
University of Washington Bothell
Computing and Software Systems

Graduate Certificate Program
Programming Competency Self-Assessment: First Assessment (of two)

There are two program specifications in this self-assessment. Candidates to the CSS
Graduate Certificate Program should find the completion of both of the programs to be
straightforward and easy. Candidates who find the following program development to be
challenging should consider taking CSS161.

Program Specification One (of two):

You work at a soft drink distributorship that sells at most 100 different kinds of soft drinks. The program you write
for this assignment will process weekly transactions and allow for a report to be displayed that includes the soft-
drink name, ID, starting inventory, final inventory, and the number of transactions received.

You should write two data files, data6.txt and data6trans.txt, which should hold the initial soft drink information and
transactions, respectively. The file data6.txt should consist of at most 100 lines where each line contains the soft
drink name (one string), ID (string), and the starting inventory of cases (int).

The file data6trans.txt should hold the transactions. Each transaction should consist of the ID followed by the
number of cases purchased (positive integer), or the amount sold (negative integer). You can assume the format of
the data is correct, but not all IDs are valid. In the case of an invalid ID, do not process the data (ignore it, no error
message).

Sample data6.txt: Sample data6trans.txt:

Coke 123 100 345 10

Pepsi 345 50 123 -5

CanadaDry 678 75 345 10

DrPepper 444 120 678 8
 444 20

 444 -20

 444 10

 999 5

 345 10

 123 -25

The displayReport function displays the drink name, ID, starting inventory, final inventory, and the number of
transactions processed. Display this exact format (number of blanks separating items does not have to be identical).

For the sample data, the output of your program would be as follows:

Soft drink ID Starting Inventory Final Inventory # transactions

Coke 123 100 70 2

Pepsi 345 50 80 3

CanadaDry 678 75 83 1

DrPepper 444 120 130 3

Write a SoftDrinkInventory class with the following functionality:

public constructor: Initializes arrays holding soft drink name and ID to hold all empty strings (calls

intitializeString twice to perform the tasks). Initializes arrays holding starting inventory, final inventory, and the
counts of the number of transaction to zero (calls initializeInt three times to perform the tasks).

public buildInventory: Sets the arrays for soft drink name, ID, and starting inventory from information in the

data file. The array holding final inventory is set to the same values as the starting inventory.

public processTransactions: Processes the transactions by correctly adjusting the final inventory and

transaction counts arrays. Data for IDs which don't exist are not processed.

public displayReport: Displays a report including soft drink name, ID, starting inventory, final inventory, and

number of transactions processed.

private findID: Takes an ID parameter and returns the position in the array (the subscript) where the soft

drink with that ID is found. Return -1 if the ID is not found.

private initializeInt: Takes an int array parameter and initializes all array values to zero.

private initializeString: Takes a String array parameter and initializes all values to the empty String (“”).

/**

 * This program tests the functionality of the SoftDrinkInventory class.

 * An object is constructed which initially holds no real data.

 * A datafile containing initial data is used to fill the SoftDrink object.

 * Then transactions are processed where each transaction contains how

 * cases are bought or sold. A function displays a report of the drink name,

 * ID, starting inventory, final inventory, and the number of transactions

 * processed.

 */

import java.util.Scanner;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

public class SoftDrinkTester {

 public static void main (String[] args) {

 Scanner inventoryFile = null; // inventory data file

 Scanner transFile = null; // transaction data file

 // open the inventory initialization file

 try {

 inventoryFile = new Scanner(new FileInputStream("data6.txt"));

 }

 catch (FileNotFoundException e) {

 System.out.println("File not found or not opened.");

 System.exit(0);

 }

 // open the file containing the buy/sell transactions

 try {

 transFile = new Scanner(new FileInputStream("data6trans.txt"));

 }

 catch (FileNotFoundException e) {

 System.out.println("File not found or not opened.");

 System.exit(0);

 }

 // instantiate the soft drink distributorship object

 // and process the transactions by updating the inventory totals

 SoftDrinkInventory softDrinks = new SoftDrinkInventory();

 softDrinks.buildInventory(inventoryFile);

 softDrinks.processTransactions(transFile);

 softDrinks.displayReport();

 }

}

Program Specification Two (of two):

This is the hangperson (formerly known as hangman) game where a player tries to guess a word given the spaces
it takes up. Each time an incorrect letter is chosen, another body part is added to the gallows. After seven tries, the
whole body is hung and the player loses.

Before the user plays, an introduction is displayed briefly describing the game. At the start of one round of the
game, empty gallows are display, dashes or underscores appear where the letters would be, and where the
guessed letters will be displayed. Additionally letters that the user has already guessed are displayed. As the user
plays the game, the gallows, the word to guess, the letters guessed are continually updated. After the player wins
or loses one round, a prompt asks if the player wants to continue playing. Call your class HangPerson. The class
with main and the high level pseudocode for the function play() are found below.

You can use any display besides a hanging to demonstrate missing letters, e.g., flowers turning into weeds, or a
car crashing against a wall. The only characteristic that must remain is that a player only gets seven guesses.
Below are two sample runs of the program.

Welcome to the hangperson game ...

To play, guess a letter to try to guess the word.

Every time you choose an incorrect letter another

body part appears on the gallows. If you guess the

word before you're hung, you win :-)

If you get hung you lose :-(

Time to guess ...

|-----|-

|

|

|

|

|__________

Letters guessed already =>

Number of wrong guesses => 0

The word so far => -----

Choose a letter => e

|-----|-

|

|

|

|

|__________

Letters guessed already => e

Number of wrong guesses => 0

The word so far => -e---

Choose a letter => x

|-----|-

| O

|

|

|

|__________

Letters guessed already => e x

Number of wrong guesses => 1

The word so far => -e---

Choose a letter => 3

Invalid, don't you know your ABCs?

Choose a letter => l

|-----|-

| O

|

|

|

|__________

Letters guessed already => e l x

Number of wrong guesses => 1

The word so far => -ell-

Choose a letter => e

You already tried this letter

Choose a letter => l

You already tried this letter

Choose a letter => o

|-----|-

| O

|

|

|

|__________

Letters guessed already => e l o x

Number of wrong guesses => 1

The word so far => -ello

Choose a letter => h

|-----|-

| O

|

|

|

|__________

Letters guessed already => e h l o x

Number of wrong guesses => 1

The word so far => hello

 Congratulations, you win!!!

Do you want to play again? yes

|-----|-

|

|

|

|

|__________

Letters guessed already =>

Number of wrong guesses => 0

The word so far => -----

Choose a letter => x

|-----|-

| O

|

|

|

|__________

Letters guessed already => x

Number of wrong guesses => 1

The word so far => -----

Choose a letter => z

|-----|-

| O

| |

|

|

|__________

Letters guessed already => x z

Number of wrong guesses => 2

The word so far => -----

Choose a letter => t

|-----|-

| O

| |

| |

|

|__________

Letters guessed already => t x z

Number of wrong guesses => 3

The word so far => -----

Choose a letter => p

|-----|-

| O

| \|

| |

|

|__________

Letters guessed already => p t x z

Number of wrong guesses => 4

The word so far => -----

Choose a letter => y

|-----|-

| O

| \|/

| |

|

|__________

Letters guessed already => p t x y z

Number of wrong guesses => 5

The word so far => -----

Choose a letter => m

|-----|-

| O

| \|/

| |

| /

|__________

Letters guessed already => m p t x y z

Number of wrong guesses => 6

The word so far => -----

Choose a letter => n

|-----|-

| O

| \|/

| |

| / \

|__________

Letters guessed already => m n p t x y z

Number of wrong guesses => 7

The word so far => -----

Too bad, you lose!

The word was ==> world

Do you want to play again? no

Thanks for playing!

After reading a String from the datafile, it (and anything related) is stored as arrays of char. The function

toCharArray converts a string to a char array. You must use a boolean array to keep track of whether or not a

letter was guessed. The integers 0 to 25 are mapped to the letters ‘a’ to ‘z’. For example, suppose letter was ‘e’,

then letter-‘a’ is 5, the difference between the internal value of ‘e’ and ‘a’ . This is how you get to subscript 5

for an ‘e’.

The class HangPersonGames

/* This program is a word guessing game called hangperson.

 * A person will try and guess a word before the max

 * number of guesses are used. Every time the user chooses an

 * incorrect letter another body part is displayed in the gallows.

 */

import java.util.*;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

public class HangPersonGames {

 public static void main(String[] args) {

 Scanner wordsFile = null; // words data file

 // open the file containing the words to guess

 try {

 wordsFile = new Scanner(new FileInputStream("data7.txt"));

 }

 catch (FileNotFoundException e) {

 System.out.println("File not found or not opened.");

 System.exit(0);

 }

 HangPerson hangGame = new HangPerson(wordsFile);

 Scanner keyboard = new Scanner(System.in);

 // display an introduction on the game to the player

 hangGame.displayGameIntro();

 // continually play new games if the user desires

 String playAgain;

 do {

 hangGame.play();

 System.out.print("Do you want to play again? ");

 playAgain = keyboard.next();

 System.out.println();

 } while (playAgain.toUpperCase().startsWith("Y"));

 System.out.println();

 System.out.println("Thanks for playing!");

 System.out.println();

 }

}

High-level pseudocode for the play() function

initialization of everything

get one word from the datafile

loop - exit when you win or lose

 display including gallows, letters guessed, wrong guesses, word so far

 get a valid, never-guessed-before letter from the user

 decide if the letter is in the word and do all appropriate updating

end loop

handle winning or losing

