Evidence of Student Learning

Staneff

Student Work for Portfolio Commons Project

John Staneff, instructor

CIS 201c, Computer Science I (Java)

Pierce College, Ft. Steilacoom campus, Lakewood, WA

Included in this document are several student’s efforts (5) at tackling homework assignment #3, problem # 1 in the course. These efforts are graded, and comments are included. It is intended to show evidence of student learning.

Some of these students had previous programming experience, including one student who was retaking CS-I. At least one of these students had no prior programming experience or coursework (and was a Running Start [High School] student). At least two of these students were returning students, coming back to school after a period in the work force.

Contents:

I. Assignment and sample input data

II. Grades for each student for the assignment
III. Student “BS”

IV. Student “KL”

V. Student “MR”

VI. Student “SD”

VII. Student “VK”

All student work is annotated with comments regarding the work provided.

I. Assignment and sample input data

Assignment

CIS 201c, WN/SP/FL 200X
Assignment #3

Assigned dd/MMM, dd/MMM at start of class

1. Payroll

John, Mary, Tom, Peter and Paul have banded together in their quest to provide the ultimate burger for all their very best customers. In order for the JMTPP Burger Joint, better known as The Jumping Tea Pot Burger Emporium, to work, they have decided to hire YOU to produce a payroll program for them.

The payroll program takes as input an employee ID number, a positive integer. That number will correspond to a file in the current directory. For example, information about employee #15 will be in a file named 015-hours.txt, and information about employee #2 will be in a file named 002-hours.txt. Notice that leading zeros are significant in the file name: the file is 002-hours.txt, not 2-hours.txt. Your program will be run one time for each employee. Each time it is run it will write a "simulated paycheck" for the employee to the standard output stream. The "paycheck" will consist of three lines:

· output line 1: the current date

· output line 2: the payment line of the form "Pay to the order of <name>: $amount"

· output line 3: a memo line: "Memo: employee #<employee number> for the period <date1> through <date2>"

Information in the input file for each employee takes the following form:

· line 1 contains the following items

· the first date of this pay period int the form mm/dd/yy

· the employee's first and last name (first name separated from last name by white space)

· hourly wage rate (a floating-point number)

· the number of dependents (a non-negative integer)

· the dollar amount of pre-tax retirement deduction (an integer dollar amount)

· lines 2 through 6 each contain a single floating point number containing the number of hours worked on days 1 through 5, respectively

Tax is computed on the basis of the following rules:

· gross pay for the week is paid at the employee's wage rate for the first 40 hours, and at 1.5 times the wage rate for any additional hours

· medical deduction is $100 for the employee, plus $50 for each dependent

· taxable income is gross pay less the retirement deduction, less medical deduction, except that this number cannot be less than 0

· tax is computed on taxable income at the rate of 18%, less 2% for each dependent, but cannot be less than 0%

· the paycheck amount is taxable income less tax, but cannot be less than 0

There are three sample data files in the assignment directory. Note however, that your program must work for any valid data file in your application's current directory. (That is, we should be able to add a new data file for a new employee, and your program must work for that new employee as long as the data file is formatted properly.)

Here is sample output for employee #2:

Please enter an employee ID: 2

01/18/05

Pay to the order of Tom K Smith: $327.60

Memo: employee #2 for the period 01/03/05 through 01/07/05

You must complete this problem without using any IF statements!

This application will be named Payroll.java

The balance of the problems are omitted …..

What To Hand In

You will hand in four program source (Java) files, and one plain-text writeup file, with the name writeup.txt.

Please be sure that your Java files have exactly the same names specified in the program description.

Your write-up file will contain a "program debrief" for each programming problem. This should be one well- formed paragraph per problem that speaks to your personal experience when writing the program. Include such topics as: How long in total did you spend on the problem? How difficult was the problem to do? What pitfalls did you run into? What topics did this problem help you to internalize? What did you have to learn on your own in order to solve the problem? What ways would you change the assignment to make it more meaningful?

For example: a student wrote a program that inputs a number and outputs the square of the number and they wrote:

This program was easy for me overall as I had some C++ experience prior to this Java class so I am familiar with the syntax. I spent about a half hour writing the code and 5 minutes testing it. The only pitfall I ran into was when I first tried to run it, I got an error. It turned out that I had used a capital ‘M’ for my main method which allowed the code to compile, as “Main” is a legal name, though not conforming to standards. However, upon program execution I was given an error that stated that the main method could not be found. After I changed the ‘M’ to an ‘m’ my program executed fine. This assignment helped me to consider the importance of proper syntax and basic input and output. I thought this problem was a bit on the easy side even for a first program. I would recommend adding an additional element of difficulty, such as requiring the process to repeat.

Sample Input Data

002-hours.txt

01/03/05
Tom K Smith 8 1 500

20

20

20

20

20

023-hours.txt

12/25/04
Allen Hayes 10 1 200

10

0

10

0

10

112-hours.txt

01/10/05
Mike Green 11.5 2 300

40

40

40

40

40

II.
Grades for each student for the assignment

Grades for Assignment #3

These are the actual grades given for these students. They cover the whole assignment, not just the first part:

MR -- 3.9

VK -- 4

SD -- 4

KL -- 3.2

BS -- 4

There are only 4 points possible for this assignment.

III. Student “BS”

	Code: Payroll.java
	Comments

	/****************************

BS

Assignment 3

Problem 1

What it does: Reads from a file given an employee number and calculates the pay check.

****************************/

import java.io.*;

import java.util.GregorianCalendar;

import java.util.*;

public class Payroll {

 public static void main(String args[]) throws Exception{

String zero = "0";

String doubleZero = "00";

int medicalDeduction = 100;

int medicalDeductionDependant = 50;

System.out.print("Employee Number?: ");

Scanner input = new Scanner(System.in);

String employeeNumber = input.nextLine();

String employeeFile = "";

employeeFile = employeeNumber.length() == 1 ? employeeFile.concat(doubleZero.concat(employeeNumber.concat("-hours.txt"))) : (employeeNumber.length() == 2 ? employeeFile.concat(zero.concat(employeeNumber.concat("-hours.txt"))) : (employeeNumber.length() >= 3 ? employeeFile.concat(employeeNumber.concat("-hours.txt")) : ""));

Scanner fileInSystem = new Scanner(new File(employeeFile));

String line = fileInSystem.nextLine();

Scanner line_1 = new Scanner(line);

String payPeriod = line_1.next().toString();

String firstName = line_1.next().toString();

//String midInit = line_1.next().toString();

String midInit = "";

String lastName = midInit = (line_1.hasNextInt() ? "" : midInit);

lastName = (line_1.hasNextInt() ? midInit : line_1.next().toString());

float wage = line_1.nextFloat();

int dependents = line_1.nextInt();

int preTaxAmount = line_1.nextInt();

//System.out.println("payPeriod " + payPeriod);

//System.out.println("firstName " + firstName);

//System.out.println("lastName " + lastName);

//System.out.println("wage " + wage);

//System.out.println("dependents " + dependents);

//System.out.println("preTaxAmount " + preTaxAmount);

double hours = 0.0;

while(fileInSystem.hasNextLine()){

 String day = fileInSystem.nextLine();

 Scanner nextLine = new Scanner(day);

 hours += nextLine.nextFloat();

}

//System.out.println("hours " + hours);

hours = hours > 40 ? (40 + (hours - 40) * 1.5) : hours;

double grossPay = hours * wage;

double taxableIncome = grossPay - preTaxAmount - medicalDeduction - (medicalDeductionDependant * dependents);

taxableIncome = taxableIncome > 0 ? taxableIncome : 0;

double taxRate = (18 - (dependents * 2)) > 0 ? (18 - (dependents * 2)) : 0;

double tax = taxableIncome * (taxRate/100);

double netPay = (taxableIncome - tax) > 0 ? (taxableIncome - tax) : 0;

/*System.out.println("hours after overtime" + hours);

System.out.println("grossPay " + grossPay);

System.out.println("taxableIncome " + taxableIncome);

System.out.println("taxRate " + taxRate);

System.out.println("tax " + tax);

System.out.println("netPay " + netPay);*/

String[] ids = TimeZone.getAvailableIDs(-8 * 60 * 60 * 1000);

if (ids.length == 0){

 System.exit(0);

}

SimpleTimeZone pdt = new SimpleTimeZone(-8 * 60 * 60 * 1000, ids[0]);

pdt.setStartRule(Calendar.APRIL, 1, Calendar.SUNDAY, 2 * 60 * 60 * 1000);

pdt.setEndRule(Calendar.OCTOBER, -1, Calendar.SUNDAY, 2 * 60 * 60 * 1000);

Calendar calendar = new GregorianCalendar(pdt);

Date now = new Date(payPeriod);

calendar.setTime(now);

//calendar.add(Calendar.MONTH, 1);

//System.out.println(calendar.get(Calendar.MONTH) + "/" + calendar.get(Calendar.DATE) + "/" + calendar.get(Calendar.YEAR));

System.out.println(payPeriod);

System.out.println("Pay to the order of " + firstName + " " + midInit + lastName + ": $" + netPay);

System.out.print("Memo: employee #" + employeeNumber + " for the period ");

//System.out.print(calendar.get(Calendar.MONTH) + "/" + calendar.add(calendar.get(Calendar.DATE), -14) + "/" + calendar.get(Calendar.YEAR));

System.out.print("through");

//System.out.println(calendar.get(Calendar.MONTH) + "/" + calendar.add(calendar.get(Calendar.DATE), -7) + "/" + calendar.get(Calendar.YEAR));

return ;

 }

}
	Good, discovered all about calendars and such.
Lots of commented code still in the program, showing uncertainty re present state.

Very unclear re how to bring in the name, getting all its parts. This needs an array, and inverse logic (e.g., not hasNextDouble()).

I’m not sure why the timezone is needed …. Maybe just to confuse me?

IV. Student “KL”
	Code: payroll.java
	Comments

	//KL

import java.text.*;

import java.io.*;

public class payroll {

 public static void main(String args[]) throws Exception {

 Scanner scr=new Scanner(System.in);

 System.out.print("Please enter employee ID: ");

 DecimalFormat Number=new DecimalFormat("#000");

 int empl=scr.nextInt();

 String name=Number.format(empl);

 name=name.concat(".txt");

 Scanner sc2=new Scanner(new File(name));

 String date=sc2.nextLine().toString();

 System.out.print(date);

 }

}
	Partial credit for at least making a start. The obvious problem here was figuring out how to get the name. Rather than skipping over and worrying about the rest, you just stopped.

V. Student “MR”

	Code: Payroll.java
	Comments

	/********************************/

// MR

// Assignment 03_1

// Payroll

// Date ...

//********************************/

import java.io.*;

import java.util.*;

import java.text.*;

public class Payroll {

 static final int ONE = 1;

 static final int DEDUCTION = 100;

 static final int DEPENDENT = 50;

 public static void main(String args[])throws Exception {

 Scanner console = new Scanner(System.in);

 System.out.print("Please enter an employee ID: ");

 int id = console.nextInt();

 DecimalFormat idCheck = new DecimalFormat("000");

 Scanner input = new Scanner(new File(idCheck.format(id) + "-hours.txt"));

 //Scanner input = new Scanner(new File(id + "-hours.txt"));

 SimpleDateFormat dateWeek = new SimpleDateFormat("MM/dd/yy");

 Date payStarts = dateWeek.parse((String)input.next());

 //String data = input.nextLine();

 //Scanner rowOne = new Scanner(data);

 //pay period start and end

 GregorianCalendar end = new GregorianCalendar();

 end.setTime(payStarts);

 end.add(Calendar.DAY_OF_YEAR, 4);

 Date payEnds = end.getTime();

 //while (rowOne.hasNext()) {

 //String stdt = rowOne.next().toString();//5 days later???cal??? +4

 String first = (String)input.next();

 //String first = rowOne.next().toString();

 //String mi = input.next().toString();//mi issues???

 String mi = "";

 //String last = rowOne.next().toString() ;

 //String last = (input.hasNextDouble()? "" : mi);

 //String last = (input.hasNextDouble() ? input.next().toString(): mi);

 //last = (input.hasNextDouble()? mi : input.next().toString());

 String last = (String)input.next();

 //first line....

 double wage = input.nextDouble();

 int dep = input.nextInt();

 int ret = input.nextInt();

 //hours for the week

 int hours = input.nextInt();

 hours += input.nextInt();

 hours += input.nextInt();

 hours += input.nextInt();

 hours += input.nextInt();

 //System.out.println(hours);

 //while (rowOne.hasNextLine()){

 //int day1 = rowOne.nextInt();

 //int day2 = rowOne.nextInt();

 //int day3 = rowOne.nextInt();

 //int day4 = rowOne.nextInt();

 //int day5 = rowOne.nextInt();

 //int hours = (int)(day1 + day2 + day3 + day4 + day5);

 //for two decimal places in display

 DecimalFormat payCheck = new DecimalFormat("000.00");

 //Hours and overtime calc

 double fortyHour = Math.min(0.0, hours);

 double overTime = Math.max(0.0, hours - fortyHour);

 double gross = (hours * wage) + (1.5 * wage * overTime);

 //retirement calc

 double retireDeduct = (gross - ret);

 //medical deduction calc

 retireDeduct -= (100.0 + (50.0 * dep));

 //tax rate calc

 double taxRate = Math.max((0.18 - (0.02 * dep)), 0.0);

 //net pay calc

 double net = (Math.max((retireDeduct - taxRate * retireDeduct),

 0.00));

 //For todays date, line one

 //Calendar cal = Calendar.getInstance();

 //System.out.println(); //makes a space between input and output

 //System.out.print(cal.get(Calendar.MONTH) + ONE + "/");

 //System.out.print(cal.get(Calendar.DATE) + "/");

 //System.out.print(cal.get(Calendar.YEAR)); //gives todays date

 //System.out.println(); //puts the date on its own line

 Date todaysDate = new Date();

 //formatting date display

 SimpleDateFormat df = new SimpleDateFormat("MM/dd/yy");

 System.out.println(df.format(todaysDate));

 System.out.println("Pay to the order of " + (first + " " + mi

 + last) + ": $" + payCheck.format(net));

 System.out.println("Memo: employee #" + id + " for the period of "

 + df.format(payStarts) + " through " + df.format(payEnds));

}

 }

	Good, you found the calendar and date software.
Using an array for name, and inverse logic would help significantly with this first line problem.

Good to see DecimalFormat.

All the dead code serves to clutter up the program and make reading it confusing …

VI. Student “SD”

	Code: payroll.java
	Comments

	import java.io.*;

import java.lang.*;

public class payroll {

 public static void main(String args[]) throws FileNotFoundException {

 Scanner scr = new Scanner(System.in);

 String date1 = "";

 String name = "";

 float wage = 0;

 int dep = 0;

 int r_red = 0;

 float[] hours = new float[6];

 int empid = 0;

 String file = "";

 System.out.print("Enther your employee #: ");

 empid = scr.nextInt();

 int test = (empid >= 0 && empid < 10) ? 1 : 0;

 test = (empid >= 10 && empid < 100) ? 2 : test;

 test = empid >= 100 ? 3 : test;

 switch(test)

 {

 case 1:

 file = "00" + empid + "-hours.txt";

 break;

 case 2:

 file = "0" + empid + "-hours.txt";

 break;

 case 3:

 file = empid + "-hours.txt";

 break;

 }

 Scanner s2 = new Scanner(new File(file));

 date1 = s2.next().toString();

 name = s2.next().toString() + " " + s2.next().toString();

 String stest = s2.next().toString();

 test = ((int)stest.charAt(0) >= 65 && (int)stest.charAt(0) <= 122) ? 1 : 0;

 switch(test)

 {

 case 1:

 name = name + " " + stest;

 wage = s2.nextFloat();

 break;

 case 0:

 wage = Float.valueOf(stest).floatValue();

 break;

 }

 dep = s2.nextInt();

 r_red = s2.nextInt();

 int numhours = 0;

 for(int i = 0; i < 5; i++)

 {

 hours[i] = s2.nextFloat();

 numhours += hours[i];

 }

 float pay = 0;

 int overhours = 0;

 test = numhours > 40 ? 40 : numhours;

 overhours = numhours > 40 ? numhours - 40 : 0;

 pay = (float)((overhours * 1.5 * wage) + (test * wage));

 pay -= 100 + (50*dep);

 pay -= r_red;

 pay -= pay * (0.18 - (0.02*dep));

 pay = pay < 0 ? 0 : pay;

 System.out.println(date1);

 System.out.println("Pay to the order of " + name + ": " + "$"+pay);

 System.out.println("Memo: employee #" +empid + " for the period 01/03/05 through 01/07/05");

 }

}
	Interesting approach to padding with leading zeroes. You might also have used a while loop.
Very interesting approach to finishing the name. You could have used an array for the name and inverse while logic to add to the name when the input token was not a double ….

VIII. Student “VK”

	Code: Payroll.java
	Comments

	//**

// PROGRAM NAME: Payroll.java

// MY NAME: VK

// BRIEF DESCRIPTION: A payroll program for

// JMTPP. Takes employee ID, outputs payroll

// information. Will create payroll info if

// none available in system.

//**

import java.io.*;

import java.util.*;

import java.text.*;

public class Payroll {

public static String dateOut(int i) {

// Adds zeros to the date if necessary

String returnNumber = Integer.toString(i);

while (returnNumber.length() < 2) {

returnNumber = "0".concat(returnNumber);

}

return returnNumber;

}

public static String payOut(double i) {

// Rounding to nearest Hundreths:

i = i*100;

i = Math.round(i);

String returnNumber = Double.toString(i/100);

returnNumber = (i % 10 == 0.0) ? returnNumber.concat("0") : returnNumber;

return returnNumber;

}

public static String newEmplQues(String prompt) {

System.out.print(prompt);

Scanner sc1 = new Scanner (System.in);

String input = sc1.nextLine();

return input;

}

public static void main(String[] args) throws FileNotFoundException {

// Get Employee Number

System.out.print("Please enter an employee ID: ");

Scanner sc1 = new Scanner (System.in);

int EmployeeNumber = sc1.nextInt();

// Convert Employee Number to File Name

String FileName = Integer.toString(EmployeeNumber);

while (FileName.length() < 3) {

FileName = "0".concat(FileName);

}

// Open Employee's Records; create new records if none exists

while (new File(FileName + "-hours.txt").exists() == false) {

String[] newEmployeeInfo = new String[10];

PrintStream createEmplFile = new PrintStream(FileName + "-hours.txt");

System.out.print("Your information was not found in our records.\nPlease answer the following questions:");

System.out.println();

newEmployeeInfo[0] = newEmplQues("What is your name? ");

newEmployeeInfo[1] = newEmplQues("When was the first date of this pay period? (mm/dd/yy) ");

newEmployeeInfo[2] = newEmplQues("What is your hourly wage? $");

newEmployeeInfo[3] = newEmplQues("How many dependents do you have? ");

newEmployeeInfo[4] = newEmplQues("How much is your pre-tax retirement deduction? ");

newEmployeeInfo[5] = newEmplQues("How many hours did you work on Monday? ");

newEmployeeInfo[6] = newEmplQues("How many hours did you work on Tuesday? ");

newEmployeeInfo[7] = newEmplQues("How many hours did you work on Wednesday? ");

newEmployeeInfo[8] = newEmplQues("How many hours did you work on Thursday? ");

newEmployeeInfo[9] = newEmplQues("How many hours did you work on Friday? ");

createEmplFile.println(newEmployeeInfo[1] + "\t" + newEmployeeInfo[0] + " " + newEmployeeInfo[2] + " " + newEmployeeInfo[3] + " " + newEmployeeInfo[4]);

createEmplFile.println(newEmployeeInfo[5]);

createEmplFile.println(newEmployeeInfo[6]);

createEmplFile.println(newEmployeeInfo[7]);

createEmplFile.println(newEmployeeInfo[8]);

createEmplFile.println(newEmployeeInfo[9]);

System.out.println("Thank you very much. Your file has been created.");

System.out.println("");

 }

Scanner sc3 = new Scanner (new File (FileName + "-hours.txt"));

// Takes first line

String FirstLine = sc3.nextLine();

// Collect worked hours into array

double[] hoursArray = new double[5];

int i = 0;

while (sc3.hasNextDouble()) {

hoursArray[i] = sc3.nextDouble();

i++;

}

//BEGIN DATE CODE

// Get today's date:

DateFormat df1 = DateFormat.getDateInstance(DateFormat.SHORT);

Date now = new Date();

String todayDate = df1.format(now);

// Gets First Date

int[] firstDateArray = new int[3];

String Month = FirstLine.substring(0,2);

Scanner getMonth = new Scanner (Month);

firstDateArray[0] = getMonth.nextInt();

String Day = FirstLine.substring(3,5);

Scanner getDay = new Scanner (Day);

firstDateArray[1] = getDay.nextInt();

String Year = FirstLine.substring(6,8);

Scanner getYear = new Scanner (Year);

firstDateArray[2] = getYear.nextInt();

int[] secondDateArray = new int[3];

int numDays = 0;

 switch (firstDateArray[0]) {

// Months with 31 days, not December

case 1:

case 3:

case 5:

case 7:

case 8:

case 10:

numDays = 31;

// Decide month of 2nd date; advance to next month if necessary

secondDateArray[0] = (firstDateArray[1] > (numDays - 4)) ? (firstDateArray[0] + 1) : firstDateArray[0];

// Decide day of 2nd date; advance to next month if necessary

secondDateArray[1] = (firstDateArray[1] > (numDays - 4)) ? (firstDateArray[1] + 4 - numDays) : (firstDateArray[1] + 4);

secondDateArray[2] = firstDateArray[2];

break;

// December

case 12:

numDays = 31;

// Decide month of 2nd date; advance to next January if necessary

secondDateArray[0] = (firstDateArray[1] > (numDays - 4)) ? 1 : 12;

// Decide day of 2nd date; advance to next month if necessary

secondDateArray[1] = (firstDateArray[1] > (numDays - 4)) ? (firstDateArray[1] + 4 - numDays) : (firstDateArray[1] + 4);

// Decide if year advanges

secondDateArray[2] = (firstDateArray[1] > (numDays - 4)) ? ((firstDateArray[2] == 99) ? 0 : firstDateArray[2] + 1) : firstDateArray[2];

break;

// Months with 30 days

case 4:

case 6:

case 9:

case 11:

numDays = 30;

// Decide month of 2nd date; advance to next month if necessary

secondDateArray[0] = (firstDateArray[1] > (numDays - 4)) ? (firstDateArray[0] + 1) : firstDateArray[0];

// Decide day of 2nd date; advance to next month if necessary

secondDateArray[1] = (firstDateArray[1] > (numDays - 4)) ? (firstDateArray[1] + 4 - numDays) : (firstDateArray[1] + 4);

secondDateArray[2] = firstDateArray[2];

break;

// February

case 2:

numDays = ((double) firstDateArray[2] % 4 == 0) ? 29 : 28;

// Decide month of 2nd date; advance to next month if necessary

secondDateArray[0] = (firstDateArray[1] > (numDays - 4)) ? (firstDateArray[0] + 1) : (firstDateArray[0]);

// Decide day of 2nd date; advance to next month if necessary

secondDateArray[1] = (firstDateArray[1] > (numDays - 4)) ? (firstDateArray[1] + 4 - numDays) : firstDateArray[1] + 4;

secondDateArray[2] = firstDateArray[2];

break;

default:

numDays = 0;

break;

}

String firstDateLine = dateOut(firstDateArray[0]).concat("/").concat(dateOut(firstDateArray[1])).concat("/").concat(dateOut(firstDateArray[2]));

String secondDateLine = dateOut(secondDateArray[0]).concat("/").concat(dateOut(secondDateArray[1])).concat("/").concat(dateOut(secondDateArray[2]));

//END DATE CODE

// Gets Name

String EmployeeName = "";

Scanner inline = new Scanner (FirstLine);

while (inline.hasNextDouble() != true) {

EmployeeName = EmployeeName.concat(inline.next().toString()).concat(" ");

}

int EmployeeNameLength = EmployeeName.length();

EmployeeName = EmployeeName.substring(8, EmployeeNameLength);

EmployeeName = EmployeeName.trim();

FirstLine = FirstLine.substring(EmployeeNameLength);

// Gets Employee's wages, dependents, retirement deduction

// What goes where:

// 0 = Hourly Wage

// 1 = Number of Dependents

// 2 = $ amount of pre-tax retirement deduction

double[] EmployeeNumbers = new double[100];

int j = 0;

Scanner inline2 = new Scanner (FirstLine);

while (inline2.hasNextDouble()) {

EmployeeNumbers[j] = inline2.nextDouble();

j++;

}

//Calculations:

// Recall that:

// # of hrs. worked on day 1 = hoursArray[0]

// # of hrs. worked on day 2 = hoursArray[1], etc.

double GrossPay = 0.0;

// Calculate Total Hours Worked

double TotalHours = 0.0;

for (int h=0; h < 5; h++) {

TotalHours = (TotalHours + hoursArray[h]);

}

// Calculate Pay + overtime

double OvertimeHours = 0.0;

while (TotalHours > 40) {

OvertimeHours = TotalHours - 40;

break;

}

// Gross Pay = (hourly wage)*(total hours) + (0.5 more for each OT hour)*(overtime hours)

GrossPay = EmployeeNumbers[0]*TotalHours + 0.5*EmployeeNumbers[0]*OvertimeHours;

// Taxable Income (Gross Pay - $100 for the employee - $50*(dependent) - retirement deduction

double TaxablePay = GrossPay - 100 - 50*EmployeeNumbers[1] - EmployeeNumbers[2];

while (TaxablePay <= 0) {

TaxablePay = 0; break;

}

// Calculate tax rate; -2% for each dependent

double taxRate = 0.18;

taxRate = (taxRate - (EmployeeNumbers[1]*0.02));

while (taxRate <= 0) {

taxRate = 0.0;

break;

}

// Paycheck amount

double Paycheck = (TaxablePay - taxRate*TaxablePay);

while (Paycheck <= 0) {

Paycheck = 0;

break;

} // end while

// BEGIN OUTPUT CODE

System.out.println(todayDate);

System.out.print ("Pay to the order of ".concat(EmployeeName).concat(": "));

System.out.println ("$" + payOut(Paycheck));

System.out.println ("Memo: employee #" + EmployeeNumber + " for the period " + firstDateLine + " to " + secondDateLine);

// END OUTPUT CODE

} // end main

} // end class
	Good use of helper methods for this program.
Calendar and Date classes would have compressed the work you had to do.
Using DecimalFormat would have helped as well.

Date code should have been sent off to a helper method.

I think you misunderstood the problem. Largely. If a file does not exist, you can just report that fact and stop. You took on the task of creating the input file through a dialog with the user. That’s well beyond the scope of the problem, and certainly explains why this took so long to do.

Great job getting the name correctly.

Overall good job!

Assignment 3, Problem 1
1

