on the recommendations from Professor Shirley after the pre-
analysis. We anticipate this work to include: (1) Designing a development framework to support the consolidation of
similar CDAs. For example, controls should be incorporated into a single application to support dynamic-run-time
loading of different APIs to demonstrate the same CG concept. (2) Refining the OOGL definition into different
versions with appropriate degrees of sophistication. For example: a. flat hierarchy for simple primitives; b. hierarchy
with inheritance for interaction with abstract interfaces; c. transformation support for hierarchical modeling and
coordinate pipeline; d. camera support for 3D viewing; and e. additional classes for lighting, materials, textures, etc.
(3) Consolidating and porting CDAs based on the new development framework and appropriate versions of OOGLs.
Currently, about 30-40 of the 100+ CDAs uniquely demonstrate CG concepts, the rest are duplicated source code
supporting interface with different APIs (e.g. OpenGL vs Direct3D, FlTk vs MFC, etc.).

The PI of this project, Professor Kelvin Sung, designed and developed the current OOGL and CDAs. He will
work with hourly programmers to accomplish the above tasks. While as a graduate student, Professor Sung worked
extensively with Computer Graphics Standards and APIs including: large scale design and development [54-56], and
scholarly evaluations [57]. Although the works are somewhat dated, the underlying principles of API design
remained the same and the development experiences apply directly to this project. Prior to joining CSS, Professor
Sung taught CG to traditional Computer Science students at the National University of Singapore [58]. Afterwards,
he became one of the chief designers of the Rendering module of the academy award winning [59] Maya software
system [16]. Professor Sung’s familiarity with teaching both traditional and non-traditional students coupled with his
hands-on experiences from designing/developing large-scale API and commercial CG systems uniquely qualify him
for designing teaching materials based on practical applications, which is the top-down approach.

Because of the amount of materials involved, it is expected that the first year’s effort will be focus on higher-
level organization and prototyping. We expect the lecture notes to be largely transcribed (probably lacking details),
and the OOGL/CDAs prototyped. Based on the results from the assessment program (please refer to Section 5.3), in
the second year we expect some re-organizations while majority of the efforts will be spent filling in the details and
extending the lecture notes and documenting the OOGL/CDAs.

5.3. Assessments of Student Learning
We are adopting a mixed method approach to assess student learning, as recommended by the NSF’s Directorate

for Education and Human Resources [60]. Beginning with a clear statement of student learning outcomes, multiple
assessment instruments will document student learning (through pre- and post-test and evaluation of staged
assignments), student perceptions (through logs students will complete along with the staged assignments), peer

PROJECT DESCRIPTION

Essential Concepts for Building Interactive Computer Graphics Applications 7

review of the course (as discussed in Section 5.1), and faculty self-assessment (based on reflections on in-class
activities, student work and student feedback). The data collected will be analyzed on an ongoing basis, so that the
results can be fed back into continuous revision of the course.

Pre- and Post-Assessment: An assessment will be administered to all students at the beginning of the course.
This assessment will cover all the computing concepts identified as desirable prerequisites for the course as well as
outcomes of the course. The same instrument will be administered at the end of the quarter in order to determine
change and to correlate student performance in the course overall with command of CG concepts.

Student logs: Students will complete logs associated with assignments every other week of the course. The
logs encourage students to reflect on their understanding of concepts presented in the course, to evaluate their ability
to apply those concepts to assignment problems, and to identify areas in which they still have questions.

The responses to the pre- and post-assessment instruments and the student logs will not be shared with the
course instructor during the quarter, but the assessment coordinator will be able to associate responses with particular
students in order to correlate them with performance and grades on course assignments.

Homework assignments: For the past few offerings of the courses, one assignment was created/revised for each
topic covered. These assignments were in the form of technical specifications where students must demonstrate
concepts learned by designing and implementing interactive CG applications. For the final project, the technical
specifications required students to demonstrate the ability to independently synthesize all concepts learned in an
interesting interactive CG application. The final project involved formal written and oral proposals, in-class progress
demonstrations, and at the end, formal written and oral report with user manual and final in-class demonstration. We
will modify the assignment structure based on pre-analysis feedbacks.

Faculty self-assessment: A journal has been maintained that records the observations of the progress of the
course with particular attention to insights from grading assignments and exams, reflections on in-class activities and
questions, and ideas for further revision of the course.

By using these data in concert, we will be able to: (1) determine how fully the learning outcomes for students are
being achieved (through assessment of the homework they have completed); (2) identify concepts that are
challenging and are not adequately addressed in course materials (through student logs); (3) track the course of
student learning across the quarter (through homework and logs); (4) correlate learning in the course to prior
preparation (through the pre-test); (5) locate stages in the course when changes would be most useful (through all the
data sources).

Dr. Rebecca Reed Rosenberg, interim director of the UWB Teaching and Learning Center [61], will design and
administer this student assessment program. She will work in consultation with the staff of the University of
Washington Seattle's Center for Instructional Development and Research [62], and specifically with
Dr. Wayne Jacobson, who specializes in assessment of technical and computing instruction; and with Dr. Cinnamon
Hillyard, director of the UWB Quantitative Skills Center [63].

We will complete the draft development of the course materials prior to the next offering of our CG courses. In
this way we could administer the assessment program based on the draft course materials. We will begin refining
and extending the materials as soon as assessment results becomes available. In the following year, we will teach our
CG courses with the refined materials. The follow up assessment will allow us to verify the effectiveness of the
refined/extended course materials.

5.4. DISSEMINATION
The top-down idea [7] is well received [8,9]. We plan to continue to take advantage of the different presentation

formats (papers, tutorials, forums, etc.) in technical conferences for educators (e.g. SIGGRAPH Educators Program,
SIGCSE conferences, and/or CCSC regional conferences) to present the different/appropriate aspects of our work.
For example, panel discussions on different approaches to teaching CG [10]; forum discussions on the top-down
approach; tutorials/workshops based on our course materials; and scholarly papers based on assessment results
(e.g. [64]). The goal of these presentations would be to raise the awareness of the top-down approach. In addition,
we will continue to post results of our work at our courses’ web-sites [5,6]. Throughout this project, we will keep the
commercial publisher (AK-Peters) update-to-date of our progress. At the end of this project, we will follow-up with
the publisher and further refined our course materials into a textbook. With the above dissemination efforts,
educators facing similar challenges would be aware of our results, and the textbook will provide a straightforward
adaptation pathway.

