
�

�

�

�

�

�

�

�

10

Coordinate Systems

This chapter discusses coordinate systems and the transformation between differ-
ent coordinate systems. This chapter:

• analyzes the world2ndc matrix we have worked with in all of the tutorials;

• explains the need for world and normalized device coordinate systems;

• describes and experiments with the world coordinate window;

• derives all essential coordinate transformation operators and demonstrates
how to implement these operators.

After this chapter we should:

• understand the difference between modeling design space and device draw-
ing space;

• understand the need for transforming mouse click positions to the world
coordinate space.

In addition, with respect to hands-on programming, we should:

• be able to program Mw2n operators to support any user-specified world co-
ordinate window;

• be able to utilize graphics API matrix processors in supporting necessary
coordinate transformation operations;

• be able to transform mouse clicks to the world coordinate space.

257

�

�

�

�

�

�

�

�

258 10. Coordinate Systems

10.1 Understanding Tutorial 3.1

Recall that in the first tutorial of Chapter 3, we began by measuring and discussing
how to draw two squares with the following measurements:

LargeSquarewc =

⎧⎪⎪⎨
⎪⎪⎩

Va = (160, 122),
Vb = (80, 122),
Vc = (80, 42),
Vd = (160, 42),

(10.1)

andwc. Abbreviation for world
coordinate. We will study the
details of this coordinate sys-
tem in Section 10.3. SmallSquarewc =

⎧⎪⎪⎨
⎪⎪⎩

Va = (160, 122),
Ve = (210, 122),
Vf = (210, 172),
Vg = (160, 172).

(10.2)

Tutorial 3.1 displayed these squares where each millimeter was represented with
a pixel on the application window.

Tutorial 10.1. The world2ndc (w2n) Transform
Tutorial 10.1.
Project Name

D3D_ViewTransform0
• Goal. Understand the w2n transformation operator we have encountered in

all of the tutorials.

• Approach. Analyze the simplest tutorials we have worked with and study
the effect of the operator.

Figure 10.1. Tutorial
10.1: Re-implement Tu-
torial 3.1 with 200 × 160
drawing area.

Figure 10.1 is a screenshot of running Tutorial 10.1. This tutorial is identical to
Tutorial 3.1 except that the UI drawing area is 200 pixels × 160 pixels. We can
verify that vertices Ve, Vf , and Vg are outside of the UI drawing area and are not
visible. Recall that before we developed the UWBGL_D3D_Lib support, drawing
was performed during the GrfxWindowD3D::OnPaint() function call, as shown
in Listing 10.1. We are now equipped with sufficient knowledge to completely
understand this very first graphics API tutorial. In particular, we are interested in
understanding the mysterious Step 2 of setting and computing the parameters for
the coordinate systems. Based on the knowledge learned from the previous chap-
ters, we understand that in Step 2, we first initialize all three of the D3D matrix
processors (WORLD, VIEW, and PROJECTION) to the identity matrix. We then com-
pute the w2n matrix by concatenating a translation and a scaling matrix. Finally,
we load the w2n matrix into the VIEW matrix processor. In fact, a similar code

�

�

�

�

�

�

�

�

10.1. Understanding Tutorial 3.1 259

void CGrfxWindowD3D::OnPaint() Source file.
GrfxWindowD3D.cpp file in
the GrfxWindow folder of
the D3D_ViewTransform0

project.

Step 1: select graphics hardware render buffer.

...

Step 2: initialize selected hardware and set the coordinate system parameters.

...

// Initialize D3D matrix processors setting all three

// matrix processors to identity matrix

m_pD3DDevice->SetTransform(D3DTS_WORLD, &identity);

m_pD3DDevice->SetTransform(D3DTS_VIEW, &identity);

m_pD3DDevice->SetTransform(D3DTS_PROJECTION, &identity);

D3DXMATRIX world2ndc; // Coordinate Transformation operator

D3DXVECTOR3 scale(2.0f/width, 2.0f/height, 1.0f); // Parameters for the operator

D3DXVECTOR3 translate(-1.0f, -1.0f, 0.0); //

// compute the coordinate transformation operator

D3DXMatrixTransformation(&world2ndc, scale, translate);

// Load the operator into the D3D VIEW matrix

m_pD3DDevice->SetTransform(D3DTS_VIEW, &world2ndc);

Step 3: clear drawing buffer and draw two squares.

...

v[0].m_point = D3DXVECTOR3(160,122,0);

v[1].m_point = D3DXVECTOR3(80,122,0);

...

m_pD3DDevice->DrawPrimitiveUP(D3DPT_TRIANGLEFAN, 2, (CONST void *)v, . . .);

...

Listing 10.1. CGrfxWndD3D::OnPaint() (Tutorial 10.1)

(0,0)

(1,1)

(-1,-1)

T(-1,-1)

2

2

(0,0)

(2,2)
S(,)2

W
2
H

H

W

WC

(0,0)

NDC
(W,H)

Figure 10.2. The operations of w2n.

�

�

�

�

�

�

�

�

260 10. Coordinate Systems

fragment exists in every tutorial we have worked with. We perform these opera-
tions each time we initialize the graphics API for redraw: in the earlier tutorials
when servicing the Redraw/Paint events (in the OnPaint() function); and in
the later tutorials, when redrawing the WindowHandler UI drawing area (in the
DrawGraphics() function). Figure 10.2 shows the details of the transformation
operation that is implemented by the w2n matrix:

• Scale factor. Recall that the width and height parameters are the di-
mensions of the application window. In Listing 10.1, the scaling factors
are defined to be sx = 2.0

width
and sy = 2.0

height
. The diagram on the left of

Figure 10.2 shows that this scaling factors will shrink a width × height

rectangle into a 2×2 rectangle. For example, in this case we have defined
the dimension of the application window to be 200 pixels × 160 pixels.

• Displacement. The displacements of the translation operator are constants
for all cases: tx =−1 and ty =−1. The diagram on the right of Figure 10.2
shows how this translation operator moves the 2× 2 rectangle resulting
from the scaling operation.

• w2n matrix. We will refer to this matrix (or the transformation operator) as
Mw2n. We see that this is a concatenated operator with a scaling followed
by a translation, or

Mw2n = ST = S
(

2
200

,
2

160

)
T(−1,−1). (10.3)

Notice that Mw2n is loaded into the VIEW matrix processor (or MV) of the D3D
rendering context (RC). In the case of D3D, we know that all vertices Vi will be
transformed by

Vit = Vi MW MV MP.

In this case, both the WORLD (MW) and the PROJECTION (MP) matrices are initial-
ized to the identity matrix. For this reason, the vertices of the squares will only be
transformed by Mw2n in the VIEW matrix processor. For example, Va = (160,122)
will become Vat :

Vat = Va Mw2n

=
[
160 122

]
S(2

200 , 2
160)T(−1,−1)

=
[

160×2
200 −1 160×2

150 −1
]

=
[
0.6 0.525

]
.

�

�

�

�

�

�

�

�

10.1. Understanding Tutorial 3.1 261

When applying Mw2n to all of the vertices, we get

LargeSquarendc =

⎧⎪⎪⎨
⎪⎪⎩

Vat = (0.6, 0.525),
Vbt = (−0.2, 0.525),
Vct = (−0.2, −0.475),
Vdt = (0.5, −0.475),

(10.4)

and ndc. Abbreviation for normal-
ized device coordinate. We
will study the details of this
coordinate system in Sec-
tion 10.2.

SmallSquarendc =

⎧⎪⎪⎨
⎪⎪⎩

Vat = (0.6, 0.525),
Vet = (1.1, 0.525),
Vft = (1.1, 1.15),
Vgt = (0.6, 1.15).

(10.5)

Here we see that Direct3D actually transforms the input vertices into much smaller
numbers. It is interesting that we defined the vertices of the squares accord-
ing to LargeSquarewc (Equation (10.1)) and SmallSquarewc (Equation (10.2)),
only to define the transform operator Mn2w (Equation (10.3)) to ensure that the
D3D API transforms these input vertices to LargeSquarendc (Equation (10.4)) and
SmallSquarendc (Equation (10.5)). Based on these observations, it is logical to
conclude the following.

• The effects of Mn2w. If we define the input vertices according to LargeSquarendc

and SmallSquarendc, then there would be no need for the Mw2n operator of
Equation (10.3).

Tutorial 10.2.
Project Name

D3D_ViewTransform1

Tutorial 10.2. Drawing without the w2n Transform

Figure 10.3. Tutorial
10.2.

• Goal. Verify the effects of the w2n matrix.

• Approach. Draw the two squares defined by the vertices of LargeSquarendc

and SmallSquarendc with identity in the D3D VIEW matrix processor.

Figure 10.3 is a screenshot of running Tutorial 10.2. We observe the output to
be identical to that of Tutorial 10.1. However, the drawing routines of these two
tutorials are different in significant ways. From Listing 10.2, we observe the
following differences.

• Step 2. We do not compute the w2n matrix. Instead, we initialize all three
matrix processors to identity and proceed to drawing the squares.

�

�

�

�

�

�

�

�

262 10. Coordinate Systems

void CGrfxWindowD3D::OnPaint()

...
Source file.
GrfxWindowD3D.cpp file in
the GrfxWindow folder of
the D3D_ViewTransform1

project.

Step 2: initialize selected hardware and set the coordinate system parameters.

...

// Initialize D3D matrix processors setting all three

// matrix processors to identity matrix

m_pD3DDevice->SetTransform(D3DTS_WORLD, &identity);

m_pD3DDevice->SetTransform(D3DTS_VIEW, &identity);

m_pD3DDevice->SetTransform(D3DTS_PROJECTION, &identity);

Step 3: clear drawing buffer and draw two squares.

...

// Vertices of the LargeSquarendc

v[0].m_point = D3DXVECTOR3(0.60f,0.525f,0); // Vat

v[1].m_point = D3DXVECTOR3(-0.2f,0.525f,0); // Vbt

v[2].m_point = D3DXVECTOR3(-0.2f,-0.475f,0); // Vct

v[3].m_point = D3DXVECTOR3(0.60f,-0.475f,0); // Vdt

m_pD3DDevice->DrawPrimitiveUP(D3DPT_TRIANGLEFAN, 2, (CONST void *)v,. . .);

// Vertices of the SmallSquarendc

v[0].m_point = D3DXVECTOR3(0.6f,0.525f,0); // Vat

v[1].m_point = D3DXVECTOR3(1.1f,0.525f,0); // Vet

v[2].m_point = D3DXVECTOR3(1.1f,1.15f,0); // Vft

v[3].m_point = D3DXVECTOR3(0.6f,1.15f,0); // Vgt

m_pD3DDevice->DrawPrimitiveUP(D3DPT_TRIANGLEFAN, 2, (CONST void *)v,. . .);

...

Listing 10.2. CGrfxWndD3D::OnPaint() (Tutorial 10.2)

• Step 3. The two squares are specified by vertices defined by LargeSquarendc

(Equations (10.4)) and SmallSquarendc (Equations (10.5)).

In this tutorial, we verify our observations that we can reproduce the effects of the
Mw2n operator of Equation (10.3). Based on the results of this tutorial, we further
observe the following.

• When all three matrix processors in the D3D RC are initialized to be the
identity matrix, only vertices between the range of ±1.0 are displayed.

�

�

�

�

�

�

�

�

10.1. Understanding Tutorial 3.1 263

Tutorial 10.3. Verify the ±1.0 Drawing Area
Tutorial 10.3.
Project Name

D3D_ViewTransform2
• Goal. Verify that the application window displays all vertices inside the

range of ±1.0.

• Approach. With all matrix processors set to the identity matrix, draw a
circle with center located at the origin ((0,0)) and radius of 1.0.

Figure 10.4 is a screenshot of running Tutorial 10.3. In this case, the output UI
drawing area is defined to be 200 pixels× 200 pixels. Once again, we initialize all
the matrix processors of the D3D API to identity and proceed to draw a unit circle
located at the origin. Recall that we approximate a circle with a triangle fan where
vertices of the triangles are located on the circumference of the circle. We observe
that the circle perfectly fits within the application drawing area. This tutorial

Figure 10.4. Tuto-
rial 10.3: Drawing a circle
of radius 1.0 and center at
(0,0) with D3D

verifies that the reason we need the Mw2n transform is that the D3D graphics API
automatically transforms all vertices from within the range of{ −1.0≤ x≤ 1.0,

−1.0≤ y≤ 1.0,

to the entire application drawing area. In computer graphics, we refer to this Tutorial 10.4.
Project Name

D3D_ViewTransform3
square area covered by ±1 as the normalized space, or normalized device coordi-
nate (NDC).

Tutorial 10.5.
Project Name

D3D_ViewTransform4
Tutorials 10.4 and 10.5. Experimenting with the NDC

Figure 10.5. Tu-
torial 10.4: Drawing the
same circle onto a 100×
200 window.

• Goal. Understand that the entire NDC is mapped onto the application draw-
ing area, regardless of the dimensions of the application window.

• Approach. Draw the unit circle onto application draw areas with drastically
different dimensions and observe the results.

To further understand the transformation performed internally (and automatically)
by D3D, in Tutorials 10.4 and 10.5 we define the UI drawing areas to be 100 pixels
× 200 pixels and 200 pixels × 100 pixels, respectively. In both tutorials, the
drawing routines are identical to that of Tutorial 10.3, where the same unit circle
with center located at the origin is drawn in each case. Figures 10.5 and 10.6 are
screenshots of running Tutorials 10.4 and 10.5. It is interesting that in both cases,
just as in the case of Tutorial 10.3, the unit circles fit perfectly within the bounds of
the application windows. Of course, in this case, because the application windows
are rectangular, the circles are squashed into corresponding ellipses.

�

�

�

�

�

�

�

�

264 10. Coordinate Systems

(-1,-1)

(1,1)

2

2

NDC

(Wdc,Hdc)

(0,0)

DCT(,)
Hdc
2

Wdc
2TTT

Hdc

Wdc

(0,0)

(,)
Hdc
2

Wdc
2

S(,)
Hdc
2

Wdc
2

Figure 10.7. D3D’s Mn2d operator.

The Mn2d transform. From our discussions, we observe that the D3D API must
be performing

Mn2d = S
(

Wdc

2
,

Hdc

2

)
T

(
Wdc

2
,

Hdc

2

)
(10.6)

on all vertices, where

Wdc = Width of drawing area (on device),
Hdc = Height of drawing area (on device).

Figure 10.7 illustrates the transformation described by Equation (10.6). On the
left diagram we see that the S(Wdc

2 , Hdc
2) operator scales the 2×2 NDC space into

an Hdc×Wdc region. The center and right diagrams of Figure 10.7 show that the
translation operator moves the region to the proper device location. In general,
any vertex Vi we specify to the D3D graphics API undergoes the transform

Figure 10.6. Tutorial
10.5: Drawing the circle
onto a 200× 100 window.

Vdc = Vi MW MV MP Mn2d ,

where MW , MV , and MP are the WORLD, VIEW, and PROJECTION matrix processors
of the D3D RC and Vdc is the vertex on the UI drawing area. A very important
lesson we have learned so far is that whereas the matrix processors (MW , MV ,
and MP) are under our program’s control, Mn2d will be applied internally by the
D3D graphics API automatically and is not under our program’s control. Another
important observation is that the graphics API (D3D) knows what the underlying
display device resolution is (width/height) and computes Mn2d accordingly.

We see the that the Mw2n operator we construct in Step 2 of Listing 10.1 for
Tutorial 10.1 (and for every single tutorial we have worked with so far) is to com-
plement the Mn2d transform (Equation (10.6)) that D3D performs automatically.
An obvious question is, “Why would D3D automatically perform the Mn2d oper-
ation?” To answer this question, we must first understand coordinate systems.

Linearity of affine transformation. Before we leave this section, notice that
we analyzed the Mw2n operator from Equation (10.3) based on transforming the

�

�

�

�

�

�

�

�

10.2. Device and Normalized Coordinate Systems 265

(0,0) to (200,160) rectangular area to the area within the ±1 range (NDC) (Fig-
ure 10.2). This same operator also proportionally transforms the two squares
inside the rectangular area where the transformed squares are proportionally lo-
cated inside the NDC space. This is an example of the linear property of affine
transformation: if the transform operator works for a rectangle, then all geometric
contents inside the rectangle will also transform appropriately. For this reason,
when deriving coordinate transformations, we only need to consider the operator
that transforms the enclosing rectangular region of interest.

10.2 Device and Normalized Coordinate Systems
Coordinate system and
space. Coordinate systems
and coordinate spaces are
used interchangeably in this
book. For example, device
coordinate system and device
coordinate space are both
referred to as the DC.

In Section 3.1 when we wanted to describe vertex positions of the squares, we
borrowed concepts from the Cartesian coordinate system with the horizontal and
vertical axes and units on the axis. From the discussion in the previous section,
we see two examples of applying the concepts associated with the Cartesian co-
ordinate system.

1. Device coordinate (DC). When we draw and refer to positions on the ap-
plication window, implicitly, we assume a coordinate system. We assume
that the origin is located at the lower-left corner of the window, with units
being pixels. Note that the DC is a variable coordinate system, where it can
be changed even during the lifetime of an application (e.g., by resizing the
application window size). The DC has dimension width (Wdc) by height
(Hdc). The application’s drawing area is the DC space. NDC and OpenGL. For sim-

ilar reasons as discussed here,
the OpenGL API also defines
the NDC as its internal coor-
dinate system. The OpenGL
API also performs the exact
same Mn2d operator (as de-
fined by Equation (10.6)) on
every input vertices.

2. Normalized (device) coordinate (NDC). With center at the origin and x/y
ranges between −1 and +1, the NDC defines a 2× 2 square area. This is
the internal coordinate system of the D3D graphics API. We have seen that,
as programmers working with D3D, we are responsible for programming
the matrix processors such that all vertices are transformed into the NDC
(i.e., the Mw2n operator). In turn, D3D will automatically transform vertices
from NDC to DC when processing the vertices (i.e., the Mn2d). The NDC
never changes.

Although the internal NDC representation causes extra complexity and process-
ing, the NDC representation is also very important for the following reasons.

• Consistency and flexibility. A well-defined constant coordinate system is
important for the internal implementation of the D3D API. As programmers
of the API, such a well-known coordinate system provides a fixed reference

�

�

�

�

�

�

�

�

266 10. Coordinate Systems

as the rest of the application changes: as the DC window size changes,
we can continue to communicate to the D3D API based on the NDC. In
this way, our solution can be completely independent of the size of the UI
drawing area. Because our solution is designed with reference to the NDC,
our program can run in the same way with a 200× 200 or a 500× 500 UI
window.

• Convenience. With the strategically chosen center (origin) and the coor-
dinate ranges (of ±1), it is straightforward to transform the NDC square
to other rectangular regions. For example, we have already seen in Equa-
tion (10.6) that it takes simple scaling and translation operations to trans-
form the NDC to DC. In general, it is convenient to transform NDC to any
coordinate space, for example, to the coordinate space defined for paper on
printouts.

However, for humans, the ±1 range of NDC is not always intuitive and often
inconvenient to work with. For example, it is not straightforward to design a
geometric face (e.g., Figure 9.21) where all vertex information must be constraint
to between −1 and 1. To compensate for this rigid constraint, we introduce the
world coordinate space for our programs to work in.

10.3 The World Coordinate System

When designing the geometric face of Figure 9.21, the implicit unit of measure-
ment was the pixel. The implementation of Tutorial 9.9 conformed to this assump-
tion where, for example, the drawing area is exactly 300 pixels × 300 pixels. It
would seem that if we want to display this face design on an application window
with a different dimension, we would have to re-measure and re-define all ver-
tex positions. However, if we examine the implementation of Tutorial 9.9 more
closely, in the CDrawOnlyHandler::DrawGraphics() function, the w2n matrix
is the Mw2n operator:

Mw2n = S
(

2
width

,
2

height

)
T(−1,−1),

where {
width = 300 pixels,
height = 300 pixels.

�

�

�

�

�

�

�

�

10.3. The World Coordinate System 267

void CDrawOnlyHandler::DrawGraphics()

float width = 300.0f, height=300.0f;
Source file.
DrawOnlyHandler.cpp

file in the WindowHandler
folder of the D3D_XformList

project.

...

// Construct the matrix that will transform from the world bounds

// to NDC

D3DXVECTOR3 scale(2.0f/width, 2.0f/height, 1.0f);

D3DXVECTOR3 translate(-1.0f, -1.0f, 0.0);

D3DXMatrixTransformation(&world2ndc, ... &scale, ... &translate);

m_pD3DDevice->SetTransform(D3DTS_VIEW, &world2ndc);

...

Listing 10.3. The DrawGraphics() function of Tutorial 9.9.

Figure 10.8 illustrates the transformation that takes place. Note the following.

• Step 1. The Mw2n operator transforms all vertices from our design space
into the NDC. In this case, the design and measurements are based on a
drawing area of width = 300 and height = 300. In the implementation of
Tutorial 9.9, the values for the width and height are fixed based on the
width and height of the application window. However, notice that the input
of the Mw2n transformation is our design space and that the output is the
NDC space. In fact, neither the input nor the output is related to the DC
dimension!

• Step 2. The Mn2d operator is internal to the D3D graphics API. This oper-
ator transforms all vertices from the NDC to the final application drawing
area, or the device coordinate (DC). Notice that this transformation, Mn2d ,

-1 1

-1

1

NDC
UI Drawing

Area

M
w2n

We
comput this

M
n2d

D3D
Automatically

Internal
To D3D

Our Original
DesignWC DC

(-1,-1)

(1,1)

Figure 10.8. Transformation for drawing of the face in Figure 9.21.

�

�

�

�

�

�

�

�

268 10. Coordinate Systems

is governed by the dimensions of the application window and is indepen-
dent of the values we used for the Mw2n operator.

These observations indicate that, in fact, our 300× 300 design space need not
be related to the application window size. Indeed, the D3D internal NDC space
helped separate Mw2n and Mn2d into independent operators, where

Design space
Mw2n−→ NDC

Mn2d−→ DC.

As application programmers, we only need to be concerned with the Mw2n oper-
ator, which is independent of the DC!

10.3.1 Design Space versus Drawing Area

Tutorial 10.6. DC-Independent Design Space
Tutorial 10.6.
Project Name:

D3D_XformListCoordSpace

Library Support:
UWB_MFC_Lib1

UWB_D3D_Lib9

• Goal. Verify that the 300×300 design space of Figure 9.21 is indeed inde-
pendent of the dimensions of the UI drawing area.

• Approach. Change the dimension of the UI drawing area to 500×500 and
observe the output.

Figure 10.9. Running
Tutorial 10.6.

Figure 10.9 is a screenshot of running Tutorial 10.6. Although the UI front end
of this tutorial appears to be significantly different from that of Tutorial 9.9, these
two tutorials have identical back-end implementations! The only significant dif-
ference is that in this case, the UI drawing area is 500× 500 pixels. From the
output of this tutorial, we see a larger but the same geometric face as the one
observed in Tutorial 9.9. In this tutorial, we display a 300× 300 design space
in a 500× 500 drawing area; we have verified that our design space is indeed
independent of the device dimensions.

In computer graphics, we refer to the 300× 300 coordinate space where we
designed the original face the world coordinate space or the world coordinate
system (WC). The world refers to the fact that the geometric objects within this
space are the world that we would like to draw onto the output display area. We
observe that as long as we correctly construct the Mw2n operator (or the WC-to-
NDC operator), we can select to work in any convenient WC space.

10.3.2 Working with a Convenient WC Space

Figure 10.10. A full-
figure geometric person.

It is important to select a design space or the WC such that it is convenient to
specify our geometric objects. For example, in anticipation of specifying the full-

�

�

�

�

�

�

�

�

10.3. The World Coordinate System 269

Center=(20,30)
W=2, H=1

Center=(18,32)
Radius=0.5

Center=(22,32)
Radius=0.5

Center=(20,30)
Radius=5

Center=(20,27.5)
W=5, H=1 Center=(21.25,27.75)

W=H=0.5
Center=(19.25,27.25)
W=H=0.5

Figure 10.11. WC window of the face from Figure 10.10.

figure geometric person of Figure 10.10, we can choose a more convenient WC
space to specify the face of Figure 9.21. Figure 10.11 shows a Window into the
WC to illustrate the details of the new geometric face. In this case, the rectangular
WC window is bounded by

WC window =
{

15≤ x≤ 25
25≤ y≤ 35

=

⎧⎨
⎩

center = (cxwc,cywc) = (20,30),
width = Wwc = 10,

height = Hwc = 10.

Linearity of affine transfor-
mation. Recall that to trans-
form geometric contents be-
tween rectangular regions, we
can concentrate on construct-
ing the operator that trans-
forms between the rectangles
that surround the regions. The
contents inside the rectangles
will transform proportionally.

If we want to display the content of this WC window, we must construct an
appropriate Mw2n operator. As we saw in Figure 10.8, as programmers of the
D3D graphics API, our goal is to construct the Mw2n operator to transform the
WC window into D3D’s internal coordinate system, i.e., the NDC. In turn, D3D
will automatically transform the content of the NDC to the drawing area on the
application window.

Figure 10.12 illustrates one way to construct the Mw2n operator, where we
first move the center of the region to the origin and then scale the region into a
2 × 2 area, or

Mw2n = T(−20,−30)S
(

2
10

,
2

10

)
. (10.7)

�

�

�

�

�

�

�

�

270 10. Coordinate Systems

(1,1)

(-1,-1) NDC
(Internal
To D3D)

NDC to DC
(by D3D)

S(2/10,2/10)(

10

10

T(-20,-30)T(TT(10
10

(20,30) WC
Window

Figure 10.12. Mw2n: world-to-NDC transform for the face of Figure 10.11.

Tutoral 10.7. Working with a Convenient WC Space (Figure 10.12)
Tutorial 10.7.
Project Name:

D3D_ChangedCoordinate

Library Support:
UWB_MFC_Lib1
UWB_D3D_Lib9

• Goal. Understand and work with a world coordinate (WC) window that is
not centered on the origin.

• Approach. Program the transformation of Figure 10.12 and observe the
output.

Figure 10.13 is a screenshot of running Tutorial 10.7. We observe that the output
of this tutorial is identical to that of Tutorial 10.6. However, this tutorial im-
plements the geometric face as defined by Figure 10.11 (in CModel.cpp). The
DrawGraphics() function shown in Listing 10.4 defines the Mw2n transform op-
erator of Equation 10.7. We see that although the world coordinate spaces and

Figure 10.13. Tutorial
10.7.

the actual geometric values specified in this tutorial are very different from that
of Tutorial 10.6, the output from the two tutorials are identical to each other. This
tutorial verifies that we can define the WC window to support a convenient WC
space for designing our world and that the WC space is independent of the dimen-
sions of the UI drawing device.

void CDrawOnlyHandler::DrawGraphics()

...

// Translate the center of WC to the origin

D3DXMatrixTranslation(&toPlace, -20.0f, -30.0f, 0.0);

// Scale to 2x2

D3DXMatrixScaling(&toSize, 2.0f/10.0f, 2.0f/10.0f, 1.0);
Source file.
DrawOnlyHandler.cpp

file in the WindowHan-
dler folder of the
D3D_ChangedCoordinates

project.

// build Mw2n operator of Equation 10.7

D3DXMatrixMultiply(&world2ndc, &toPlace, &toSize);

// Load to the VIEW matrix (MV)

m_pD3DDevice->SetTransform(D3DTS_VIEW, &world2ndc);

Listing 10.4. The DrawGraphics() function of Tutorial 10.7.

�

�

�

�

�

�

�

�

10.3. The World Coordinate System 271

(1,1)

(-1,-1) NDC
(Internal
To D3D)

NDC to DC
(by D3D)S(2/10,2/10)

2

2

(S(2S 22SS

10
10

Transformed
Window

T(-15,-25)

(0,0)

(T(-TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT10
10

(15,25)

WC
Window

Figure 10.14. Location of WC window as defined by Equations (10.8) and (10.9).

Notice that there are no physical boundaries around the WC window. As pro-
grammers, we choose the WC window and program the Mw2n operator accord-
ingly. For example, in Tutorial 10.7, we could easily choose to select a different
WC window: Tutorial 10.8.

Project Name:
D3D_TranslateWC

Library Support:
UWB_MFC_Lib1
UWB_D3D_Lib9

WC window

{
center = (15,25),
width = height = 10,

(10.8)

and define the Mw2n to be

Mw2n = T(−15,−25)S
(

2
10

,
2

10

)
. (10.9)

Figure 10.15. Running
Tutorial 10.8.

Tutorial 10.8. Translating the WC Window (Figure 10.14)

• Goal. Verify our understanding that we can move the WC window in the
WC system to show a different part of the WC system.

• Approach. Program Equation (10.9) to verify our understanding.

Figure 10.15 is a screenshot of running Tutorial 10.8. The implementation of
this tutorial is identical to that of Tutorial 10.7, except we program the Mw2n

according Equation (10.9) as shown in Listing 10.5. The image output of the
the program does reflect our predictions from Figure 10.14. In this case, we can
see the greyish outline of the rest of the geometric person of Figure 10.10. If we Clipping. Graphics APIs only

process and display geome-
tries inside the±1 range of the
NDC space. Geometries out-
side of this range are clipped
and/or otherwise guaranteed
to not show up in the UI draw-
ing area.

examine the class definition in Listing 10.6, at label A we observe that the CModel
class defines the geometries for the entire human of Figure 10.10 in the m_figure
PrimitiveList object. At label B, we see that the CModel::Draw() function
draws all the geometries that are defined in the m_figure object. However, from
the output of this tutorial in Figure 10.15, we see that only the geometries inside
the WC window are displayed in the UI drawing area. From this tutorial, we see
that the graphics API clips away all the geometries outside of the NDC ±1 range.

�

�

�

�

�

�

�

�

272 10. Coordinate Systems

void CDrawOnlyHandler::DrawGraphics()
Source file.
DrawOnlyHandler.cpp file
in the WindowHandler folder
of the D3D_TranslateWC

project.

...
// Translate the center of WC to the origin

D3DXMatrixTranslation(&toPlace, -15.0f, -25.0f, 0.0);

// Scale to 2x2

D3DXMatrixScaling(&toSize, 2.0f/10.0f, 2.0f/10.0f, 1.0);

// build Mw2n operator of Equation 10.9

D3DXMatrixMultiply(&world2ndc, &toPlace, &toSize);

// Load to the VIEW matrix (MV)

m_pD3DDevice->SetTransform(D3DTS_VIEW, &world2ndc);

Listing 10.5. The DrawGraphics() function of Tutorial 10.8.

A: CModel::CModel() { // CModel class constructor

...

Source file. Model.cpp file
in the Model folder of the
D3D_TranslateWC project.

// geometry for the torso

UWB_PrimitiveRectangle* pTorso = new UWB_PrimitiveRectangle();

pTorso->SetCorners(vec3(15,11,0), vec3(25,24,0));

...
// geometry for the left leg

UWB_PrimitiveRectangle* pLeftLeg = new UWB_PrimitiveRectangle();

...
// defines the entire geometry for the simple person of Figure 10.10

...
// m_figure is a PrimitiveList

m_figure.Append(pTorso); m_figure.Append(pLeftLeg);

...
// append all defined goemetry into the m_figure PrimitiveList

}

B: void CModel::DrawModel() // CModel draw function

...
// Set up the WORLD matrix

m_xform.SetUpModelStack(m_DrawHelper);

// draws the entire goemetric human of Figure 10.10

m_figure.Draw(lod, m_DrawHelper);

...

Listing 10.6. The CModel class of Tutorial 10.8.

�

�

�

�

�

�

�

�

10.4. The World Coordinate Window 273

10.4 The World Coordinate Window

In order to properly support WC design space, in our programs we must identify
a rectangular region of interest, or the window inside the WC:

WC window =

⎧⎨
⎩

center = (cxwc,cywc),
width = Wwc,

height = Hwc.

We must then construct a corresponding Mw2n to transform this region to the
NDC space. In general, we transform the center of the region to the origin
(T (−cxwc,−cywc)) and then scale the width and height of the region to the NDC
2×2 square (S(2

Wwc
, 2

Hwc
)):

Mw2n = T(−cxwc,−cywc)S(
2

Wwc
,

2
Hwc

). (10.10)

10.4.1 Vertices in Different Coordinate Spaces

As programmers working with graphics APIs, we specify vertices in the WC, or
Vwc. As illustrated in Figure 10.16, this vertex undergoes different transforms
until it reaches the DC, or Vdc, before being displayed on the output drawing
area:

Vwc
Mw2n−→ Vndc

Mn2d−→ Vdc,

DC
Wdc

Hdc

Vdc=(xdc,ydc)

-1 1

-1

1

2

2

Vndc=(xndc,yndc)

NDC

Hwc

Wwc

(cxwc,cywc)

WC
Window

WC

Vwc=(xwc,ywc)

M
w2n

M
n2d

Figure 10.16. Transformation of a vertex between different coordinate systems.

�

�

�

�

�

�

�

�

274 10. Coordinate Systems

where
Vwc =

[
xwc ywc

]
,

Vndc = Vwc Mw2n,

Vdc = Vndc Mn2d ,

or
Vdc = Vndc Mn2d

= Vwc Mw2n Mn2d.

If we let
Mw2d = Mw2n Mn2d , (10.11)

then
Vdc = Vwc Mw2d. (10.12)

Recall that Mn2d is defined by Equation (10.6) and that Mw2n is defined by Equa-
tion (10.10) (re-listing the two equations):

Mn2d = S(
Wdc

2
,

Hdc

2
)T(

Wdc

2
,

Hdc

2
), (10.6)

Mw2n = T(−cxwc,−cywc)S(
2

Wwc
,

2
Hwc

). (10.10)

In this way,Consecutive scaling opera-
tors. Two consecutive scaling
operators:

S(sx1,sy1)S(sx2,sy2)

have the same effect as scaling
once by the combined effect of
the scaling factors:

S(sx1sx2,sy1sy2).

Vdc = Vwc Mw2d

= Vwc Mw2n Mn2d

= Vwc T(−cxwc,−cywc) S(
2

Wwc
,

2
Hwc

) S(
Wdc

2
,

Hdc

2
) T(

Wdc

2
,

Hdc

2
),

or

Vdc = Vwc T(−cxwc,−cywc) S(
Wdc

Wwc
,

Hdc

Hwc
) T(

Wdc

2
,

Hdc

2
). (10.13)

Comparing Equations (10.12) and (10.13), we see that

Mw2d = T(−cxwc,−cywc)S(
Wdc

Wwc
,

Hdc

Hwc
)T(

Wdc

2
,

Hdc

2
). (10.14)

Equation (10.14) says that the operator Mw2d , which transforms from the WC
(xwc,ywc) to the DC (xdc,ydc), does the following.

• Move. The center of the WC window to the origin with (T(−cxwc,−cywc)).
The result of this transform is a Wwc×Hwc rectangle centered at the origin.

• Scale. With the WC window width of Wwc, the scaling factor Wdc
Wwc

changes
the width to Wdc. In a similar fashion, the height becomes Hdc. After the
scaling operator, we have a Wdc×Hdc rectangle centered at the origin.

�

�

�

�

�

�

�

�

10.4. The World Coordinate Window 275

• Move. The rectangle centered at the origin has half its width/height on
either side of the y/x axis. The translation of T(Wdc

2 , Hdc
2) moves the lower-

left corner of the rectangle to the origin, with the upper-right corner located
at (Wdc,Hdc). This is the definition of the DC space.

If we expand the operators in Equation (10.13), then, to transform a point (xwc,ywc)
from our design space (WC) to a point (xdc,ydc) on the device drawing area (DC),

xdc = ((xwc− cxwc)
Wdc

Wwc
)+

Wdc

2
,

ydc = ((ywc− cywc)
Hdc

Hwc
)+

Hdc

2
,

(10.15)

where

Device drawing area

{
width = Wdc,

height = Hdc,

and

WC window =

⎧⎨
⎩

center = (cxwc,cywc),
width = Wwc,

height = Hwc.

From Equation (10.15), we see that when the size of the device drawing remains
constant (i.e., Wdc and Hdc do not change), then the transformation from WC to
DC is governed by the parameters of the WC window as follows.

1. Center (cxwc,cywc). Defines the location of the WC window. Intuitively,
by changing the center we are moving the WC window and thus should
observe different rectangular regions in the WC system, or panning of the
view. Tutorial 10.10 will examine panning in detail.

2. Dimension (Wwc Hwc). Defines the size of the WC window. Intuitively,
by changing the dimension, we increase/decrease the rectangular region
to be displayed. With a fixed-size UI drawing device, increasing the size
of the WC window means showing a larger amount of the WC system in
the fixed-size DC drawing area, or a zooming-out effect. With the same
logic, decreasing the size of the WC window creates a zooming-in effect.
Tutorial 10.11 will examine zooming in detail.

3. Ratio of scaling factors (Wdc
Wwc

versus Hdc
Hwc

). We scale the width of the WC

window by Wdc
Wwc

and the height by Hdc
Hwc

. When these two scaling factors are
different, the proportion of the results in DC space will also be different
from that of the original WC space. For example, a square will be trans-
formed into a rectangle. Section 10.4.4 will examine this effect in detail.

�

�

�

�

�

�

�

�

276 10. Coordinate Systems

We remind ourselves that Equation (10.15), or the Mw2d operator, is the net trans-
formation that would be applied to vertices specified in WC space. From Equa-
tion (10.11), we observe that, as programmers, we are only responsible for Mw2n,
or half of the Mw2d operator. The other half of the operator, Mn2d , is computed
automatically by the graphics API. In this case, we analyze Equation (10.15) and
the Mw2d operator to understand the details of the images generated in the UI
drawing device. We will examine the effects of changing the WC window based
on tutorial implementations. Let us first extend our library to support working
with the WC window.

UWBGL_D3D_Lib10
Change summary. See p. 522
for a summary of changes to
the library.

This library extends from Lib9 by extending the UWB_WindowHandler class to
support the definition of the WC window and programming of the Mw2n operator.
Recall that the WindowHandler object is defined to abstract a view/controller
pair. For the WindowHandler object to properly display different regions of the

class UWB_WindowHandler : public UWB_IWindowHandler {
...

Source file.
uwbgl_WindowHandler3.h

file in the Common Files/
WindowHandler subfolder
of the UWBGL_D3D_Lib10

project.

// Set/Get methods for accessing the m_WCWindow object

A: virtual void SetWCWindow(const UWB_BoundingBox &window);

virtual const UWB_BoundingBox* GetWCWindow();

// Set/Get methods for the drawing device (via m_hAttachedWindow)

B: virtual void SetDeviceSize(int width, int height);

virtual void GetDeviceSize(int &width, int &height);

// wcPt -> dcPt (Equation 10.13)

C: virtual void WorldToDevice(float wcX wcY, int &dcX &dcY);

// dcPt -> wcPt (Equation 10.19)

virtual void DeviceToWorld(int dcX dcY, float &wcX &wcY);

// Drawing the WCWindow

D: virtual void DrawWCWindow(UWB_DrawHelper&);

// Compute Mw2n and load to API matrix processor

E: virtual void LoadW2NDCXform() = 0;

protected:
...

HWND m_hAttachedWindow; // The UI drawing device (a MFC Window)

F: UWB_BoundingBox m_WCWindow; // Window for the World Coordinate

};

Listing 10.7. The WindowHandler class of UWBGL_D3D_Lib10.

�

�

�

�

�

�

�

�

10.4. The World Coordinate Window 277

void UWB_WindowHandler::WorldToDevice(float wcx, float wcy, int &dcx, int &dcy) const {

...

GetDeviceSize(dcW, dcH); // dcW/dcH are the width/height of the drawing device

center = m_WCWindow.GetCenter(); // center of the WCWindow

// Equation 10.13

dcx = (m_WCWindow.Width() / 2.0f) + ((dcW/m_WCWindow.Width()) * (-center.x + wcx));

dcy = (m_WCWindow.Height()/ 2.0f) + ((dcH/m_WCWindow.Height()) * (-center.y + wcy));

void UWB_WindowHandler::DeviceToWorld(int dcx, int dcy, float &wcx, float &wcy) const

...

GetDeviceSize(dcW, dcH); // dcW/dcH are the width/height of the drawing device

vec3 center = m_WCWindow.GetCenter(); // center of the WCWindow

// Equation 10.19
Source file.
uwbgl_WindowHandler3.cpp

file in the Common Files/Win-
dowHandler subfolder of the
UWBGL_D3D_Lib10 project.

wcx = center.x + ((m_WCWindow.Width()/dcW) * (dcx - (dcW/2.0f)));

wcy = center.y + ((m_WCWindow.Height()/dcH) * (dcy - (dcH/2.0f)));

Listing 10.8. The WindowHandler transform and draw functions.

class UWBD3D_WindowHandler : public UWB_WindowHandler {

...

virtual void LoadW2NDCXform() const; // Computes and loads VIEW matrix with Mw2n

...

void UWBD3D_WindowHandler::LoadW2NDCXform() const
Source file.
uwbgl_D3DWindowHandler4.h/cpp

files in the D3D Files/ Win-
dowHandler folder of the
UWBGL_D3D_Lib10 project.

// center of the m_WCWindow (cxwc,cywc)
vec3 center = m_WCWindow.GetCenter();

// T(−cxwc,−cywc)
D3DXMatrixTranslation(&toPlace, -center.x, -center.y);

// S(2
Wwc

, 2
Hwc

)
D3DXMatrixScaling(&toSize, 2.0f/m_WCWindow.Width(), 2.0f/m_WCWindow.Height());

// Mw2n = T(−cxwc,−cywc)S(2
Wwc

, 2
Hwc

)
D3DXMatrixMultiply(&world2ndc, &toPlace, &toSize);

// MV ←Mw2n

m_pD3DDevice->SetTransform(D3DTS_VIEW, &world2ndc);

...

Listing 10.9. The LoadW2NDCXform() functions.

�

�

�

�

�

�

�

�

278 10. Coordinate Systems

model, it must support the WC window and the associated transformations. From
Listing 10.7, we see that, at label F, we define a UWB_BoundingBox object to
represent the WC window. The get/set access functions for the m_WCWindow are
defined at label A. Because the UI drawing area (drawing device) is supported by
the MFC GUI API (m_hAttachedWindow), the device get/set functions at label
B are implemented by interacting with the m_hAttachedWindow object. The two
functions at label C implements the WC-to-DC transformations (more details to
follow). The drawing function at label D allows us to visualize the WC window
as a wire-framed rectangle. The function at label E should compute the Mw2n ma-
trix and load the graphics API with this matrix. Note that this function is a pure
virtual function; since WindowHandler is a graphics API–independent class, we
do not know how to implement this function. This function will be implemented
by the D3DWindowHandler class. Listing 10.8 shows the implementations of the
transformation functions. We see that in both cases, the functions are faithful
implementations of equations we have derived. We will derive Equation (10.19)
in Section 10.5 and discuss how to work with these functions to handle mouse
inputs. Listing 10.9 shows the implementation of the LoadW2NDCXform() func-
tion in the D3D_WindowHandler class. From the listing, we observe step-by-step
implementation of Equation (10.10). The computed Mw2n operator is loaded into
the VIEW (MV) matrix processor of the D3D API.

Tutorial 10.9. Working with UWBGL_D3D_Lib10

Tutorial 10.9.
Project Name:

D3D_WCSupport

Library Support:
UWB_MFC_Lib1

UWB_D3D_Lib10

• Goal. Demonstrate how to work with the new UWBGL_D3D_Lib10 library.

• Approach. Re-implement Tutorial 10.8 based on the new library to under-
stand how to work with the new functions.

Figure 10.17. Running
Tutorial 10.9.

Figure 10.17 is a screenshot of running Tutorial 10.9. This tutorial is identi-
cal to Tutorial 10.8 except that the new implementation takes advantage of the
new WC window functionality provided by the UWBGL_D3D_Lib10 library. List-
ing 10.10 shows that, in the CTutorialDlg::OnInitDialog() function, at label
A we initialize the view/controller pair WC window (m_view) as part of the appli-
cation state initialization process. When redrawing the view/controller pair in the
DrawGraphics() function, at label B we call the LoadW2NDCXform() function to
compute and load the Mw2n operator into the D3D VIEW matrix processor.

�

�

�

�

�

�

�

�

10.4. The World Coordinate Window 279

BOOL CTutorialDlg::OnInitDialog()

...

if(!m_view.Initialize(*this, IDC_PLACEHOLDER)) // m_view is a DrawOnlyHandler (D3DWindowHandler)

return FALSE;

UWB_BoundingBox wcWindow(vec3(10, 20),vec3(20, 30)); // initialize the wcWindow

// set the m_WCWindow of WindowHandler object

A: m_view.SetWCWindow(wcWindow);

...

Source file.
TutorialDlg.cpp file in the
Source Files folder of the
D3D_WCSupport project.

void CDrawOnlyHandler::DrawGraphics()

...

BeginDraw();

B: LoadW2NDCXform(); // compute and load the Mw2n to the VIEW matrix processor

m_pD3DDevice->Clear(
...); // Clears the device for drawing

theApp.GetModel().DrawModel(); // Tells the Model to draw itself

EndDrawAndShow();

...

Listing 10.10. Working with UWBGL_D3D_Lib10 (Tutorial 10.9).

10.4.2 WC Window Position: Panning

Recall that Equation (10.15) defines the transformation of a point from WC space
(xwc,ywc) to DC space (xdc,ydc):

xdc = ((xwc− cxwc)
Wdc
Wwc

)+ Wdc
2 ,

ydc = ((ywc− cywc)
Hdc
Hwc

)+ Hdc
2 ,

(10.15)

where Wdc×Hdc is the drawing device dimension and

WC window =

⎧⎨
⎩

center = (cxwc,cywc),
width = Wwc,

height = Hwc.

.

In Tutorial 10.8, we observed that by changing the WC center position (cxwc,cywc),
we can show different regions of the model defined in the WC system. Based on
our discussions, we can predict that a continuous changing of WC window posi-
tion would create an effect of panning through the WC system.

�

�

�

�

�

�

�

�

280 10. Coordinate Systems

Tutorial 10.10. Moving the WC Window Center ((cxwc,cywc))
Tutorial 10.10.
Project Name:

D3D_Panning

Library Support:
UWB_MFC_Lib1

UWB_D3D_Lib10

• Goal. Verify that the effect of changing the center position of a WC window
does indeed correspond to continuous displaying of different regions in the
WC system.

• Approach. Allow the user to interactively change the center position of a
WC window and examine the results.

Figure 10.18. Running
Tutorial 10.10.

Figure 10.18 is a screenshot of running Tutorial 10.10. In this tutorial, the large
(main) view displays a larger region of the WC system (the entire geometric per-
son), while the small view only displays part of the WC system visible in the
main view. The red wire-framed rectangle in the main view represents the WC
window of the small view. The two slider bars on the lower-right of the applica-
tion window control the center position ((cxwc,cywc)) of the WC window for the
small view. By changing these two slider bars, we can observe the red rectangle
in the main view and the image showing in the small view pan across the main
view. This tutorial verifies that changing the WC window position creates the
panning effect. Figure 10.19 illustrates that the implementation of Tutorial 10.10
involves two different types of CWindowHandler objects. The top-center rectan-
gle represents the CDrawOnlyHandler of the small view, whereas the bottom-
center rectangle is the CMainHandler of the main view. As we can see, the
CMainHandler maintains a reference to the small view. This reference provides
the small view WC window information for the main view to draw the wire-
framed red rectangle. With the UWBGL_D3D_Lib10 support, both of the Handler

objects have an instance of UWB_BoundingBox representing their corresponding
WC window. As in the case of Listing 10.10, during DrawGraphics(), each

20 40

20

40

04202

020

040

2

0

0

MainHandler
(main view)

reference to
SmallView

Center=(18,18)
W=36, H=36

WC Window

DrawOnlyHandler
(small view) Center=(sx,sy)

W=10, H=10

WC Window

Computes
and Loads

MW MPMV

UI Drawing Areas
On TutorialDlg

Model in the
World Coordinate Space

Vertices in
WC Space

Computes
and Loads

BeginDraw()

BeginDraw()

GHCGDCMw2n

Mw2n

EndDrawAndShow()

EndDrawAndShow()

Figure 10.19. Implementation of Tutorial 10.10.

�

�

�

�

�

�

�

�

10.4. The World Coordinate Window 281

class CDrawOnlyHandler : public UWBD3D_WindowHandler {
Source file.
DrawOnlyHandler.h file in
the WindowHandler folder of
the D3D_Panning project.

...

UWBMFC_UIWindow m_window; // the UI drawing area (device)

};

class CMainHandler : public CDrawOnlyHandler {

...

void SetLinkedHandler(CDrawOnlyHandler* pHandler) { m_pLinkedHandler = pHandler; }

...

protected:

CDrawOnlyHandler* m_pLinkedHandler; // reference to the small view

};

Listing 10.11. The WindowHandler classes of Tutorial 10.10.

class CTutorialDlg : public CDialog {
Source file.
TutorialDlg.h/cpp file in
the Source Files folder of the
D3D_Panning project.

...

A: CMainHandler m_main_view; // the main view

CDrawOnlyHandler m_small_view; // the small view

};

BOOL CTutorialDlg::OnInitDialog() {

...

if(!m_main_view.Initialize(*this, IDC_PLACEHOLDER)) return FALSE;

if(!m_small_view.Initialize(*this, IDC_PLACEHOLDER3)) return FALSE;

...

B: m_small_view.SetWCWindow(theApp.GetModel().GetWorldBounds());

m_main_view.SetWCWindow(UWB_BoundingBox(vec3(0,0,0), vec3(36,36,0)));

C: m_main_view.SetLinkedHandler(&m_small_view);

...

Listing 10.12. The CTutorialDlg classes of Tutorial 10.10.

Handler object calls the LoadW2NDCXform() function to compute and load the
D3D RC MV matrix with their corresponding Mw2n operator before drawing. The
left side of Figure 10.19 shows that the model is defined in the WC space. When
the model draws, it sends all the vertices of all the geometries to the D3D RC.

�

�

�

�

�

�

�

�

282 10. Coordinate Systems

void CMainHandler::DrawGraphics()
Source file.
DrawAndMouseHandler.cpp

file in the WindowHandler
folder of the D3D_Panning

project.

...

BeginDraw();

...

A: LoadW2NDCXform(); // compute Mw2n and load to MV
...

m_pD3DDevice->Clear(
...); // clears the UI drawing area (device)

theApp.GetModel().DrawModel(); // model sends all geometries

...

// draws the red wire-frame rectangle

B: m_pLinkedHandler->DrawWCWindow(helper);

EndDrawAndShow();

Listing 10.13. The CMainHandler::DrawGraphics() function of Tutorial 10.10.

As we have learned, the Mw2n operator ensures that only the region defined by
the corresponding WC window is transformed into the ±1 NDC space where
the rest of the geometries will be clipped away by the graphics API. The right
side of Figure 10.19 reminds us that that each Handler object is responsible for
initializing the swapchain links with BeginDraw() and flushing the hardware
buffer to the UI draw area with the EndDrawAndShow() function calls. List-
ing 10.11 shows the definition of the CDrawOnlyHandler and CMainHandler

classes of Tutorial 10.10. We see that indeed both of the classes subclass from the
UWBD3D_WindowHandler class and that the CMainHandler has a reference to the
small view (m_pLinkedHandler). Referring to Listing 10.12, at label A we see
that the main application window (CTutorialDlg) has an instance of each of the
Handler objects representing the main and the small views. At label B, the WC
window for each of the views is initialized. At label C, the main view gets a ref-
erence to the small view. Listing 10.13 shows the DrawGraphics() function of
MainHandler calling LoadW2NDCXForm() to compute and load the correspond-
ing Mw2n operator at label A (before drawing the model). At label B, the WC
window of the m_pLinkedHandler (small view) is drawn (as the red wire-frame
rectangle) in the main view.

With this structure, the two slider bars are connected to the small view’s WC
window center position. When the user adjusts the slider bars, the changes are
immediately updated to the m_small_view’s m_WCWindow. In the subsequent
redraw, the updated WC window computes an appropriate Mw2n operator that
corresponds to the user input.

�

�

�

�

�

�

�

�

10.4. The World Coordinate Window 283

10.4.3 WC Window Dimension: Zooming

If we double the WC window size of the small view from Tutorial 10.10 such that

WC window

{
center = (15,25),
Wwc = Hwc = 20,

then the WC window covers a larger region in the WC system. From Equa-
tion (10.15):

xdc = ((xwc− cxwc)
Wdc
Wwc

)+ Wdc
2 ,

ydc = ((ywc− cywc)
Hdc
Hwc

)+ Hdc
2 ,

(10.15)

we see that as Wwc and Hwc are the denominators in the scale factors, doubling
these effectively halves the scaling factors. This implies that we should expect
the elements on the DC display to decrease in size. As illustrated in Figure 10.20,
we see that if we increase the WC window size, more elements in the WC are
displayed in the output display area. Correspondingly, each individual element
does indeed appear to be smaller on the output display. We see that increasing the
WC window size results in the zooming-out sensation. For the same reasons, we
can expect a zooming-in effect when we decrease the WC window size.

(-1,-1)

(1,1)

S(2/20,2/20)(((2/S(//(((

20

20

Transformed
Window

T(-15,-25)

(0,0)

T(-T --TTTTTTTTTTTTTTTTTTTTTTTTTTTTT20

20

(15,25)

WC
Window

Content
to be drawn

Figure 10.20. Double the WC window size.

Tutorial 10.11. Scaling the WC Window (Wwc,Hwc)
Tutorial 10.11.
Project Name:

D3D_Zooming

Library Support:
UWB_MFC_Lib1

UWB_D3D_Lib10

• Goal. Verify zooming effect in relation to the WC window dimensions.

• Approach. Extend Tutorial 10.10 and allow user to adjust the width and
height of the small view WC window.

Figure 10.21 is a screenshot of running Tutorial 10.11. This tutorial extends Tuto-
rial 10.10 with two more slider bars at the lower right of the application window.
The two new sliders are connected directly to the width (Wwc) and height (Hwc) of

�

�

�

�

�

�

�

�

284 10. Coordinate Systems

the m_small_view’s m_WCWindow. Based on the previous discussions, we under-
stand that as the user adjust the slider bars, the resulting changes will be reflected
in the subsequent Mw2n (Equation (10.10)) operator that is loaded into the MV ma-

Figure 10.21. Running
Tutorial 10.11.

trix. In this tutorial, we can interactively adjust and observe the expected zooming
effects. In addition, we observe the following.

• Changing Wwc without corresponding changes to Hwc (or changing Hwc

without corresponding changes to Wwc) creates an annoying squeezing ef-
fect. We will examine this closely in the next section.

• The zooming effect appears to be defined with respect to the center of the
WC window. That is, as we zooming in, it appears we are getting closer
to the center of the WC window. This is a direct result of our scaling the
width and height of the WC window with respect to the center of the WC
window. It is left as an exercise for the reader to derive implementations to
support zooming with respect to some other position in the WC window.

10.4.4 WC Window Width-to-Height Ratio: Aspect Ratio

Recall that the WC-to-DC transformation is governed by Equation (10.14), the
Mw2d operator, or

Mw2d = T(−cxwc,−cywc) S(
Wdc

Wwc
,

Hdc

Hwc
) T(

Wdc

2
,

Hdc

2
). (10.14)

We observe that the middle scaling operator controls the zoom factor. When the
scaling factors in the x- and y-directions are different, then the transformation
from WC to DC will involve resizing objects in x- and y-directions by different
amounts. In the cases of Tutorials10.4 and 10.5, we worked in the NDC space
directly with a WC window size of{

Wwc = 2 with −1≤ x≤ 1,

Hwc = 2 with −1≤ y≤ 1.

For both tutorials,
Wdc �= Hdc.

This means that the factors of the scaling operator in Equation (10.14) are different
in the x- and y-directions. For this reason, in both cases we observed the squashed
circles. In order to maintain proportional shapes from WC to DC, the x and y
scaling factors in the Mw2d operator must be the same, or

Wdc

Wwc
=

Hdc

Hwc
.

�

�

�

�

�

�

�

�

10.4. The World Coordinate Window 285

Collecting WC and DC terms on either sides of the equation,

Wdc

Hdc
=

Wwc

Hwc
. (10.16)

We define aspect ratio to be:

aspect ratio =
width
height

.

Equation (10.16) says that to maintain proportional shapes when transforming
from WC to DC, the aspect ratio of the WC window must be the same as that of
the device drawing area.

Tutorial 10.12. Experimenting with Aspect Ratios
Tutorial 10.12.
Project Name:

AspectRatio

Library Support:
UWB_MFC_Lib1

UWB_D3D_Lib10

• Goal. Understand WC window and DC aspect ratios and verify the artifacts
when the ratios do not match.

• Approach. Extend Tutorial 10.11 and allow interactive changing of UI
drawing dimension.

Figure 10.22. Running
Tutorial 10.12.

Figure 10.22 is a screenshot of running Tutorial 10.12. This tutorial extends Tu-
torial 10.11 by including two more slider bars at the lower right of the application
window. These two new slider bars control the device dimension of the small-
view UI drawing area, or Wdc and Hdc. Recall that the other four slider bars
control the small-view WC window location (cxwc and cywc) and dimension (Wwc

and Hwc sliders). From Equation (10.16) we understand that the image displayed
in the small view will be distorted if/when we adjust the sliders bars such that

Wdc

Wwc
�= Hdc

Hwc
.

We note that in general these four numbers can be controlled by the following.

• Our application. As the programmer of the application, we can design our
application to allow user control of these values. For example, our applica-
tion could allow the user to zoom in the world by allowing the WC window
to change size, or our application could allow the user to increase/descrease
the UI drawing area. In these cases, in order to maintain object proportions,
it is important that our application presents a coherent and meaningful user
interface. For example, we should implement zooming functionality by
providing the user with one single zoom factor. The single zoom factor
would ensure that the ratio Wdc

Wwc
remains constant and thus avoid the situa-

tion where WC and DC aspect ratios are different.

�

�

�

�

�

�

�

�

286 10. Coordinate Systems

• Window manager. Because our application runs in a shared windowing
environment, it is always possible that the environment may change the size
of the UI drawing area and inform our application about the changes. In
this case, if the DC aspect ratio is changed, then in order to maintain proper
proportions, we must change the WC window dimension accordingly. For
example, initially our application may have a WC window size of 10×10
and a DC displaying area of 200× 200. If for some reason, the window
manager decides to change the DC drawing area to 200× 100, we must
update the WC window to match the 0.5 DC aspect ratio. In this case, we
can:

– increase the WC window size to 10× 20 and show more of the WC
space; or

– decrease the WC window size to 5× 10 and show less of the WC
space.

The first option guarantees that we will show at least the original WC win-
dow, whereas the second option guarantees that we will show at most the
original WC window. The choice between the above two options is a policy
decision: neither choice is more correct. We should program our applica-
tion to support the behavior specified by the user.

10.4.5 Summary

The world coordinate (WC) system is introduced to dissociate our model design
space from the dimensions of the UI drawing area. As we have seen, this is
advantageous for the following reasons.

• With the WC, we can define any coordinate system that is convenient for
designing the geometric models and not be concerned with the dimensions
of the eventual output drawing area.

• With the WC window, we can control the parameters (center, width, and
height) to select the exact regions of the WC space to be displayed in the
UI drawing area.

To properly support the WC system, the graphics API introduces the normalized
device coordinate (NDC) system, a coordinate system bounded by±1. Our job as
the graphics API programmer is to compute the Mw2n (Equation (10.10)) operator
for each of the WC window regions we wish to display. The graphics API will

�

�

�

�

�

�

�

�

10.5. Inverse Transformation 287

automatically clip away all geometries outside of the ±1 range and will automat-
ically compute the Mn2d (Equation (10.6)) operator for drawing the geometries
to the output device. In our library design, the Mw2n operator is computed by
the WindowHandler class and loaded into the VIEW matrix processor (MV) of the
D3D RC. Finally, we have seen that when defining the WC window, we must
ensure that the WC window aspect ratio is the same as that of the UI drawing
device. Otherwise, disproportional scaling will occur, resulting in images that
appear squeezed.

10.5 Inverse Transformation

So far, we have concentrated on learning the output of geometric elements. To
build interactive applications, we must interact with the user. In particular, we
must understand how the added window coordinate system affects a user’s picking
or selecting an on-screen object by clicking the mouse buttons (in DC space).

In the Tutorial 5.6 implementation of the ball-shooting program, we compared
mouse click positions with circles in the AllWorldBalls collection to locate the
selected one. Notice that this simple operation involves a comparison across two
distinct coordinate systems. Hardware coordinate. Re-

call that the MFC API returns
mouse click positions in the
hardware coordinate system
where the top-left is the origin
with y-axis incrementing
downward and x-axis increase
rightward.

Hardware-to-device
transform. This transfor-
mation is performed by
the HardwareToDevice()

function defined in the
WindowHandler class.

• Mouse-click position (ptdc). This is a point on the display device (that the
user’s mouse clicked on). In the case of MFC, this position is returned to us
in the hardware coordinate space. As described in Chapter 2 (Tutorial 2.4),
we flipped the y-axis by subtracting the y-value from the height of the de-
vice and thereby converting the point into the device coordinate space with
the origin at the lower-left corner. In all of the following discussions, we
assume that the hardware-to-device transform has already been performed
and we will work with points in DC space, ptdc.

• AllWorldBalls collection. This is the set of all geometries in the world.
By definition, these geometries are defined in the world coordinate (WC)
space.

In the case of Tutorial 5.6, although we did not distinguish between these two
coordinate systems, the selection operation functioned correctly because we have
carefully defined the WC window to coincide exactly with the DC space. In gen-
eral, we must transform input mouse positions to the WC space before working
with them. For example, in the Tutorial 10.7 implementation of displaying the

�

�

�

�

�

�

�

�

288 10. Coordinate Systems

geometric face of Figure 10.11, we know

DC coordinate:

{
0≤ xdc ≤ 300,

0≤ ydc ≤ 300,

whereas

WC window:

{
15≤ xwc ≤ 25,

25≤ ywc ≤ 35.

In this case, the user’s mouse clicks (ptdc) will return points in DC space with
range [0,300]. Clearly, this is very different from where the features of the face
are defined in the WC space. In this case, we must perform the inverse of the
Mw2d operator to transform ptdc into a point in WC space. If we express

ptdc = (xdc,ydc)

as a vector
Vdc =

[
xdc ydc

]
,

then we must compute Vwc, where

Vwc = Vdc M−1
w2d.

From Equation (10.14), recall that Mw2d is

Mw2d = T(−cxwc,−cywc)S(
Wdc

Wwc
,

Hdc

Hwc
)T(

Wdc

2
,

Hdc

2
). (10.14)

From the discussion in Section 9.2, we know that the inverse of a concatenated
operator is simply the inverse of each element concatenated in the reverse order:

Inverse transforms.

T−1(tx,ty) = T(−tx,−ty)
S−1(sx,sy) = S(1

sx
, 1

sy
)

M−1
w2d = Md2w = T−1(

Wdc

2
,

Hdc

2
)S−1(

Wdc

Wwc
,

Hdc

Hwc
)T−1(−cxwc,−cywc),

which is

Md2w = T(−Wdc

2
,−Hdc

2
)S(

Wwc

Wdc
,

Hwc

Hdc
)T(cxwc,cywc) (10.17)

or

Vwc = VdcT(−Wdc

2
,−Hdc

2
)S(

Wwc

Wdc
,

Hwc

Hdc
)T(cxwc,cywc). (10.18)

Equation (10.18) says that to transform a point (xdc,ydc) from the device drawing
area (DC) to a point (xwc,ywc) in our design space (WC):

xwc = ((xdc− Wdc
2)Wwc

Wdc
)+ cxwc,

ywc = ((ydc− Hdc
2)Hwc

Hdc
)+ cywc,

(10.19)

where

Device drawing area

{
width = Wdc,

height = Hdc,

�

�

�

�

�

�

�

�

10.5. Inverse Transformation 289

void UWB_WindowHandler::DeviceToWorld(int dcx, int dcy, float &wcx, float &wcy) const

...

A: GetDeviceSize(dcW, dcH); // Get the UI drawing device dimension

vec3 center = m_WCWindow.GetCenter(); // Center position of the WC Window

float wcW = m_WCWindow.Width(); // Width of the WC Window

float wcH = m_WCWindow.Height(); // Height of the WC Window

B: wcx = center.x + ((wcW/dcW) * (dcx - (dcW/2.0f))); // implement Equation 10.17

wcy = center.y + ((wcH/dcH) * (dcy - (dcH/2.0f))); // by computing Equation 10.19

Source file.
uwbgl_WindowHandler3.cpp

file in the Common Files/ Win-
dowHandler subfolder of the
UWBGL_D3D_Lib10 project.

Listing 10.14. The WindowHandler::DeviceToWorld() implementation.

and

WC window =

⎧⎨
⎩

center = (cxwc,cywc),
width = Wwc,

height = Hwc.

Listing 10.14 shows the implementation of Equation (10.19) in the DeviceTo Tutorial 10.13.
Project Name:

D3D_BadMousePan

Library Support:
UWB_MFC_Lib1

UWB_D3D_Lib10

Tutorial 10.14.
Project Name:

D3D_MousePan

Library Support:
UWB_MFC_Lib1

UWB_D3D_Lib10

World() transform function of the UWB_WindowHandler class in D3D_UWB_Lib10.
At label A, we obtain the dimension of the drawing device and the parameters for
the WC window. Label B is a direct implementation of Equation (10.19). In gen-
eral, we must transform all user mouse-click positions by Equation (10.17) before
comparing with points in the WC space.

Tutorials 10.13 and 10.14. Mouse Positions and Inverse Transforms

• Goal. Verify mouse positions and the need for device-to-world transforma-
tions.

• Approach. Extend Tutorial 10.12 to support moving of the small-view WC
window by dragging with the left mouse button in the main view.

Figure 10.23. Running
Tutorial 10.13 and 10.14.

Figure 10.23 is a screenshot of running Tutorials 10.13 and 10.14. In these tuto-
rials, left mouse button drag in the main view defines the center position for the
WC window of the small view. For example, from Figure 10.11 we know that the
nose position of the geometric person is (20,30) in WC space. Now, if the user left
mouse button clicks at the nose position in the main view, our application will re-
act by moving the center of the small-view WC window to (20,30). If the user left
mouse button drags towards the right-eye position, (22,32), our application will
track the position by moving the center of the small-view WC window. Notice

�

�

�

�

�

�

�

�

290 10. Coordinate Systems

// Mouse button services

void CMainHandler::OnMouseButton(bool down, unsigned int nFlags, int hwX, int hwY)

...

A: HardwareToDevice(hwX, hwY, deviceX, deviceY); // hwXY -> deviceXY

...

B: if(nFlags & MK_LBUTTON) // Left Mouse Button down

// Compute new center for small view WC Window

ComputeBoundPosition(deviceX, deviceY);

// Mouse move services

void CMainHandler::OnMouseMove(unsigned int nFlags, int hwX, int hwY)

...

A: HardwareToDevice(hwX, hwY, deviceX, deviceY);

...

B: if(nFlags & MK_LBUTTON) // Left Mouse Button drag

// Compute new center for small view WC Window
Source file.
DrawAndMouseHandler.cpp

file in the WindowHan-
dler folder of the
D3D_BadMousePan project.

ComputeBoundPosition(deviceX, deviceY);

Listing 10.15. The MainHandler mouse event service routines of Tutorial 10.13.

that in our discussion, these are in WC coordinate units, while we know that the
mouse positions are in device coordinates. Tutorial 10.13 shows us the results of
not transforming points to the WC space and using the mouse positions in the DC
space directly. Listing 10.15 shows the mouse button click (OnMouseButton) and
mouse move (OnMouseMove) service routines of Tutorial 10.13. In both service
routines, at label A we transform the mouse click position from hardware to de-
vice coordinate, and then use the DC position to compute the center position for
the small-view WC window. For this reason, in Tutorial 10.13, if we click around
the top region of the main view, the corresponding DC points will have values
around 300, and thus the small-view WC window will be moved to corresponding
positions. Because nothing is defined in the 300 range in the WC space, nothing
will show up in the small-view drawing area. Recall from Figure 10.10 that the ge-
ometric person is defined within the range of [0,40]. This means if we left mouse
button click/drag around the lower-left region of the main view, limiting our DC
position to within the range of [0,40], we will see the small-view WC window
panning around the geometric person. Clearly we must transform the DC posi-
tions to WC before computing the WC window position. Tutorial 10.14 extends
from Tutorial 10.13 with the simple inclusion of the DeviceToWorld() function

�

�

�

�

�

�

�

�

10.5. Inverse Transformation 291

calls. Listing 10.16 shows the mouse event source routines of Tutorial 10.14. As
we can see at label A, the DeviceToWorld() function is called (for both mouse
button and mouse move event service routines). By running Tutorial 10.14, we
can verify that this tutorial functions as expected.

// Mouse button services

void CMainHandler::OnMouseButton(bool down, unsigned int nFlags, int hwX, int hwY)

...
Source file.
DrawAndMouseHandler.cpp

file in the WindowHandler
folder of the D3D_MousePan

project.

HardwareToDevice(hwX, hwY, deviceX, deviceY); // hwXY -> deviceXY

A: DeviceToWorld(deviceX, deviceY, wcX, wcY); // deviceXY -> wcXY

...

if(nFlags & MK_LBUTTON) // Left Mouse Button down

// Compute new center of small view WC Window based on wcXY

ComputeBoundPosition(wcX, wcY);

// Mouse move services

void CMainHandler::OnMouseMove(unsigned int nFlags, int hwX, int hwY)

...

HardwareToDevice(hwX, hwY, deviceX, deviceY); // hwXY -> deviceXY

A: DeviceToWorld(deviceX, deviceY, wcX, wcY); // deviceXY -> wcXY

...

if(nFlags & MK_LBUTTON) // Left Mouse Button down

// Compute new center of small view WC Window based on wcXY

ComputeBoundPosition(wcX, wcY);

Listing 10.16. The MainHandler mouse event service routines of Tutorial 10.14.

�

�

�

�

�

�

�

�

