Appendices
· Sample Course Syllabus and Class Schedule

· Developing an Interface and Implementations

· Some In Class Exercises

· Some Worksheets

· Programming Assignments

· Sample Tests

· A Sampling of the First Mid-Term Test

· Permission to Include Students' Work
Appendix: Course Syllabus and Class Schedule

Compu 142 - Intro. to Computer Programming with Java 5/1.5
Shoreline Community College - Winter 2006
11:30-12:20 Daily, Room 1301, Item 0815, Section 01, 5 credits
Course goals: Develop concepts and techniques for solving problems by using object-oriented computer programming. Major topics include planning, algorithms & control structures; classes & objects; methods & data types; documentation & style; abstraction, arrays & inheritance or interfaces; introduction to exceptions, sorting and searching, testing.

Text: Big Java, 2nd Ed. by Cay S. Horstmann, John Wiley & Sons, Inc., 2006.

Also required: (a) HD (3.5" 1.44 MB) floppy diskette – or Zip (100 MB) disk – or USB memory stick/flash drive, (b) Additional (separate) digital storage media for backups – floppy diskettes, another Zip disk, another memory stick or hard disk (at home), (c) Protective cases for all disks, (d) Yellow highlighter.

Prerequisites: Math 110 or 111 (2.0 or better), or instructor's permission. Prior programming experience strongly recommended.

Instructor: Phyllis Topham, ptopham@shoreline.edu
http://www.shoreline.edu/ptopham
Office: 1409, phone/voice-mail: 206.546.4726
Business Auto/Manufacturing (BAM) Division (206) 546-4665, Fax (206) 533-5104

Office hours: Daily 1:30-2:30 pm Mon.-Thurs. in 1301 or 1409.

Appointments recommended. Watch for occasional rescheduling.

Contact instructor for additional appointment times.

Grades: Weighted grading is used for this class:

	Activity
	Count
	Style
	Weight

	Tests
	3 @ 15 % each
	Short answer, including code
	45%

	Programming Assignments
	10 @ 4½ % each
	Complete solutions with documentation
	45%

	Chapter Reviews
	?
	Short answer
	10%

	Quizzes, Worksheets

& in-class activities
	?
	Short answer, including code, hands-on
	

See 142ScheduleW06.doc and SyllabusDetailsComputer.doc for other important information.

Syllabus Details in Addition to the Specifics for Each Class -- Topham, Spring 2006
1. More on grades: Grades will be translated according to this table:

	95-
100%
	4.0
	
	88
	3.3
	
	81
	2.6
	
	74
	1.9
	
	67
	1.2

	94
	3.9
	
	87
	3.2
	
	80
	2.5
	
	73
	1.8
	
	66
	1.1

	93
	3.8
	
	86
	3.1
	
	79
	2.4
	
	72
	1.7
	
	65
	1.0

	92
	3.7
	
	85
	3.0
	
	78
	2.3
	
	71
	1.6
	
	64
	0.9

	91
	3.6
	
	84
	2.9
	
	77
	2.2
	
	70
	1.5
	
	62-3
	0.8

	90
	3.5
	
	83
	2.8
	
	76
	2.1
	
	69
	1.4
	
	60-1
	0.7

	89
	3.4
	
	82
	2.7
	
	75
	2.0
	
	68
	1.3
	
	0-59
	0.0

Grades of H, I, N, NC, P, V and Z will be assigned in accordance with SCC Policy (details available at http://www.shoreline.edu/shoreline/catacadregs.html). These usually require your signature and your instructor's. Be sure to check the published schedule for audits, drops, withdrawals & other details. Student Option Grading may be available for this course: please remember that the P (Pass) grade cannot be assigned for averages below 2.0 (75%).

2. Collaborative learning: You will be accountable for learning, helping others to learn and presenting what you have learned in both group and individual activities. You will also be accountable for evaluating what you hear from others in your class. As your instructor, my primary responsibility is to focus your efforts by pointing out the most important questions and issues.

3. Accommodation: If you are a student with a special need or condition that might affect your performance or participation in this class, please let me know during the first week of class so that we can work together for your success. Students with disabilities who have accommodation needs are required to meet with a Services for Students with Disabilities Program staff member (206-546-5832, in Room 5229) to establish their eligibility for accommodation. All such information is kept private. Examples of accommodations include using sign language interpreters or recording class sessions. (Please visit http://success.shoreline.edu/advising/services.htm for more information.)

 4. References for computer courses: Search the Internet for additional tutorials and examples! Books and magazines by Osborne/McGraw-Hill, Que, Fawcette, SAMS, Microsoft, WROX, O'Reilly and IDG are usually helpful. Texts are not novels--you can look ahead to any topic that might be useful and/or interesting. Cite the source(s) of algorithms used in your solutions.

5. To survive a computer class: Eat a "brain" snack before class (neither food nor beverages are allowed at computer stations).

6. To succeed: You will need
 -- Time and determination to work. You must commit much more than class time (ask previous students of this class.) You should expect to spend an average of 1 to 4 hours preparing for every hour of class time: 5-20 hrs/week. Keep up with reading and other assignments.
-- Willingness to experiment and ask questions.
-- Text(s), disks.
-- Organization strategies to keep files, handouts, tests, homework, and notes.
-- Backup strategies to avoid catastrophe from lost papers and/or files.
7. To excel: You will need to
-- Get to class, on time. Listen, contribute, take notes.
-- Read the text(s), do the assignments.
-- SAVE often; BACKUP your files; take care of your disks.
-- Ask questions: they are free (your grade is based entirely on your assignments and testing.)
8. Get help: Don't wait.
-- Ask questions.
-- Form a study group.
-- Come to office hours; ask for another appointment; my hours are usually flexible.
-- If you can't keep up with the material, see me quickly. There is assistance for "learning blocks" and other special situations.
-- If you have special needs (for example, a reading problem), inform me so we can be sure you are getting the help you need.
9. Attendance: -- I will check attendance frequently, mainly to learn your names.
-- I expect you to attend every class.
-- Most people find it easier to learn by seeing someone do examples. You pick up some as you watch and listen. You absorb more as you take notes.
-- You are responsible for all information given in your class, including any change of schedule. I do not take notes on every question raised and answered in class. I recommend that you exchange names and phone numbers with the people sitting near you, in case you miss class.
-- If you suffer a major disruption during the quarter, notify your instructors immediately. You can ask the Advising/Counseling Center to contact us for you. The sooner we know, the more likely we can help you to work around the problem.
-- If you discover that you will be unable to complete this course in this quarter, contact me ASAP. If we deal with the situation quickly, we can minimize the cost (financial, academic and emotional) to you.
10. Tests and assignments:
-- Quizzes & tests are to be handed to me in class. Your work will be read and returned to you ASAP. Follow due dates and other requirements as listed on assignments and announced in your class.
-- For quizzes & tests, pencil is recommended! Use an eraser to fix small errors (signs, digits, letters, etc.). Scribbling and scratching look unprofessional.
-- Plan ahead to be sure that the computer prints your name on all hardcopy.
-- You may receive partial credit for reasonable work, if I can see--and read--it. Use the back of test papers if you need more room.
-- Save all returned work. I may need to see it again.

11. Assignments are due at the time and date published
-- Assignments turned in up to 1 day late are subject to a 20% penalty; up to 2 days late, 50%; after one week, late assignments receive 0 credit.
-- These penalties may be reduced, under extenuating circumstances, documented (by doctor, police report or employer) or by prior arrangement.
-- No work will be accepted after the start of the last test (exam) for this class.
-- Use 8-1/2 x 11 inch paper (with no "fringe").
-- Do not use cover sheets or binders for assignments or projects; just staple or clip the required pages together, in order, clearly identified, behind the assignment sheet. Points may be deducted for submitting other pages (please read the directions & save some trees).

-- Code must be formatted and commented clearly. Style details will be explained in class.
-- Follow additional specifications included with each assignment.
12. Tests are due at the end of class on the published day.
-- If you must miss a test, prior notification and a memo from your doctor or employer are required (-15% each).
13. Quizzes may be given anytime and are due at the time announced in class.
-- Late or make-up quizzes cannot be accepted.
14. Class Rules:
-- Do not use cell phones or pagers during class or exams, and please turn off audible signals!
-- During class meetings, computers may only be used for purposes appropriately related to the current class topics—not surfing, chatting, IMing.
-- Do not print during any class or test session without permission from the instructor.
15. Lab Rules:
-- Get your ID/library card.
-- Lab schedules are posted outside each lab. Check frequently for updated hours, etc. You can find schedules (and changes) for all labs at http://success.shoreline.edu/help/.

16. Prohibited in the computer labs by law, school, department or instructor policy:
-- Smoking, drinking, or eating.
-- Duplication of material protected by the US Copyright Law
-- Playing or down loading games
-- Viewing or down loading pornographic or sexually offensive material
-- Children.
17. Chemical Sensitivities: To protect individuals with chemical sensitivities, please refrain from wearing any fragrance or perfume in (class)rooms. Efforts will be taken to ensure a fresh-air environment free from not only the above-mentioned fragrances but also from potentially harmful substances such as carbon monoxide, formaldehyde, carpet odor, organic solvents, and others.
18. Collaboration:
-- Respect the ideas, time and property of others.

-- Study groups are helpful. When learning, you are encouraged to discuss problems together. All parties usually benefit from pooling and challenging ideas.

-- However, cheating is grounds for course failure. Cheating is taking and using someone else's work and submitting it as one's own. You must do all assignments, quizzes, tests, etc., on your own, except where instructions specify teamwork. If two assignments look inappropriately similar, both assignments will receive 0 credit.

-- Contact your instructor if you are uncertain about any situation.

19. Weather: Check the college web-site (http://www.shoreline.edu/) or the college's phone message (206-546-4101). KIRO, KING and KOMO radio and television stations will be notified. If no mention is made of Shoreline Community College closure, assume that the college is open (but remember that Shoreline Community College is independent of the Shoreline Public School District). In any case, follow the class schedule to prepare for the next class.
20. Escape clause: I will change classroom procedures and requirements if needed to reach the course goals. We have a lot of ground to cover and I owe it to each of you to use class time efficiently. You deserve to have your questions answered. If I can answer them in a timely manner, I'll do so in class. If I don't know the answer, I'll ask you to wait until we can research it. If your question is beyond the class's current understanding, I will probably ask you to wait until non-class time. If your question deals with topics the class has covered thoroughly, I may ask you to wait for individual help (after class, office hours, etc.)

21. Misc:
-- If you use an outside PC to produce your assignments, please check with me about compatibility. It is vital that you be familiar with the lab hardware/software for quizzes/tests. If use of outside equipment causes minor variations in output, please explain in a note on each item. Use of different software to produce assignments requires prior discussion/permission. It may present an enhanced learning experience.
-- All disks must be correctly formatted, labeled with your name and additional identification (Example: Millard Fillmore, CIS 123—C#), and carried in a case.
-- Keep backup copies of all work you turn in.
-- Lab aides are available to help troubleshoot equipment and to answer questions when you are stuck. Please do not expect lab aides to be experienced with the techniques covered in this class.

22. And -- Enjoy discovering and succeeding.

	Compu 142 – Intro. to Computer Programming with Java

	Shoreline Community College – Winter 2006, 11:30 – 12:30 am, M-F, Room 1301

	Topic Schedule – watch for details to be added during the quarter

	Date
	Topic
	Read
	Activities

	Week 1 Mon. 1/9
	Intro. to Program'g & Java
	Ch. 1 & 2
	

	1/10
	
	
	Questionnaire due

	1/11
	
	
	Windows worksheet due

	1/12
	
	
	Files worksheet due

	1/13
	
	
	Program 1 due

	
	
	
	

	Week 2 Mon. 1/16
	
	
	Martin Luther King Jr. Holiday Monday → No Classes

	1/17
	Data types
	Ch. 3 & 4
	Reviews 1 & 2 due

	
	
	
	

	
	
	
	

	1/20
	
	
	Program 2 due

	
	
	
	

	Week 3 Mon. 1/23
	Data types, Graphics
	Ch. 4 & 5
	Multicultural Celebration Week

Review 3 due

	
	
	
	

	
	
	
	

	
	
	
	

	1/27
	
	
	Program 3 due

	
	
	
	

	Week 4 Mon. 1/30
	Selection
	Ch. 6
	Reviews 4 & 5 due

	
	
	
	

	
	
	
	

	
	
	
	

	2/3
	
	
	Program 4 due

	
	
	
	

	Week 5 Mon. 2/6
	Iteration
	Ch. 7
	Review 6 due

	
	
	
	

	2/8
	Test 1 – Ch. 1-5
	
	Bring 1 3"x5" card of notes (2 sides), pencil(s), eraser

	
	
	
	

	2/10
	
	
	Program 5 due

	
	
	
	

	Week 6 Mon. 2/13
	Arrays
	Ch. 8
	Review 7 due

	
	
	
	

	
	
	
	

	
	
	
	

	2/17
	
	
	Program 6 due

	
	
	
	

	Week 7 Mon. 2/20
	
	
	Presidents' Day Holiday → No Classes

	Tues. 2/21
	Search, Sort, Events
	Ch. 19 & 12
	Review 8 due

	
	
	
	

	
	
	
	

	2/24
	
	
	Program 7 due

	

	
	
	
	

	Week 8 Mon. 2/27
	Inheritance, GUIs
	Ch. 13 & 14
	Review 19 & 12 due

	
	
	
	

	3/1
	Test 2 – Ch. 6 - 8
	
	Bring 1 3"x5" card of notes (2 sides), pencil(s), eraser

	
	
	
	

	3/3
	
	
	Program 8 due

	
	
	
	

	Week 9 Mon. 3/6
	GUIs
	
	Review 13 due

	
	
	
	

	
	
	
	

	
	
	
	

	3/10
	
	
	Program 9 due

	
	
	
	

	Week 10 Mon. 3/13
	Recursion
	Ch. 18
	Review 14 due

	
	
	
	

	
	
	
	

	
	
	
	

	3/17
	Presentations
	
	Program 10 due

	
	
	
	

	Week 11 Mon. 3/20
	Presentations
	
	Last Class

Review 18 due

	3/21
	
	
	Preparation Day → No Classes

	3/22
	
	
	Exams

	3/23
	Exam (Test 3) - 11:00 am -1:00 pm
	
	Bring 1 3"x5" card of notes (2 sides), pencil(s), eraser

	3/24
	
	
	Exams

Appendix: Class Exercises

Developing an Interface and Implementations as a Class Exercise

The text contains a more sophisticated example. This is easier to grasp in a 50-minute session -- and it requires students to create code that is slightly different than their colleagues'. Solicit lots of student input during the demonstration. If there are too many suggestions, write them on a "to-do" list, instead of getting side tracked by them or dismissing student contributions.
1. Propose a few features that a Pet object should offer:

/** Interface to demonstrate abstraction

 @author Phineas Taylor

 Date: 5/20/04

 */

public interface Pet {

 public String speak();

 public boolean equals(Pet other);

 public String getName();

 public String toString();

}

2. Then create a class to represent a Cat, as an implementation of that interface. Reiterate constructors and overloading. Include a unique feature, too.
/** Class Cat to represent a household cat

 @author Phineas Taylor

 Date: 5/20/04

 */

public class Cat implements Pet {

 String name;

 public Cat() {

name = "Puff";

 }

 public Cat(String name) {

this.name = name;

 }

 public String getName() {

return name;

 }

 public boolean equals(Pet other) {

return this.name.equals(other.getName()) && other instanceof Cat;

 }

 public String toString() {

return "[Cat: name=" + name + "]";

 }

 public String speak() {

return "Meow";

 }

}

3. Create a Dog class, too.

/** Class Dog to represent a household dog

 @author Phineas Taylor

 Date: 5/20/04

 */

public class Dog implements Pet {

 String name;

 public Dog() {

name = "Tye";

 }

 public Dog(String name) {

this.name = name;

 }

 public String getName() {

return name;

 }

 public boolean equals(Pet other) {

return this.name.equals(other.getName()) && other instanceof Dog;

 }

 public String toString() {

return "[Dog: name=" + name + "]";

 }

 public String speak() {

return "Woof";

 }

 public String chaseCat() {

return name + " is catching the cat";

 }

}

4. Provide a simple test to demonstrate the obvious.

5. Have students choose unique "pets" and code their implementations and test them individually.

6. Then have students upload their code to a shared folder. Compile and run with code like this (update to generics): This may spill over into the next class session, depending on the group.
/** Class All Pet test to demonstrate interfaces

 @author Phineas Taylor

 */

import java.util.*;

public class AllPetTest {

 public static void main(String[] args) {

// create list of pets

ArrayList al = new ArrayList();

al.add(new Aardvark());

al.add(new Bird());

al.add(new Cat());

al.add(new Dog());

al.add(new Hawk());

al.add(new Iguana());

al.add(new Kangaroo());

al.add(new Lion());

al.add(new Narwhal());

al.add(new Penguin());

al.add(new Quail());

al.add(new Rabbit());

al.add(new Snake());

al.add(new Tucan());

al.add(new Vulture());

al.add(new Wildebeest());

al.add(new Yak());

al.add(new Zebra());

// demo

System.out.println();

System.out.println("THE PETS IN OUR HOUSE");

System.out.println();

Pet p = null;

for (int i = 0; i < al.size(); i++) {

p = (Pet)(al.get(i));

System.out.println("I am a " + p);

System.out.println("\t and I say " + p.speak());

}

System.out.println();

 }

}

7. Here's another demo:

public class PetGame {

 public static void main(String[] args) {

 // ask user to choose animal; prompt user -- E to end

 Scanner in = new Scanner(System.in);

 // Expand this line

 String prompt = "Enter A for Aardvark, C for cat, D for Dog," +

" or E to end";

 String message = "";

 System.out.println(prompt);

 char choice = in.next().toUpperCase().charAt(0);

 while (choice != 'E') {

 // construct animal

 Pet p = null;

 switch (choice)

 {

 // Expand the cases

 case 'A':

 p = new Aardvark();

 break;

 case 'C':

 p = new Cat();

 break;

 case 'D':

 p = new Dog();

 break;

 default:

 message = "Please reenter.";

 }

 // have animal speak

 if (p != null)

 message = p.toString() + " says " + p.speak();

 System.out.println(message);

 if (p instanceof Cat)

 ((Cat)p).chaseString();

 System.out.println(prompt);

 choice = in.next().toUpperCase().charAt(0);

 }

 }

}

8. Eventually, go over the do's and don't's, with an example like this :

/** Class Pet test to demonstrate interfaces

 @author Phineas Taylor

 Date: 5/4/20

 */

public class PetTest {

 public static void main(String[] args) {

Cat c = new Cat("Tiger");

Pet p = new Cat();

Pet q = new Dog();

System.out.println(c.speak());

System.out.println(p.speak());

System.out.println(q.speak());

((Dog)p).chaseCat(); // runtime error

((Cat)p).chaseCat(); // compile error

q.chaseCat(); // compile error

((Dog)q).chaseCat(); // OK

 }

}

Appendix: Some Other In Class Exercises

	Names--

Computer:
	Coach:

	Compu 142 – Java 1 Shoreline Community College - Winter 06 1/10/06

1. Insert a disk/stick in an appropriate slot.

2. Copy the file template.txt from ____________________________________ to your disk/stick.

3. Open the program L:\ConTEXT\ConTEXT.exe (or Notepad).
4. From the ConTEXT (or Notepad) program, open the file template.txt from your disk/stick.

5. Edit template.txt to look like this (and the sample on p. 17). ** Use your names, not Mouse and Duck.
/**

 * class HelloTester demonstrates simple output
 * In Class Assignment
 * Compu 142, Winter 2005, Shoreline Community College

 * @authors
Minnie Mouse, Donald Duck
 * @version
1.0
10 January 2006

 * file HelloTester.java
 */

public class HelloTester

{

 /* Save this file as HelloTester.java on your disk/stick and then delete this

 * comment block.
 */

 /** This main method contains this entire program

 */

 public static void main(String[] args)

 {

 // Display greetings in the console window
 System.out.println(); // Print a blank line
 System.out.println("Program: HelloTester");
 }
// end of method main
} // end of class HelloTester
6. Save your file, as instructed earlier. Read all messages – heed or ignore as appropriate.

7. Open a "console window." One technique: Start – Run – CMD – OK

8. Direct Windows to the disk holding your source file by commanding (for example) A:
Direct Windows to the folder holding your source file by commanding (for example)
CD MINNIE
9. Compile your file: from the disk and folder holding your source file, command
javac HelloTester.java

If there are any error messages from the compiler,

Read them carefully

Fix the source code file

Save the file again

Recompile

10. Run your file: from the disk and folder holding your source file, command
java HelloTester
If the output is not quite as expected,

Fix the source code file

Save the file again

Recompile

Rerun

11. Switch places (computer and coach)

12. Improve your program by adding this code before the 2 closing "curlies."
Be sure to use your names.

 System.out.println();

 System.out.println("Hello, World!");

 System.out.println("Greetings from Minnie Mouse and Donald Duck");

 System.out.println();

 System.out.println("End of program");

 System.out.println();

13. Reverse the colors of the output window—black text on white background
--Right-click in the title bar to get started on this.

14. Screen capture the output window. Make sure the hardcopy will include your names. Print.

15. Print the source code (make sure the hardcopy will include your names).

16. Attach those 2 pages (hardcopies from #13 & #14) to these instructions and submit.

17. Keep copies of all files for both team members.

Compu 142 - Small Group Activities for Friday, October 7, 2005

Based on your favorite seating, form teams of 2. If that's impossible, a team of 3 is OK. Split -- or adopt -- as needed to form teams of 2 or 3.

Team members participating (please print first & last names):

Work together to plan, code, test and document this exercise:

#1 GOAL:
 INCLUDE THE WHOLE TEAM—in the entire process. Examples: make sure each person's design ideas are considered; agree on a design you can complete during this class time; make each person actually enters some of the code (while other team members watch and coach); make sure each person can explain the custom code that gets written.

Task: Write a program that displays your first and last names (instead of Alpha Delta, Bravo Echo and maybe Charlie Foxtrot) and the portrait of a happy programmer, inside a grid, on the console (see example below).

	+-----------------+

| |

| Alpha Delta |
| Bravo Echo |

| Charlie Foxtrot |

| |

+-----------------+

| |

| ????? |

| ? ? |

| ? 0 0 ? |

| (| ^ |) |

| \ _/ / |

| ___/ |

| |

+-----------------+

	Feel free to imitate or improve on the artistry; your result should be at least a lovely (notice the centering and spacing!!!) as this sample.

When your program runs acceptably, attach a hard copy of your custom code & a screen capture of its output behind this assignment sheet (1 set per team) and place it in the large envelope near the teacher's station. You may place any other assignments in that envelope, too.

Special request: please, will the last student leaving the classroom return the envelope to a secretary in the 1400 building.

Have a great, safe weekend. Check our class web-site for the next review and programming assignments.
Shoreline Community College
PRINT Name: _____________________________

Compu 142

Loop – Selection Quiz

Date: ____________________________________

Create a console-based program that prompts the user to enter integers, one by one, or Q to quit. When the user enters Q, the program should display the number (count) of odd numbers that were entered by the user.

All code may be written in 1 class (in the main method) for this quiz.

Be sure to enter your name in a (javadoc) comment.

Turn in hardcopy of your code.

Hints:

java.util
Class Scanner

java.lang.Object
 [image: image1.png]

java.util.Scanner
	Scanner(InputStream source)
 Constructs a new Scanner that produces values scanned from the specified input stream.

Note: System.in is an InputStream.

	 String
	next() Finds and returns the next complete token from this scanner.

	 int
	nextInt() Scans the next token of the input as an int.

java.lang
Class Integer

java.lang.Object
 [image: image2.png]

 HYPERLINK "http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Number.html" \o "class in java.lang" java.lang.Number
 [image: image3.png]

java.lang.Integer
	static int
	parseInt(String s) Parses the string argument as a signed decimal integer.

SCC: Compu 142
PRINT Name: __​​______________________________

Quiz Loops

Date: _______________________

Closed books, notes, neighbor, computer. Open mind.

1. Rewrite this method using a(n equivalent) for-loop. Do not rewrite the comments.
/** Returns a String containing the requested number of the requested character.

*/

private String barCharter(int count, char ch) {

 String result = ""; // there is no space in between these double-quotes.

 int i = 0;

 while (i < count)

 {

 result += ch;

 i++;

 }

 return result;

}

********* ample space to write solution ************

2. Rewrite this method using a(n equivalent) while-loop. Do not rewrite the comments.
/** Returns the total of the first sequential integers (1 + 2 + 3 + ...) up to and including the parameter count
*/

private static int sumOfInts(int count) {

 int sum = 0;

 for (int i = 0; i < count; i++)

 sum += i;

 return sum;

}

********* ample space to write solution ************

3. Does #1 or #2 contain an off-by-one error? Explain briefly.
********* ample space to write solution ************

Bonus

X. Today is the end of Week # ________ of this quarter
Y. The USA is involved in CAFTA. Name one other country involved in CAFTA: _________________________
Z. Java was written by Bill Gates: True / False (circle)
Appendix: Some Worksheets

	Shoreline Community College
	Last Name:_

	Java I

	First Name:_

	Expression Worksheet

	Date

What result would Java give for these numeric expressions (assume numbers without decimal points are Java integers)?

1. 3 * 4

2. 3 * 4.5

3. 10 / 2

4. 9 / 2

5. 7 / 2.0

6. 7 % 5

7. 5 - 3 * 4

8. (5 - 3) * 4

Write these numbers in engineering (E or e) notation:

9. 3 billion

10. 4 / (108)

11. 12,300,000

12. 32 * (1020)

If a = 3, b = 5 and c = 7 (all integers), write the Java value of these numeric expressions:

13. (a * b) + c

14. a * (b + c)

15. (1 + b) * c

16. b % (c - a)

17. (c % b) * a

18. (a - c) * b

Write a Java numeric expression (do NOT use a method call) to calculate:

19. 7 times 3 less than 5 _____________

20. 5.5 percent of 20 _______________

21. the square of 14 ________________

22. the cube of 15 ________________

23. 17 times the sum of 3 and 162

24. (four and a half) times (three and a quarter)—use only whole numbers _______________

Misc: If any of these identifiers are NOT legal Java variable names, correct them.

25. balance

26. form_1040

27. doneYet?

28.
room'n'board

29. 1099b

30. income 2005

Continued from previous page.

Write a Java expression for these mathematical expressions (using Java Math methods where needed).

31.
[image: image4.wmf]gm

R

3

2

p

32.
[image: image5.wmf]2

703

H

W

33.
[image: image6.wmf]H

G

F

E

D

B

A

C

tan

1

)

(

2

+

+

-

+

Compu 142 – More on Relational and Logical Operators (3)

Based on exercises by David L. Schneider.

PRACTICE PROBLEMS

1. Is the condition "Hello ".equals("Hello") true or false?

2. Complete Table 5.2.

Table 5.2 Truth values of logical operators.

	condl
	cond2
	condl And cond2
	condl Or cond2
	Not Cond2

	True
	True
	True
	
	

	True
	False
	
	True
	

	False
	True
	
	
	False

	False
	False
	
	
	

EXERCISES
In Exercises 1 through 12, determine whether the condition is true or false. Assume a = 2 and b = 3.

1. 3*a=2*b

2. (5-a)*b<7

3. b<=3

4. Math.pow(a,b)==Math.pow(b,a)

5. Math.pow(a,(5-2))>7

6. 3E-02< .01*a

7. (a<b) || (b<a)

8. (a*a<b) || !(a*a<a)

9. !((a < b) && (a < (b + a)))

10. !(a < b) || !(a < (b + a))

11. ((a==b) && (a*a<b*b)) || ((b<a) && (2*a<b))

12. ((a=b) || !(b<a)) && ((a<b) || (b=a+1))

In Exercises 13 through 24, determine whether the condition is true or false.

13. !"9W".equals("9w")

14. "Inspector".compareTo("gadget") < 0

15. "Car".compareTo("Train") < 0
16. 'J' >= 'J'

17. "99".compareTo("ninety-nine") > 0

18. 'B' > '?'

19. ("Duck".compareTo("pig") < 0) && ("pig".compareTo("big") < 0)

20. "Duck".compareTo("Duck" + "Duck") < 0

21. !(('B' == 'b') || ("Big".compareTo("big") < 0))

22. !('B' == 'b') && !("Big".compareTo("big") < 0)

23. (("Ant".compareTo("hill") < 0) && ("mole".compareTo("hill") > 0)) ||
!(!("Ant".compareTo("hill") < 0) || !("Mole".compareTo("hill") > 0))

24. (7 < 34) && ("7".compareTo("34") > 0)

Appendix: Programming Assignments

Ten programming "puzzles" were assigned during Winter 2006. As this handbook evolves, the samples included will be moved to appropriate topic chapters.

1.
Output, sequence: a text graphic*

2.
Variable, calculation: cube by Newton's method

3.
String processing: pig latin

4.
Graphics, coordinates, scaling: a flag*

5.
Selection: word chains

6.
Iteration, file processing: a geography quiz

7.
Arrays: Tic Tac Toe enhancement

8.
Search and sort, objects: geographical data

9.
Interactive graphics: a circle or grid

10.
Events: a scrolling graphic

Shoreline Community College
Name:

Java Programming I

Asgn. 1, due Friday 1/13/06

Brand name:

Concepts: Sequence structure; text-based output (display).

Techniques: Edit, compile, run, debug

1. Design
a. Visualize or find a simple drawing of a logo for your assigned brand.

b. Sketch a line-drawing of your logo on graph paper. Include the brand's name, your name, Compu 142 and Winter 2006 under the drawing, centered, 1 character per cell (square).

c. Overwrite your drawing with keyboard characters, 1 per cell, to plan a text-based computer rendition. WARNING: Do not use the backslash character (\), quotation marks, parentheses (or other grouping symbols) here – they have special meaning to the Java compiler and will needlessly complicate this puzzle. Your last drawing will be part of the documentation for this assignment.
2. Algorithm

a. The algorithm for sequence structure is just a list of steps to complete in order.

b. The steps for this first program are just a sequence basic text output statements.

The drawing you completed for 1.c will be sufficient to explain your algorithm.

3. Code
a. You may use template.txt to begin your solution. Use a plain text editor (examples: ConTEXT, Notepad, SimpleText) to write your source code file.

b. Change the comments to describe your solution.

c. Change the class name to the name of your logo (example: class ToyotaTest).

d. Change the file name to the name of your logo (example: ToyotaTest.java).

e. Save your work after every 2 - 3 lines of code you enter or edit.

f. Compile (and fix) your work after every 3 – 4 lines of code you enter or edit.

g. Output 2 blank lines above and below your logo.

4. Test
a. Run your completed program. Carefully compare its output to your design. If needed, edit, recompile and rerun your program until it is correct.

5. Documentation
a. Run your solution.

b. Screen-capture the result (Alt + PrintScreen).

c. Open Word, put appropriate assignment identification in the upper right corner, then paste the screen capture of your working solution.

d. Save.

6. Inquiry (you may type or neatly hand print your answers on the document you began in #5)
a. What shortcuts did you find/use to make your solution easier?

b. What error messages did you resolve? List the solution with each message.

7. Turn in
a. Zip your source and class files (2) together into 1 file named "Asgn01.zip"

b. Attach this archive to an email according to these specifications:

To: ptopham@shoreline.edu
From: your name **

Subject: 142 – Asgn. 1

Message: Asgn. 1 is attached. your name.

* If your email client does not automatically save copies of sent mail, CC yourself.

** Make sure your email reaches me with a "From" name that I will easily recognize as a student in this class. Otherwise, it will be considered "spam" and deleted.

c. Attach your design (# 1.c), code (#3), screen-capture (# 5) and inquiry (# 6), clearly identified and in order, to the back of these instructions.

Shoreline Community College:

Name: _____________________________

Assignment 4: Flags

Focus: Java Graphical Applications, size ratios – Ch. 5
Flag of (country) _________

Concepts:

Graphical applications, introduction

Scalable design, using basic geometry and proportions

Automated Java documentation

Choose a country's flag. Each student must choose a different flag. Your chosen country's flag must NOT be a plain rectangle (like Libya), NOT just 3 vertical stripes (like Italy), NOT just a circle in a rectangle (like Japan). DO choose a flag that can be drawn with simple shapes. Rectangles and circles are recommended! Polygons, such as triangles, diamonds and stars, are reasonable. Avoid flags with more complicated figures!

For this assignment, implement a Graphical Application (NOT an Applet).

1. Analyze the statement of the program: Use the Web to find a picture of the flag you have chosen. Paste the picture into a Word document. Use Landscape orientation. Stretch the image as large as possible. Print a copy of this picture. Measure the size and location of the elements (using metric will make this job much easier). Read the rest of these directions before you tackle the next step.

2. Make a “pencil solution”: Add coordinates to the hardcopy of your flag. The upper left corner of the window (frame) is (0,0). For your first solution, position the upper left corner of your flag at (10,10) in the frame. Label the width of the flag. Label all other locations and dimensions as fractions of the flag's width (or fractions of another measurement you have already labeled).

3. Design the classes: The Car and Italian Flag examples (in your text) have good guidelines for your flag programs. Outline the steps to assemble the elements of your flag. Use the ratios (fractions) from part B in your plan.

4. Implement the class: In a folder named Flag, use your class design (part C) to implement your Flag solution. Include the javadoc comments to explain the purpose of the class and each of its public features. Include in-line or block comments to explain how each part of your code contributes to the drawing. Start with 800 for the width of the JFrame, 500 for the height and 600 for the width of your flag.

5. Test the classes: Fix all compiling errors. Then make sure the test results match your pencil solution. If not, locate and fix the logic error(s).

--

Enhancement (5%): Copy your Flag solution to a folder named UserFlag. Revise this version so that the FlagViewer asks the user for the coordinates of the upper left corner and the width of the flag. (continued on next page)

Section 5.6 illustrates a graphical technique for getting user input. The placement of the request for user input is very critical.

Send the user's choices as parameters to a revised Flag constructor; it will be used to locate and size the drawing. Because you used ratios in your first Flag solution, the modifications will be small. Revisit step 5.

--

Further enhancement (5%): Copy one of your Flag solutions to a folder named CenterFlag. Revise this version so that the flag is always ½ the width of its window and is centered horizontally and vertically in its window whenever the user resizes the window. (Assume that the user will NOT resize the window to such a shallow shape that vertical centering is impossible.) Page 167 has some hints. Make another pencil drawing to help you design the necessary calculations. Again, a good solution for Flag insures that the modifications for this version will be small. Revisit step 5.

6. Finish the Documentation

From your Flag folder, apply the javadoc program:

 javadoc –author –version –d docs *.java

to your source files. View the index‑all.html and index.html files. Follow their links. Note any spelling or logical issues: if needed, fix your source files and rerun the javadoc program (check the results).

7. Inquiry
Copy these questions to a new document. Please give brief, but clear answers. Options: (a) Use a word processor to enter your answers, then print the result. (Watch the auto-numbering). OR: (b) Insert 3 or 4 blank lines after each question, print the result, then hand-print your answers neatly in between.

1. As you worked on your graphical application, what shortcut or strategy did you discover that made it easier to complete the project?

2. Write the statement to construct a circle of radius 10 and center at (20, 30).

3. Write the statement to construct a circle of radius r and center at (x, y).

4. Why do you think the Java authors included the class Point?

5. Visit the online Java API documentation to read the general information about the class Polygon. Write the statements to create a diamond that is 20 pixels high, 20 pixels wide, and center at (30, 40). Hints: polygons close themselves -- you just specify the vertices; make an empty Polygon, then add the necessary points.
6. Visit the online Java API documentation to read the general information (1st screen) about the abstract class RectangularShape. Follow the link to abstract class Arc2D and read the general information (1st screen). Follow the link to public static class Arc2D.Double. Write the constructor to "build" a arc that looks like the letter C. Hints: angles are entered in degrees; a starting angle of 0 degrees is "due east," as in math; a positive extent angle is counter clockwise, as in math; Arc2D.OPEN is type for this task (the other choices are Arc2D.CHORD and Arc2D.PIE).
..
8. Turn in: Zip the source, class, and all the HTML javadoc files into 1 archive named Asgn04W06.zip. Attach this archive to an email according to these specifications:

To: ptopham@shoreline.edu
From: your name **

Subject: Java I – Asgn. 4

Message: Assignment 4 is attached. your name.

* If your email client does not automatically save copies of sent mail, CC yourself.

** Make sure your email reaches me with a "From" name that I will easily recognize as a student in this class. Otherwise, it will be considered "spam" and deleted.

7. Turn in
Review directions in Assignment 1.
Attach to the back of these instructions && bring to class:
#1 (expected output),
#2 (design tools),
#4 (screen captures),
#5 (source codes) and
#7 (6 questions).
SCC—Compu 142: Java Programming I
Name: ___

Assignment 8: Searching and Sorting

This assignment will allow you to practice ideas from Chapters 8 & 19--arrays, linear search, insertion sort and binary search. Some geography is included, too. Please read all the directions before starting to work.

1. Study the data file 142World.txt. Be sure that you understand how the data is organized.

2. Design a class CountryRecord to hold the data for just 1 country from the file. Include

2.1 private instance variables with appropriate data types for each data field

2.2 a constructor method that accepts one (long, full-line) String (from the data file). This constructor handles the picky job of parsing that String into useful data.

2.3 six get-methods to access and return the 6 individual field values.

2.4 and an additional accessor method named getDensity that returns the population density for the country.

2.5 a toString (accessor) method that returns a brief String that can be used to display something basic about this instance.

3. Design a class CountryList to hold and manage an array of CountryRecords. Include

3.1 a private instance variable cList to refer to an array of CountryRecords.

3.2 a constructor method that accepts no parameters. This constructor

3.2.1 opens the data file to count the number of records in the file

3.2.2 creates an array to hold the required number of CountryRecords

3.2.3 reopens the data file and, line-by-line, calls for the construction of a CountryRecord and store the reference to that CountryRecord in the next slot of the array

3.3 an accessor method getCount that accepts no parameters and returns the number of countries in the array.

3.4 an accessor method getCountry that accepts a positive integer that returns (a reference to) the CountryRecord stored at the given index, or null if the index is out of bounds.

3.5 an accessor method linearSearch that accept the name of a country, performs a linear search and returns the index number of the corresponding entry, or -1 if no match is found.

3.6 a mutator method insertionSort that accepts no parameters but sorts (reorganizes) the list by countryName. It returns no information.

3.7 an accessor method binarySearch that accept the name of a country, performs a binary search and returns the index number of the corresponding entry, or -1 if no match is found.

3.8 a toString (accessor, no parameter) method that returns a brief String that can be used to display something basic about this instance.

4. Design a class CountryListTester to demonstrate that your CountryList and CountryRecord classes work. It should test each method at least once. Be sure that the output begins with the name of this program, your name and enough text to identify the results to the user. For example,

The countries sorted by name are

Afghanistan

Albania

Algeria
...
For a few extra credit points, include timing information for the linear search and binary search so that we can compare their efficiency. See the fifth assignment for some hints.

A. Analyze the statement of the program

1. Make a list of all the methods to be created and tested.

2. Decide the order in which you should test them.

3. Hand-write a sample output of the expected output (make up plausible values for this step). Attach.

B. Make “pencil solution”
Density is the only calculation to test here. Hand-write the details. Attach.
To verify your logic, your calculation for the USA should give this result: 68.8

FYI: There are 221 countries in the file.

C. Design the classes
Hand-draw large rectangles to represent the CountryRecord and CountryList classes (as done on the board in class). Indicate all necessary instance variables (data types and names). Indicate all public methods (return types, names, parameter lists). Attach.
Outline (pseudocode) or flowchart your solution logic for each method that needs selection and/or iteration structure(s). Attach.
D. Implement the classes
In a new folder, use your design (part C) to code your solution. Include javadoc comments to explain the purpose of the class(es) and each public feature. Include additional block or in-line comments to explain private details of your implementation--if your use of good variable names is not enough to clarify your solution.

E. Test the classes
Following earlier examples and your pencil sketch of the CountryListTester output (part A) , complete your test class. Compile and then make sure the test results match your pencil solutions. If not, locate and fix the (logic) error.

Important Details: Be sure to include your name and today's date in the javadoc comments at the start of each class file. Save your work frequently. Back up your work each time you reach a stable point of development.

Screen-capture the first and last screen-fulls of your successful test. Attach.
F. Finish the Documentation

From your project folder, apply the javadoc program to your source files. Be sure to use the -d option to store the documentation pages in a subfolder named doc. Verify the results.

Print all of your source code. Attach.
G. Inquiry (Word process or hand-print) and Attach
1. Rewrite the selection sort code on p. 705-6 – lines 19-52 using an ArrayList and the ArrayList methods get and set to implement this sort algorithm.

2. Now rewrite #1 using the remove and add methods in the ArrayList class to implement the selection sort.

3. Which is ArrayList technique is easier for the programmer to implement--the get-set technique or the remove-add technique?

4. What do you think: Which technique is processed more efficiently?

The old-fashioned array solution on p. 705-6

The ArrayList get-set solution (#1 above)

The ArrayList remove-add solution (#2 above)

Explain your choice briefly.

5. What precondition is necessary for a binary search?

6. How can your solution make sure that the precondition (#5) has been met?

7. How should a sequential search method respond if no match is found?

8. How should a binary search method respond if no match is found?

H. Turn in

1. Go to the folder with the complete version of your solution. Zip the sources, compiled class file(s), the data file and all the HTML javadoc files into 1 archive named Asgn08.zip. Attach the archive to an email according to these specifications:

Review Directions on Asgn. 1
2. Turn in hardcopy of Parts A, B, C, E, F and G, stapled in order, behind these directions. You can turn in the inquiry (G) on Monday.

Appendix: Sample Tests

Shoreline Community College

Name:

Compu 142 Java I

Date:

Test 1: Ch. 1-5 (Big Java 2)

Closed book, notes, computer, neighbor. Open mind, 3"x5" card of notes. Pencil preferred. Partial credit if your work indicates your logic clearly.
1. (18 pts.) Write the expected output of these statements (assume they are to be executed in this order). Use (to indicate each space. If a statement produces no output, leave the line blank.

System.out.println(3 + 4 * 5);

System.out.println(23 % 3);

int number = 2;

System.out.println("number" + 1);

System.out.println(10 / 20 + 7);

double a = 100;

double b = 50;

double c = 2;

System.out.println(a / b * c);

System.out.println(String.format(

 "d: %10.4f", Math.sqrt(a)));

System.out.println((int) (b / a));

number = number + 1;

number+= 1;

number++;

System.out.println("number: " + number);

double average = a + b + c / 3;

System.out.println("Average = " + average);

2. (7 pts.) Write "OK" after each legal Java statement (assume they are to be compiled in this order)

int e = 6; ___________
int f = e; ___________
double g = f; ___________
int h = g; ___________
23 = 23; ___________
e = e + 1; ___________
e + f = 2 * e; ___________
3. (4 pts.) Write 1 Java statement to implement this formula (assume all variables have been properly declared and initialized):

[image: image7.wmf]gm

R

d

3

2

p

=

***** Space for working *****

4. (2 pts. each) A. Convert 68d to its binary equivalent. SHOW YOUR PROCESS.

***** Space for working *****

B. Convert 1000'1111b to its decimal equivalent. SHOW YOUR PROCESS.

***** Space for working *****

5. (8 pts.) Write the expected output of these statements (assume they are to be executed in this order). Use (to indicate each space. If a statement produces no output, leave the line blank.

String s = "If all else fails, read the directions."

int pos = s.indexOf(",");

s = s.substring(pos + 2);

pos = s.index of(" ");

System.out.println(s.substring(0, pos) + s.charAt(1)

 + s.length());

System.out.println(s.indexOf('f'));

System.out.println("Shoreline\nCommunity\nCollege");

6. (2 pts.) Consider this legal code segment:

String t = "Java is better than tea.";

int pos1 = t.indexOf('b');

int pos2 = t.indexOf("is");

This code demonstrates that indexOf is an example of a(n) _____ (choose the best one)

A. instance variable

B. overloaded method

C. static method

D. void method

E. None of the above

7. (4 pts.) After your program has compiled--without error messages--

A. The Java RunTime Environment (Engine) looks for a method named __ to control the order of steps to be executed.

B. If your program creates a graphical application using a class that extends JComponent, the JRE will look for a method named ____________________________________ each time the screen should be repainted.

8. (10 pts.) Read the following program and then write the expected output.

public class Mystery {

public static void main(String[] args) {

String apples = "bananas";

String bananas = "cherries";

String cherries = "apples";

sentence(bananas, cherries);

sentence(cherries, apples);

} // end main
public static void sentence(String dogs, String cats) {

System.out.println("I like " + cats + " more than " + dogs);

} // end sentence
} // end Mystery
Use this space for your answer:

***** Space for working *****

Optional but recommended: Use this space for your code walk.

***** Space for working *****

9. (10 pts.) Write the Java statements to complete this method as specified in its comment. Recommended: include a simple sketch of the circle to illustrate your solution logic.

/** The circle method returns a reference to an instance of Ellipse2D.Double

 * that represents a circle whose center is located at (x, y) and whose radius

 * is r.

 */

public Ellipse2D.Double circle(double x, double y, double r) {

Ellipse2D.Double c

***** Space for working *****

return c;

}

Extra credit: 1 measly point each.

1. The current version number for Java is

 or

2. The Shoreline Community College mascot is the

3. The Seattle Sonics play the game of

4. Is the call System.out.println(4) a static method call? _____ Explain your reasoning.
Shoreline Community College

Name:

Compu 142 Java I

Date:

Test 2: Ch. 6-8 (Big Java 2)

Closed book, notes, computer, neighbor. Open mind, 3"x5" card of notes. Pencil preferred. Read ALL directions. Partial credit if your work indicates your logic clearly.
1. (14 pts.) Print the value of each of these Java expressions
"Car".compareTo("Train") < 0

'J' >= 'J'

!"9W".equals("9w")

"Inspector".compareTo("gadget") < 0

"99".compareTo("ninety-nine") > 0

("Duck".compareTo("pig") < 0) && ("pig".compareTo("big") < 0)

(7 < 34) && ("7".compareTo("34") > 0)

2. (12 pts.) Write the expected output of this program. Use (to indicate each space. If a statement produces no output, leave the line blank.

public class Mystery {

public static void main(String[] args){

String w1 = "1st";

String w2 = "2nd";

String w3 = "3rd";

w1 = show(w1, w2, w3);

w2 = show(w3, w1, w2);

show(w2, w3, w1);

}

public static String show(String aw, String xw, String yw) {

System.out.println(yw + " and " + aw + " and " + xw);

return yw;

}

}
***** Space for working *****

3. (14 pts.) Write the expected output of these statements (assume they are to be executed in this order). Use (to indicate each space. If a statement produces no output, leave the line blank.

int pl = 0;

int i = 1;

String[] qr = new String[10];

String s = "My dog has fleas.";

String ltr = s.substring(pl, pl+1);

while (! ltr.equals(".")) {

 if (ltr.equals(" ")) {

 qr[i] = s.substring(0, pl);

 i++;

 }

 pl++;

 ltr = s.substring(pl, pl+1);

}

System.out.println(qr[2]);

***** Space for working *****

4. (20 pts.) Write a method called doubleEquals that accepts 3 double values as parameters. The method should return true if the first 2 parameters are equal within the tolerance of the 3rd parameter; otherwise, it should return false. In other words, the first 2 parameters will be judged to be "equal" if they are "close enough."

For example, doubleEquals(1.23456, 1.23455, 0.0001) should return true.
If you need more space, use the back of this page. Do not worry about javadoc comments. Do not worry about imports. Do include block or in-line comments as needed to explain your solution. Do use obvious names for variables. Do indent to indicate the logical structure of your code.

***** Space for working *****

5. (20 pts.) Write a method called printNum that accepts a String and prints all numbers that it finds enclosed in square brackets. For example, the following sequence of calls

printNum("Looking for numbers in square brackets.");

printNum("More information is given in [37].");

printNum("score[5] = 93, score[10] = 42");

Should produce this output

a blank line

37

5 10

Assume that all square brackets come in "proper" pairs and contain only numbers.

Do not worry about javadoc comments. Do not worry about imports. Do include block or in-line comments as needed to explain your solution. Do use obvious names for variables. Do indent to indicate the logical structure of your code.

***** Space for working *****

6. (20 pts.) A table of integers contains the x and y coordinates of the points to be used to construct a polygon. Write a method named makePoly that accepts such a table (a 2-dimensional array of integers). This method constructs a Polygon and adds the points from the table to the Polygon. The method returns a reference to the Polygon that has been created from the table of data. For example, the table

on the left could be used to create the Polygon for this right triangle:

Assume the 2-dimensional array will always have 2 columns, but may have any number of rows--0 or more. Assume the points are listed in the appropriate order.

There is more room on the next page. Do not worry about javadoc comments. Do not worry about imports. Do include block or in-line comments as needed to explain your solution. Do use obvious names for variables. Do indent to indicate the logical structure of your code.

This information from the API may be helpful:

public Polygon() -- Creates an empty polygon.

public void addPoint(int x, int y) --

Appends the specified coordinates to this Polygon.

Parameters: x - the specified x coordinate

y - the specified y coordinate

***** Space for working *****

Extra credit: 1 measly point each.

1. What can you now say about the phrase String[] args in the method heading
public static void main(String[] args)? __

2. The Secretary General of the United Nations is ____________________________
3. Minnie Mouse's significant other is _____________________________________
Shoreline Community College

Name:

Compu 142 Java I

Test 3: Ch. 19, 12-14, 18 (Big Java 2)

Date:

· Closed book, notes, computer, neighbor.
· Open mind, 3"x5" card of notes.
· Pencil preferred.

· Read ALL directions.

· Partial credit--if I can understand your logic clearly from what you write.

· As discussed in class, if you are uncertain about syntax--or method or class names--make reasonable guesses (print clearly, please).
1. (20 pts.) Short answer/multiple choice:

1.1
A necessary precondition for the binary search is that the list be

1.2
In the first (outer) loop of the selection sort, which array element will be in its final position?

1.3
An inner class can be used when its code is not interesting outside the scope of the method in which it is defined. The biggest advantage of defining an inner class (instead of defining a separate class) is that

1.4
An instance of javax.swing.Timer can generate (circle letter of best answer)
a. an event
b. a source
c. a listener

1.5
To put a button that responds to the click of a mouse in your graphical application, you should create a container (such as a frame), a button and a listener. You should (circle the letters of every necessary step).
a. add the container to the button
b. add the button to the listener
c. add the button to the container
d. add the button to the listener
e. add the listener to the container
f. add the listener to the button.

1.6
Suppose you want to get a numeric input from the user. In a graphical application, you can employ a JTextField. Before including that input in a numeric calculation, what additional step must be coded?

1.7-8
Name 2 different ways to display the result of a calculation in a graphical application.

1.9
What is the purpose of the JComponent method repaint()?

1.10
To respond more precisely to mouse input, you can implement the MouseListener interface, which requires code for 5 different mouse actions. If you do not want your program to respond to one of these actions, for example MouseExited, you should use the following code (circle letter of best answer):

a. public void mouseExited(MouseEvent event) {

Sytem.out.println();
 }

b. public void mouseExited(MouseEvent event) {
 }

c. public void mouseExited(MouseEvent event) {

System.doNothing();
 }

d. public void mouseExited(MouseEvent event) {

return;
 }

e. public void mouseExited(MouseEvent event) {

mouse.pass();
 }

2. (8 pts.) Short answer/multiple choice:

2.1
The super class of all Java classes is

2.2
In class, we each created our own classes to extend the Pet class. In these sub classes, we wrote versions of public String speak() The individual versions of this method are examples of (circle letter of best answer):
a. overriding
b. overloading
c. inheritance

2.3
As a demonstration of the Pet class and its extensions, I made instances of each of your sub classes, added them to an ArrayList of Pet objects, and used the enhanced for loop to iterate through the list. The code was similar to this:

ArrayList<Pet> pets = new ArrayList<Pet>();

pets.add(new Bear());

...

for (Pet p : pets)

 System.out.println(p.speak());
The actual code (the version of speak()) to use when the program ran was decided by (circle letter of best answer):

a. the compiler at compile time
b. the compiler at run time
c. the JRE (java runtime engine, java runtime environment, java virtual machine)

 at compile time
d. the JRE at runtime.

2.4
Which is the best layout manager to use to display elements on the same line -- if the window is wide enough?

3. (12 pts.) Short answer:

Play computer: Complete the table below to trace the execution of this method. Use as many rows as needed. Then write the expected output of this method.

public static void main(String[] args) {

int[] a = {10,7,3,5,9,6,4};

for (int i = 1; i < a.length; i++) {

int n = a[i];

int j = i;

while (j > 0 && a[j-i] > n) {

a[j] = a[j-1];

j--;

}

a[j] = n;

}

for (int i=0; i < a.length; i++)

System.out.print(a[i] + ", ");

System.out.println();

} // end main.
Output:

There are some extra columns to use if that helps you to trace the execution. Use only as many rows as you need to understand the algorithm. You can draw downward arrows to indicate values that don't change for several steps.

	a[0]
	a[1]
	a[2]
	a[3]
	a[4]
	a[5]
	a[6]
	i
	
	j
	n
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

... add at least enough rows to trace this execution
4. (20 pts.) Short code:

The following method satisfies its specification.

/** Returns the index of the element that matches the target, or -1 if no match is found */

public int linearSearch(int[] a, int target) {

int matchIndex = -1;

for (int i = 0; i < a.length; i++) {

if (a[i] == target)

matchIndex = i;

}

return matchIndex;

}

Assume the array a is not sorted. If a match is found early in the list, this code will still check all the rest of the list. Write an improved version of this method that is "smart" enough to quit as soon as a match is found. Do NOT sort the list.

***** Space for working *****

5. (20 pts.) Suppose that a graphical application needs to simulate a push-button light switch--the first click on the button turns the light off (makes the panel's background WHITE), the next click turns the light on (makes the panel's background DARKGRAY). Complete only the ActionListener code below to implement this simulation:

public static void main(String[] args){

// assume the necessary code to create a JFrame

// and a JPanel named panel is already here

JButton lightSwitch = new JButton("Light");

class LightSwitchListener implements ActionListener {

// write the appropriate code in the space below ----

***** Space for working *****

}

ActionListener listener = new LightSwitchListener();

lightSwitch.addActionListener(listener);

...
}

6. (20 pts.) Study the following recursive solution then write an equivalent iterative solution (using a for or while loop).

/** precondition: n > 0 and m >= 0
*/

public int p(int n, int m) {
if (m==0) return 1;
if (m==1) return n;
return n*p(n, m-1);

}

***** Space for working *****

Extra credit: 1 measly point each.

1. What can you now say about the phrase static in the method heading
public static void main(String[] args)? __

2. Spring quarter classes at SCC begin on (month/day) ________________________
3. There are _____ continents on the earth.

Appendix: A Sample of the First Two Midterm Tests

From four students, across the class spectrum, to be scanned and inserted

Appendix: Permission to Include Students' Work

For The Disciplinary Commons Portfolio Project

Funded by the Washington State Board of Community and Technical Colleges
and the University of Washington, Tacoma

From Phyllis Topham, Shoreline Community College (SCC)

I have used guidelines for obtaining informed consent of human subjects that are posted at http://www.research.fsu.edu/humansubjects/
This site was recommended by Larry Cheng, Professor Library/Media, Media Coordinator, SCC. I have also studied SCC Policy 5329 Use of Human Subjects and requested approval from my institution.
From the Instructor
Shoreline Community College

16101 Greenwood Avenue North

Shoreline, Washington 98133

Dear Student,
I am Professor Phyllis Topham in the Computer Science/Computer Information Systems Department of the Business Administration/Automotive/Manufacturing Division at Shoreline Community College. I am conducting a research study to improve the quality of teaching Computer Science within the Puget Sound region.

I am requesting your participation, which may involve completing an anonymous questionnaire, having samples of your course work included anonymously in a portfolio to be shared with other instructors and/or being included in photographs of group learning activities in the class. Your participation in this study is voluntary. If you choose not to participate or to withdraw from the study at any time, there will be no penalty, (it will not affect your grade). The results of the research study may be published, but your name will not be used.
If you have any questions concerning this research study or your rights as a subject/participant in this research, or if you feel you have been placed at risk, please contact me at 206-546-4726 or ptopham@shoreline.edu
Return of the questionnaire/consent form will be considered your consent to participate. Thank you.

Sincerely,

Phyllis Topham

--

To the Student

The Disciplinary Commons Portfolio Project

Funded by the Washington State Board of Community and Technical Colleges
and the University of Washington, Tacoma

I HAVE BEEN INFORMED THAT:

1. Phyllis Topham, who is Professor of Computer Information Systems, has requested my participation in a research study at this institution. She will be working with other Computer Science [CS] instructors in the Puget Sound region who are participating in this study.

2. The purpose of this research is to improve the quality of teaching in Computer Science by developing processes for sharing knowledge about student learning in this field.

3. My participation may involve having my course work shared anonymously with other CS instructors, having my responses to a questionnaire shared anonymously with other instructors, having this information published anonymously, and/or being included in photographs of group learning activities.

4. If I choose not to participate or choose to withdraw from the study at any time, I understand that there will be no penalty to me, especially that it will not affect my grade for this course.
5. There are no foreseeable risks or discomforts if I agree to participate in this study.

6. Although there may be no direct benefit to me, the possible benefit of my participation is an overall improvement in the quality of CS education at this college and other colleges in the region. That may also enhance the value of my degree and attract more employers to this area.

7. I may be asked to complete an anonymous questionnaire during or outside of class time. I may be asked to be included in a photograph of group class work during class time.

8. If any of my course work is shared/included, all information that identifies me will be removed.

9. I will not be paid for my participation.

10. Any questions I have concerning the research study or my participation in it, before or after my consent, will be answered by Phyllis Topham, 206-546-4726, ptopham@shoreline.edu.
I have read the above informed consent form. I understand that I may withdraw my consent and discontinue participation at any time without penalty or loss of benefits to which I may otherwise be entitled. In signing this consent form, I am not waiving any legal claims, rights or remedies. A copy of this consent form will be given to me.

Subject's Signature

 Date

--

 To the Parent of a Minor Student

Shoreline Community College

16101 Greenwood Avenue North

Shoreline, Washington 98133

Dear Parent,
I am professor Phyllis Topham in the Computer Science/Computer Information Systems Department of the Business Administration/Automotive/Manufacturing Division at Shoreline Community College. I am conducting a research study to improve the quality of teaching Computer Science within the Puget Sound region.

I am requesting your child's participation, which may involve completing an anonymous questionnaire, having samples of course work included anonymously in a portfolio to be shared with other instructors and/or being included in photographs of group learning activities in the class. Your child's participation in this study is voluntary. If you or your child chooses not to participate or to withdraw from the study at any time, there will be no penalty, (it will not affect your child's grade). The results of the research study may be published, but your child's name will not be used.
Although there may be no direct benefit to your child, the possible benefit of my participation is an overall improvement in the quality of CS education at this college and other colleges in the region. That may also enhance the value of your child's degree and attract more employers to this area.

If you have any questions concerning this research study or your child's rights as a subject/participant in this research, or if you feel your child has been placed at risk, please contact me at 206-546-4726 or ptopham@shoreline.edu
Sincerely,

Phyllis Topham

I give my consent for my child

 to participate in the above study.

Parent's name (please print):

Parent's signature:

 Date:

10�
10�
�
10 �
20�
�
20�
20�
�

_1149918609.unknown

_1149918676.unknown

_1200771827.unknown

_1149918517.unknown

