[image: image13.emf]Prof/Tech

15%

BS CS

19%

BS CS UW

11%

BS CS UWB

4%

BS Eng

11%

BS UW Eng

32%

BS Sci

4%

BS UW Other

4%

Building a Disciplinary Commons

using Course Portfolios

Fall 2005 - Spring 2006

[image: image1.jpg]G (0]

Josh Tenenberg
Janet Ash
Donald Chinn
Ravi Gandham
Michael Gelotte
Richard Hoagland
Laurie Murphy
[image: image11.png]Ill WASHINGTON

TACOMA

Brad Richards
John Staneff
Phyllis Topham

Jeffrey Weiss
Course Portfolio

Table of Contents

1. Purpose: A Handbook for Teaching Computer Science I

2. Overview:

a. Course Objectives

b. Context of this Course

c. Teaching Philosophy

d. Teaching Methods

e. Evidence of Learning

f. Values and Grading

3. Now and Then

The YakPak

4. Appendices:

· Sample Course Syllabus and Class Schedule

· Developing an Interface and Implementations

· Some InClass Exercises

· Some Worksheets

· Programming Assignments

· Sample Tests

· A Sampling of the First Mid-Term Test

· Permission to Include Students' Work

5. Chapter by Chapter

1. Essential Background

2. Output and Sequence

3. Variables and Expressions

4. Input and File Access

5. String Manipulation

6. Methods and Functional Decomposition

7. Selection

8. Iteration

9. Recursion

10. Arrays

11. Searching and Sorting

12. Inheritance

13. Interface

14. Graphics/GUIs

15. Design

1. What I Want from This Course Portfolio: A Loose-Leaf Handbook

Participating in the Disciplinary Commons Portfolio Project, funded by the Washington State Board of Community and Technical Colleges and the University of Washington, Tacoma, USA, has allowed, encouraged, and prodded me to concentrate on improving students' learning--by improving teaching--in all of the courses under my influence. For this project I have been focusing on Computer Science 142: Introduction to Computer Programming, using Java.

I would like the resulting portfolio to form a handbook on how to deliver this course, with chapters to guide me or another instructor. It is at least as much a teaching portfolio as a course portfolio.

1. A perspective, then unit by unit,

2. Why I am teaching this course, this way?

3. What did my students learn?

4. What did I learn?

5. What do I want to try next time, some time, never again?

Phyllis Topham, Professor

Computer Information Systems

Business Automotive Manufacturing Division

Shoreline Community College

Shoreline, Washington USA

Overview:

2a. Objectives of This Course

Introduction to Computer Programming with Java (CS I)

Compu 142 introduces freshman or sophomore students to fundamental, current computer programming. This is a one quarter (10 week) class, earning 5 quarter credits, transferable to baccalaureate programs in this state. It addresses the specifications of the ACM guidelines for Computer Science I
. The language preferred by the Department of Computer Science and Engineering at the University of Washington for this course, currently Java, is used because the majority of our students intend to transfer to there. The following objectives are similar to an official instrument
 called a "Master Course Outline." These objectives are used to plan the syllabi for individual sections of the course.

Course Objectives
Students will learn to analyze problems and describe them in terms appropriate for solution by computer programming, to plan appropriate user interfaces and processes, to implement solutions in the Java programming language, to evaluate the accuracy and appropriateness of the result and to evaluate the elegance of the code. They will also be prepared for success in Computer Science II and encouraged to continue in this field of study.

More specific objectives include:

1. To understand the place of algorithms, code, compilation, interpretation, platforms and testing in computer programming.

Outcomes:

· Use your understanding of these to define the terms.

· Use your understanding of these to explain which component of this process you are currently using.

· Use your understanding of these to solve a programming puzzle.

2. To internalize a reliable process to move from specification to solution.

Outcomes:

· Apply a reliable process to solve a programming puzzle.

3. To apply syntax rules of the language.

Outcomes:

· Recognize syntax errors in basic statements.

· Write syntactically correct basic statements.

· Apply standard documentation to construct a syntactically correct statement.

4. To evaluate accuracy, appropriateness and style of results.

Outcomes:

· Recognize inaccurate results and troubleshoot the cause.

· Recognize and correct output that does not meet specifications.

· Recognize and correct user-unfriendly output.

5. To use error messages, traces and documentation effectively.

Outcomes:

· Demonstrate a logical approach to utilizing error messages and traces.

· Apply standard documentation to resolve error messages.

· Apply standard documentation to use new classes and methods.

6. To apply data types appropriately.

Outcomes:

· Use your understanding to choose appropriate data types for specific programming puzzles.

· Use your understanding to recognize and correct subtle errors caused by inappropriate data types.

7. To appropriately choose and implement basic code structures and algorithms.

Outcomes:

· Use your knowledge to choose an appropriate structure and/or algorithm for a programming puzzle.

· Recognize a need for encapsulation and write a correct method, employing parameters and return values where appropriate.

· Use your knowledge to write correct code segments to solve programming puzzles requiring:

Sequence, modularization, selection, iteration.

· Use your knowledge to write correct code segments requiring arrays.

· Use your knowledge to write correct code segments for

Sequential search, binary search and selection sort of an array.

8. To visualize objects to solve programming tasks.

Outcomes:

· Use your understanding to plan a class to represent an entity in a programming puzzle.

9. To use, improve and create classes and objects for better modeling.

Outcomes:

· Use your understanding to choose appropriate classes to solve programming puzzles.

· Use your understanding to add useful methods to existing classes.

· Use your understanding to create a class to represent an entity.

10. To have some introduction to these topics:

· Inheritance, interfaces, exceptions, ArrayLists, file processing, recursion, graphical applications, applets and interactive graphical user interfaces.

11. To be competent in these support skills and topics:

· File management, system troubleshooting, Boolean logic, binary and hexadecimal number systems.

I focus on these objectives to help students feel confident that they can understand and create computer programs. I want to ensure that they do not finish a programming class feeling that the programming process is random and that only genius geeks can produce adequate results.

I don't want to overlook other goals, such as challenging stronger students toward their potential. And I continue to observe that students push themselves to learn more when I use games for programming assignments; but this can generate situations that might undermine the confidence of less experienced students. A lot of encouragement to individuals must be provided.
[image: image12.jpg]Shoreline

COMMONITY COLLEGE

[image: image2]

[image: image3]

[image: image4]

[image: image5]

[image: image6]
2c. Overview: A Philosophy of Teaching
This is personal, but influenced by many others. I believe that
1. There are some general principles:

· Students want to succeed (by their own definition).

· Students' time is very valuable (by the minute, by the quarter).

· Students are curious.

· Students enjoy humor.

2. Classes have unique features that direct my attention. The following beliefs apply to Computer Science I, using Java, at Shoreline Community College.

· Outcomes:

A. Students are able to solve small tasks by developing computer programs using the Java programming language.

B. Students are able to explain the major concepts and basic algorithms of CS I.

C. Students are prepared to succeed in CS II.

· Population:

A. Some people can reach this on their own from existing resources and experimentation. They don't need to take my class.

B. The individuals are adults (typically 20-30 years old). They have different learning styles, different goals, different backgrounds (problem solving, academics)

C. These students need me to support and prod (direct, motivate) them.

D. These efforts will help them reach the outcomes:

1. Practice the algorithms and techniques.

2. Express the techniques and concepts orally, in code and in writing.

E. These students need guidance from a teacher to

1. Develop the big picture.

2. Fit the pieces together – small as well as larger concepts.

3. Learn to get the information they need from available sources.

4. Learn from each other.

2d. Overview: Methods to Teach Various Topics in Computer Science I

My rational for selecting teaching methods is based on my observations and beliefs about students' learning, discussed in the previous section.

· Avoid "Click here, now click there, ..." instructions.

· Use cooperative learning as much as possible to leverage the collective energy and skill in the class – groups of 2 (max 3) apply a technique, solve a puzzle.

· Provide the "forest view" in lecture, with visuals.

· Demonstrate the "tree view." My students, beginning programmers, need to see the process, as interactively as possible. A printed description is not enough, a video version is better, but not interactive enough.

· Have students "play computer." One technique requires students to trace the value of each variable, in a grid or spreadsheet, as a routine executes. Another technique requires students to "act out" concepts, such as passing parameters, returning values, searching and sorting.

· Worksheets and short tasks – focus on small topics, such as processing Strings and applying basic looping algorithms.
 The carrot of points and the stick of deadlines seems necessary for many students.

· Assignments – fitting the pieces together

After planning the topics (mostly those established by the CS I curriculum), I plan the assignments to emphasize the current topic. Then I plan the worksheets and lectures to provide the support to complete the programming assignments. These are my goals for the assignments (the ideals, not always met):

1. Really employ the current topic.

2. Have some interesting content: geography, popular culture, sports, games, current events, science in the news, or anything else that I hear or read about that might lend itself to CS I concepts. I also look for content that will reinforce material in some of their other courses and/or real-life decisions. Newspapers, the radio, the Internet, an almanac and other textbooks are some sources for inspiration and data.

3. There is a basic solution, but room for creativity.

4. Team work (20-40% of the assignments, the rest are individual). I advise assigning teams of 3, different each time, for short time periods--from one class meeting up to 2 weeks, or at most 3, in CS I. It helps to decide ahead how you will deal with dysfunctions. We all know these are very valuable experiences--and very stressful to students and their teacher. It is very easy to set up a situation that fails to teach both CS and team work. My preparation to teach in the CS field did not include how to teach team work. I continue to look for guidance here especially.

5. Have some required uniqueness to discourage too much "cooperation." Some ideas: assign or require students to choose different countries, sports teams, or themes for a game, create different logos for a graphical assignment, design different extensions for an inheritance exercise.

6. Appropriate level of challenge for this course and for the particular point in the quarter. It's so easy to overshoot this one.

· Tests – incentive to review, attempt to find the students who are actually learning from doing the assignments. Here are my guidelines for a 50-minute mid-term test:

1. Start with a few basic very-short answer questions to give students a confident start.

2. Include 3-4 questions requiring students to code or design short, focused solutions, similar to class demonstrations and assignments.

3. Provide 1 question that requires students to apply the current topics to a new situation.

4. Finish with a couple of very easy extra credit questions to release tension.

Usually the final test is 2 hours long, with at least 50% more questions, each of more complexity than those on a mid-term test.

Reflections on my teaching methods
What do students actually do in a computer-equipped classroom?
· Surf, code, ...

· Listen

· Write – notes, worksheets, code

· Program and test the results – code, test, document

Why do I use these methods?
· Students so often say, "It looked straight-forward when you did it but when I tried to do it myself ..." I want them to try it themselves as soon as possible, to get it to "stick," and to try it when I am available to guide them if needed. The programming assignments are frequent.

How are these techniques related to the objectives?
· Worksheets and short tasks: focus on elements of programming.

· Programming assignments: focus on design, development, debugging.

· Lectures: provide guidance for success in the tasks and assignments.

What evidence of learning do I want to see?

· Thoughtful responses and questions.

· Appropriate solutions.

· Creative integration (optional, occasional).

2e. Overview: Evidence of Student Learning

Students' learning is usually hard to ascertain. In the long run, I would like students to have improved their reasoning skills--and their confidence in them--as a result of completing this course. I would like those with inclination to pursue this field. It would be great to be able to query them two or three years afterward to get their assessment on the long-term value of this course.

In real life, we use more immediate surveys: tests, programming and other written assignments, in-class discussions and tasks.
There are usually 3 tests for the quarter in this course, contributing more than 50% of total grade. The first test is at the beginning of the fifth week, before the topic of selection has been fully covered. The second test is during the eighth week, after the topic of arrays has been introduced. The third test, a "final exam" is delivered during a two hour block. Programming tests are naturally comprehensive, but these tests each emphasize recent material.

The next larger portion of the grade is based on almost-weekly programming assignments.

For this portfolio, I chose to include a sample of the students' work on the first test
, because
· Its main goal is to evaluate students' success

· It is scored in more detail than other assessments

· It is recorded

· It is completed under standardized conditions

When I compose a test, I hope that it will validate, confirm and consolidate the students' learning. A fast turn-around, ideally no more than one day, should at least clarify fuzzy areas to the student. Some instructors report that students learn most from the almost instant feedback they get from on-line testing. I don't think designs and code can be appropriately evaluated automatically with available software.
The students' performance on the tests certainly shows me whether they have learned how to answer my questions. It gives some indication of whether they have learned the basics of the introduction to computer programming. Unfortunately, the results are heavily biased toward students who can perform well in this setting. The larger goals of a course like this--critical thinking and problem solving--are very hard to measure in a brief, controlled setting.

I attempt to observe the learning of other goals through in-class activities and homework (mainly programs). There are so many variables that evaluation is inaccurate. I depend on these items to encourage involvement and to give feedback.

Giving students in-class assignments compels their attention to the topic, at the expense of lecture time. Working with no more than 30 students in a computer-equipped classroom, I am able to coach many students individually during these assessments.

To evaluate the effectiveness of these short, immediate design and programming exercises, I have compared students' performance of this in-class work with their test scores. This analysis is weak in several areas. The in-class assignments are graded very liberally. They are a good indicator of the students' attendance rate, which alone could be expected to influence their test scores. Next time, I intend to gather the students' own evaluation of the worth of this technique.

Results
The following spreadsheet includes the averages of the scores for the 26 students in Compu 142 Winter Quarter, 2006:

· Short, in-class exercises described above

· Slightly longer homework assignments, generally short questions related to readings from the text book

· Longer programming assignments, approximately one per week

· Two mid-term tests and the final test

The correlation of the in-class exercise averages and the test averages was just 0.69. The correlation of the average homework assignment scores and the average test scores was only slightly lower, 0.68. In contrast, the correlation of the average programming assignment scores and the average test scores was 0.89.

As indicated earlier, I expected a higher correlation for the in-class exercises. To investigate this situation further, I repeated the computations without the scores of the 5 students who did not take all 3 tests. These correlations were even lower, 0.04, -.04 and 0.61, respectively.

Possible conclusions:

1. The in-class assignments are not helping students' test scores.

2. The homework assignments are not helping students' test scores.

3. The programming assignments are helping students' test scores.

4. Test questions are focused on topics stressed in the programming assignments.

5. Students are focusing more on programming assignments and tests.

Further research is certainly needed, but these results incline me to put (even) more effort into designing programming assignments and giving feedback to students.

Scatter charts are included for another view of this data.
	Compu 142
	Average
	Average
	Average
	Average
	
	
	

	Winter 2006
	InClass
	Homework
	Programs
	Tests
	
	
	

	A
	35.3
	9.5
	0.0
	0.0
	
	
	

	B
	5.9
	0.0
	0.0
	0.0
	
	
	

	C
	34.6
	37.2
	28.9
	0.0
	
	
	

	D
	64.6
	68.6
	34.2
	44.3
	InClass
	HW
	Prog

	E
	51.8
	28.6
	26.5
	44.3
	Test
	Test
	Test

	F
	90.5
	100.0
	75.8
	59.0
	
	
	

	G
	68.4
	95.0
	57.1
	61.3
	
	
	

	H
	75.3
	56.4
	74.1
	62.3
	Correlations

	I
	69.6
	78.6
	53.0
	66.7
	All Graded students

	J
	93.0
	56.5
	67.1
	68.3
	0.69
	0.68
	0.89

	K
	94.1
	88.9
	81.8
	70.0
	
	
	

	L
	69.2
	33.3
	39.6
	72.7
	
	
	

	M
	100.0
	100.0
	89.0
	76.3
	
	
	

	N
	99.9
	99.9
	97.9
	78.3
	Correlations

	O
	99.6
	99.4
	89.5
	80.3
	Took all 3 tests

	P
	99.6
	99.8
	91.2
	80.7
	0.04
	-0.04
	0.61

	Q
	23.5
	59.9
	78.3
	82.0
	
	

	R
	99.9
	85.7
	97.9
	83.7
	
	

	S
	100.0
	95.2
	95.9
	86.3
	
	
	

	T
	99.9
	95.2
	97.8
	87.0
	
	
	

	U
	93.4
	81.0
	64.6
	88.7
	
	
	

	V
	99.9
	100.0
	97.4
	89.7
	
	
	

	W
	86.5
	61.9
	92.9
	94.7
	
	
	

	X
	76.5
	62.0
	100.4
	95.7
	
	
	

	Y
	52.6
	57.0
	81.7
	96.7
	
	
	

	Z
	88.2
	90.0
	98.3
	98.7
	
	
	

	
	
	
	
	
	
	
	

	Students were sorted by Test Average
	
	
	
	

[image: image7.emf]Average Scores for InClass Exercises vs. Tests

0.0

20.0

40.0

60.0

80.0

100.0

120.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Students

Average Scores/100

InClass

Tests

 [image: image8.emf]Average Scores on Homework vs. Tests

0.0

20.0

40.0

60.0

80.0

100.0

120.0

0 5 10 15 20 25 30

Students

Average Scores/100

Homewk

Tests

[image: image9.emf]Average Scores for Programs vs. Tests

0.0

20.0

40.0

60.0

80.0

100.0

120.0

0 5 10 15 20 25 30

Students

Average Scores/100

Programs

Tests

2f. What Does My Grading Show About What I Value?

This chapter needs much more critical self-evaluation!

Because I believe that

· Students learn to program by doing -- solving and implementing,

· The requirement to turn in homework and tests provides some motivation,

· Encouragement is better than punishment, and

· Feedback encourages good work,

In Computer Science I, I assign

· Weekly small programs, where good solutions are about 3 pages of code, including comments. Each focuses on the most recent topic, has medium to tight specifications. Each program also requires submission of evidence of design process and written reflection on aspects of the topic.

· Three tests (two midterm and one final). Each focuses on the most recent topics. The format is

1. A few questions on technical basics

2. Three to four questions requiring students to write a method demonstrating their understanding of basic algorithms. The scenarios are similar to the assignments and examples.

3. One questions involving a scenario that is "new" but can be solved with current techniques.

· Many in-class activities and quizzes, where I can observe, encourage and coach.

I want a two dimensional view of students learning--across the class at a given time and along the time of the class. I began by saving copies of nearly everything that every student in the class submitted.

Across the class, I want to examine all students' work for one assignment or test. I want to examine enough data to see patterns in students work and my evaluations for specific units. I normally keep notes on my answer key and I tried to be more explicit this time. The volume was inappropriate to include in this document. At this time I have my personal debriefings for seven assignments and two tests.

Along the class, I want to look for evidence of growth, learning during the class. Early in the quarter, I selected four students from 23 who appeared to be committed to completing the class. The four include one whose early average was A, two with early averages of B and 1 whose early average was C-. One is female, two are ESL (English as a Second Language), one is non-traditional (apparently older than 20 and has adult work experience). There are only two women in the class, nearly half the class is ESL, about 20% is non-traditional. This distribution is typical for a CS I class at a community college. These four students were among those I felt were most likely to complete the quarter.

At this time I have copies of two of their three tests and three of their ten programming assignments. In these four data sets, I plan to look for evidence of individual progress and want to incorporate my impressions of how these students are using peer networks, attending class, completing assignments, utilizing class and office hours to get coaching.

Preliminary Summary

From reviewing my grading of full sets of assignments, I see that I am rewarding

· Following the written directions. The instructions were written to enforce the concept that you can depend on a step-by-step process to develop a programming solution. Following directions is also a valuable job skill--and it makes grading simpler. I try to recognize and encourage creativity, too.

· Readable code. I value good names, proper layout, appropriate comments and modularization, in that order.

· Deliberateness in code and other work. I discourage the appearance of "splatter."

Other observations: I try to write encouraging comments to all students. The penalties (point deductions) are small, so assignment grades are (perhaps too) generous. I am very inefficient. My attempts to indoctrinate students in the design process have become slightly more effective, but nowhere near my goal. One solution might be to require a design course as a prerequisite. Another solution might be to give half as many programming assignments but required designs to be submitted first. My current compromise: work hard, test hard.

My analysis of scores, described earlier in this portfolio, indicates that the short in-class and homework assignments do not seem to be effective for students.

I have not yet completed reviewing the 4 sets of individual students' work.

3. Now and Then

Now--

I have learned

How to perform a basic test on the effectiveness of an element of my teaching

How to look more critically at what is actually happening in my classes

The names of some terrific instructors of Computer Science

Many important concepts and techniques from those terrific instructors

Thanks to all of you !!!

(Again), how much fun it is to focus on what I really like doing

Then--

Very soon, I want

To analyze the linear data I collected from one class of CS I students

To add more examples and samples to the resource "chapters" for this course

[image: image10.png]L1

The Disciplinary Commons:

A face-to-face Yackpack

<0+ yackpack
fw
ups

Shoteli e.

isciplin:
?‘ﬁ gomrgon?ry
PO

- & Bdlcwe
o}

2b. Overview: Context for Compu 142

Intro. to Programming / Java

Shoreline Community College

Students’ Paths�

Compu 142

Math 110/111 �College Algebra or �Calculus I – � Business Calculus

Prior Programming e.g. Compu 131 �Intro. Programming. Visual Basic

Math 99 Intermediate Algebra

Compu 143 - CS 2

*Recommended

Who Takes CS 1 -- Student Intention

Based on Fall 2005 self-identification, which seems representative of this course Fall, Winter and Spring over the past year. Anecdotes: intention is influenced by perception of available jobs, salaries and financial aid.

Transfer: 85%�CS: 34%�Other Eng/Sci: 47%�UW: 51%

Almost all students hold jobs, are overcommitted.

A rule of thumb: taking more than (15 credits + 10 hours employment)�	 == overcommitted

Result: Many students don't have time to take advantage of our �	low student/faculty ratio

Most students commute (30 minutes to school.

Based on anecdotes

60% are native English speakers�30% are ESL immigrants�10% are ESL foreign students

Estimates based on anecdotes

15% (or less) are women

Many have weak math, computer and problem solving skills.

Students are discouraged from taking foundation �	& enrichment courses by budget & time concerns.

School budget prevents smaller classes that would better �	meet different student goals (e.g. Professional/Technical vs. Transfer).

School budget is beginning to seriously limit students’ lab access.

Other Factors

Students budgets and school budgets result in having only 1 class section that is supposed to meet the needs of a split population:�

Time to fill the gaps that individuals bring

Cuts into time to focus on core and supplemental material.�

Teaching to the “middle” seems to help no one

I struggle to find ways to give both the left and right groups what they need.

Impact

� The CS I curriculum is based on a semester course (14 or 15 weeks), so it is a challenge to cover the material adequately in a quarter.

� Master Course Outlines are filed with the institution's Office of Instruction. They are audited by the State Board for Community and Technical Colleges and reviewed by the regional accreditation body.

� If we are successful in #3 and 4, we will be out of a job unless our graduates recommend us to others.

� See Appendix: Developing an Interface and Implementations

� See Appendix: Some InClass Exercises

� See Appendix: Some Worksheets

� See Appendix: Programming Assignments

� These opinions surely communicate that I have little tolerance for conflict.

� See Appendix: Sample Tests

� The next section discusses this somewhat more practically.

� See Appendix: A Sampling of the First Mid-Term Test

� ”It might be nice after these projects are done and dusted to hunt through the finished portfolios for unanswered questions – I’d have a go at the British ones; if you or one of your colleagues had a go at the US ones we could get something useful." -- Pete Bibby, University of Bolton, UK

� The correlations were so surprising to me that I asked 2 colleagues, a professor of mathematics and our institutional researcher, to check the computations for me. Their results were similar to mine.

