
Creating Dialog Based Applications with MFC 7
By Jason Pursell, University of Washington, Bothell (2000-2003)
 jpursell@u.washington.edu

Introduction

This tutorial demonstrates how to create a simple dialog based application with MFC
7 and Visual Studio .NET.

Note: I originally created this tutorial to aid my classmates in using Visual Studio
.NET and MFC 7 during the 2002 school year when many students were still using
Visual Studio 6 and MFC 6. It should also be noted that this tutorial is based on
another one from CodeProject.com, A Beginners Guide to Dialog Based
Applications – Part One, by Dr. Asad Altimeemy. Please check that one out if you
are interested in using Visual Studio 6 and MFC 6, because I will focus solely on MFC
7 in this tutorial.

The Visual Studio .NET IDE

Visual Studio .NET allows multiple programming languages to share the Integrated
Development Environment (IDE), so there are new parts to the IDE that are common
to all the languages, and some familiar parts are gone or replaced (see Figure 1 and
Table 1). For the purposes of this tutorial, I will focus only on the parts related to
MFC.

3,4,5

2
1

6

Figure 1. Some parts of the IDE that are new and/or improved.

 1

mailto:jpursell@u.washington.edu
http://www.codeproject.com/dialog/dialogapptute.asp
http://www.codeproject.com/dialog/dialogapptute.asp

 Solution Explorer Class View Resource View

IDE Component Description

1. Toolbox
– Displays a variety of items for use in Visual Studio
projects such as controls, components, and code/text
fragments.

2. Dialog Editor (MFC)
– This is where you create or edit dialog box resources.
Beware – this is not Windows Forms!

3. Solution Explorer
– Provides you with an organized view of your projects
and their files as well as ready access to the commands
that pertain to them.

4. Class View
– Displays a programmatic view of symbols in your code,
for example, namespaces, classes, methods, and
functions.

5. Resource View – Displays the resource files included in your projects.

6. Properties Window
– Use this window to view and change the design-time
properties and events of selected objects that are located
in editors and designers.

Table 1. IDE components.

The location of the each of the views (or windows) is totally dependent upon the
profile you are using. The profile can be set from the Start Page under My Profile.
The Start Page usually shows when you start Visual Studio .NET.

The properties window is new and its buttons are important (Figure 2). The first
two on the left just determine how the items are displayed in the list. The next three
determine what is displayed: Properties, Control Events, Messages, or Overrides (in
that order). Control Events, Messages, and Overrides are only available when certain
things are selected. For example, Figure 2 is what is available when CDialog1Dlg is
selected in the Class View (as in the picture of the Class View at the top of the
page); however, the Overrides icon is only shown when a class is selected.

 2

Show Properties

Show Control
Events

Show Messages

Show Overrides

Alphabetize
Properties

Categorize
Properties

Figure 2. Buttons of the properties window.

 3

Creating a New Project (and Solution)

To create a new project, choose FileÆNewÆProject on the main menu. The New
Project dialog will open.

Figure 3. New Project dialog.

Write Dialog1 in the project Name field.

Specify the Location for the Solution and project to be created. Choose a new
location if you don’t like the default (usually in My Documents/Visual Studio Projects
or it might show the last place that you created a project).

If you don’t see the New Solution Name field as in Figure 3, then click the More
button. Change the name of the solution if you want, otherwise it will default to the
same name as the project. The solution will be in the same folder as the project.
This is alright if the solution will only have one project; however, if you know that
your solution is going to have more than one project in it, then check the Create
directory for Solution checkbox. This will create a folder with the name of the
solution and it will contain the files in Figure 4. If you don’t check the Create
directory for Solution checkbox, Dialog1.sln, Dialog1.ncb, and Dialog1.sou will just
go in the Dialog1 project folder.

.sln – Solution File

.ncb – Intellisense Database

.sou – Solution User Options

Figure 4. Files created inside the Dialog1 solution folder when the Create directory for Solution checkbox
is selected.

 4

Note: The Dialog1.sln file is somewhat analogous to the DSW file in Visual C++ 6
(i.e. this is what you double-click to load the entire solution in the future).

Click the OK button when ready. The MFC Application wizard will start.

On the menu, choose Application Type (circled in red in Figure 5).

Figure 5. Page one of the wizard.

Figure 6. Application Type page of the wizard.

Choose the options that are circled in red in Figure 6.

Click the Finish button.

Note: Feel free to look at the other pages; however, for this tutorial we will accept
 the defaults.

 5

Designing the Dialog

Note: If the Dialog Editor is not showing, open the Resource View (Ctrl+Shift+E)
and expand the Dialog folder, then double-click IDD_DIALOG1_DIALOG.

Figure 7. The Dialog Editor in action.

2.
Selection Handle.
This can be dragged
to change the size of
the dialog. The
width and height are
indicated in are
below circled in blue.

1.
Click the title bar to
select the Dialog itself.

HINT:
Investigate the
blue line after the
tutorial. Try to
figure out what it
is used for. It
can be useful.

Click on the text TODO: Place dialog controls here, then press Delete.

Next, as in Figure 7 above, select the dialog by clicking on the edge of the title bar.
The dialog will now have sizing handles on its sides and corners. These are used to
resize the dialog. The width and height of the dialog is indicated at the bottom-right
of the IDE and is circled in blue in the diagram above. Left-click and Drag the
bottom-right selection handle up and to the left until the size of the dialog is at a
width and height of 230 x 126, then release the mouse button. Note that there is
nothing special about these dimensions. They are just the numbers that allowed me
to fit the controls on the dialog in a “nice” manner. ☺

Since we don’t need the Cancel button in our application, select it by left-clicking it
once. The button is selected when sizing handles surround it. Press Delete.

Next we need to change some of the properties of the OK button.

Select the OK button by left-clicking it once. Figure 8 shows how the Properties
window reflects the properties of the button when it is selected.

Note: Depending on your choice of IDE setup, the Properties window might be on
the left or right. If it is not showing, then choose ViewÆProperties Window from
the main menu or press F4 on the keyboard.

 6

Figure 8. Properties of the OK button.

Change the Caption of the button by typing Close in the value field of the Caption
property (Figure 9 on the next page).

Type in here!

Figure 9. Changing the Caption property of the button.

Now the button on the dialog reads “Close”.

 7

Adding Controls
Next, you will add some new controls to the dialog. Our example will have nine
controls in total. These controls are located in the Toolbox window. Using these
controls, we will create a dialog similar to the one in Figure 10 below.

Note: Depending on your choice of IDE setup, the Toolbox window might be hidden.
By default it is on the left side of the IDE. If it is not showing, then choose
ViewÆToolbox from the main menu or use the Ctrl+Alt+X keyboard shortcut.

Figure 10. Example layout of the Dialog1 dialog.

To select a control from the toolbox, left-click it once to select it and then place it on
the dialog by left-clicking in the general area of where you want it positioned. You
can also just drag a control from the Toolbox to the dialog. Try both ways to see
which you prefer.

As an example, the first control we add to the dialog will be a new button.

Before

After

 8

Next we will change a couple of the properties of the new button. First, select the
button on the dialog. Next, in the Properties window, change the following
properties of the button:

 9

Property Value
ID IDC_ADD
Caption Add

The ID property determines how the each control is identified by MFC in code. Every
control must have an ID. You will see how this works later in the tutorial.

Next, the Caption property is what is displayed on the control and is what the User
will see when using the application. Not all controls have a Caption property.

Use Table 2 on the next page as a guide to add the remaining controls to the dialog.
As you add each control to the dialog, change its properties to the values shown in
the table just as you did for the Add button. Again, we want to build a dialog similar
to Figure 10 above.

 10

Control Property Value
Static Caption Title
Static Caption First Name
Static Caption Last Name
Edit ID IDC_FIRSTNAME
Edit ID IDC_LASTNAME

ID IDC_TITLE
Data Mr.;Mrs.;Miss;Ms.;Dr. Combo Box
Type Drop List

List Box ID IDC_NAMELIST
Table 2. The controls and their properties that we want to change.

Please see Figure 11 for an example of the property settings for the combo-box.

Here is an example of the properties of the combo-box control that we added. The
properties we will change are highlighted in red.

Figure 11. The properties of the IDC_TITLE combo box control.

Next, we need to specify the length of the combo-box drop down list. Position the
mouse over the drop-down arrow of the combo-box and left-click once. Use the blue
resizing handle to adjust the length, similar to Figure 12. Click the drop down
arrow on the combo-box again to toggle back to the normal control resizing mode.

2. Use to adjust the length.

1. Left-click to toggle the
 sizing mode.

Figure 12. Specifying the length of the open Combo-box list.

Hint: When a control on the form is selected, you can “nudge” it by pressing one of
the arrow keys on the keyboard. This provides finer adjustments of the control’s
placement than is possible by using the mouse. Likewise, you can grow or shrink
your control by holding down the Shift key and then pressing one of the arrow keys.
This is an alternative to using the resizing handles. Try these techniques as you
create this dialog.

Assigning Member Variables to Controls

Let’s add some variables to tie the GUI to the data. Make sure that the Dialog Editor
is open and active. In order to access the Add Member Variable Wizard, choose
ProjectÆAdd Variable from the main menu. You can also right click anywhere in
the Dialog Editor and choose Add Variable from the pop-up menu. This is fine for
regular old variables, but for variables that represent controls, you should right-click
on the control. This way the Add Member Variable Wizard will start and it will load up
with the fields already filled with the default settings for that control.

Figure 13. Right-click menu.

 11

We will work with the First Name Edit control first.

In the Dialog Editor, right-click the First Name Edit control. From the pop-up menu,
choose Add Variable.

As in Figure 14, make sure the following settings are present before pressing the
Finish button: Control variable checked, Control ID to IDC_FIRSTNAME, Access to
private, Category to Value, Variable to CString, Control type to EDIT, and Variable
name to m_strFirstName.

Figure 14. The Add Member Variable Wizard for the First Name edit control.

Use table 3 as a guide to enter the other variables.

Control ID Access Variable

type
Variable Name Category Control

type
Control
variable

IDC_LASTNAME private CString m_strLastName Value EDIT yes

IDC_TITLE private CString m_strTitle Value COMBOBOX yes

IDC_NAMELIST private CString m_strFullName Value LISTBOX Yes

IDC_NAMELIST Private CListbox m_NameList Control LISTBOX yes

Table 3. The remaining variables that need to be added via the Add Variable Wizard

Remember: Right-click on the control to add a variable. There are other ways, but
 this is the easiest for you, because it “pre-fills” some of the fields.

Note: IDC_NAMELIST has two variables for it. The CString variable has a category
of Value and the CListbox variable has a category of Control.

 12

Adding Message Handlers for the Controls

There is more than one way to add an event handler. I will show a couple of ways
here. Each has their pros and cons. Both of the methods refer to the Add button.

Note Read over both methods first and then decide which one you want to use.

Method One
Right-click on the control that you are interested in (the Add button in this case),
then choose Add Event Handler from the pop-up menu (see Figure 15). This will
bring up the Event Handler Wizard. There you can fill in the information.

For the Add button the Message Type is BN_CLICKED, the Class list is CDialog1Dlg,
and the Function handler name is OnAdd.

Figure 15. Accessing the Event Handler Wizard from right-clicking on controls.

 13

Click the Add and Edit button when done. This will take you to the newly added
method where you can begin adding your own code.

Method Two
The second method is done through the Properties window and is very convenient.

First, left-click on a control to select it. The Properties window will change to
represent the control. Click the Control Events button. Next, click on the
BN_CLICKED control event. If you click the down arrow, you will see Figure 16.
We want to use our own name, so instead, just type in the field as in Figure 17.

As soon as you press Enter, the main window will change to code view and the
cursor will be positioned in the newly created method waiting for you to add some of
your own code.

The code that you will add is on the next page.

Figure 16. The default event handler function name provided by MFC

W
o
l
a
T

Figure 17. Accessing the Add Event Handler through the Properties w

Now that you’ve read through both methods, follow one
the Add button.

Control Events
Button
Don’t choose this
unless you want the
function to have the
default name.

.

e want to use our
wn name, so just
eft-click once in here
nd type: OnAdd
hen press Enter.

indow.

 to add an event handler for

14

Add the following code to the OnAdd function:

void CDialog1Dlg::OnAdd()
{
 // TODO: Add your control notification handler code here
 CString strTitle;
 int nIndex;

 UpdateData(); // DDX - Transfer data from the controls to variables

 //get the currently selected text
 nIndex = GetDlgItemText(IDC_TITLE, strTitle);
 m_strFullName = strTitle + " " + m_strFirstName + " " + m_strLastName;
 m_NameList.AddString(m_strFullName);

 UpdateData(FALSE); // DDX - Transfer data from variables to controls
}

Building and Running the Program

To run, just press CTRL+F5 or DebugÆStart Without Debugging. Choose “Yes”
when asked to rebuild the files.

Hint Using Start Without Debugging is much faster than Starting (with

debugging). This is especially true when compiling C# or VB.NET programs in
Visual Studio .NET. The debugger is very powerful, though, so when you need
it just choose Start (or F5).

Figure 18. Debug menu.

 15

If everything was done correctly, you should be able to type values into the fields
and press the Add button to copy the values into the Name list.

The Widows XP theme
settings are in effect,
because MFC 7
automatically creates a
manifest file as part of
the resources.
(This can be disabled)

It is only available on
Windows XP or better.

Figure 19. Example application.

Hopefully, this tutorial has been helpful in introducing you to Visual Studio .NET and
MFC. Please email any suggestions to me at jpursell@u.washington.edu.

My website is located at http://home.myuw.net/jpursell

Resources

For more help on getting started with Visual Studio .NET and/or MFC 7 please see
following:

- www.msdn.microsoft.com

- www.msdn.microsoft.com/library/default.asp?url=/vs/techinfo/Default.asp

- www.codeproject.com

- www.gotdotnet.com

The MSDN library that comes with VS .NET also has gigabytes of help on how to use
the IDE and MFC 7. It also contains whitepapers on compatibility issues between
MFC 6 and 7 and general standards conformance with “Standard C++” (which is
much improved).

 16

mailto:jpursell@u.washington.edu
http://home.myuw.net/jpursell
http://www.msdn.microsoft.com/
http://www.msdn.microsoft.com/library/default.asp?url=/vs/techinfo/Default.asp
http://www.codeproject.com/
http://www.gotdotnet.com/

