
University of Washington, Bothell
CSS 501: Data Structures and Object-Oriented

Programming I

Example Program 5: Lists and Queues and Simulation! Oh, My!

Concurrency Simulator

Programs executed concurrently on a uniprocessor system appear to be executing at the
same time, but in reality the single CPU alternates between the programs, executing some
number of instructions from each program before switching to the next. You are to simulate
the concurrent execution of multiple, simple programs on such a system and determine the
output that they will produce.

The program that is currently being executed is said to be running, while all programs
awaiting execution are said to be ready. A program consists of a sequence of statements,
one per line, followed by an end statement. The statements in our simple language only
manipulate variables; there is no flow control (programs are just a sequence of operations).
The statements available are listed below.

Statement Type Syntax

Assignment variable = constant
Output print variable
Begin Mutual Exclusion lock

End Mutual Exclusion unlock

Stop Execution end

A variable is any single lowercase alphabetic character and a constant is an unsigned
decimal integer less than 100. There are only 26 variables in the computer system, and
they are shared among the programs (this is often called a shared memory model of parallel
programming. Thus assignments to a variable in one program affect the value that might be
printed by a different program. All variables are initially set to zero.

Each statement requires an integral number of time units to execute. The running pro-
gram is permitted to continue executing instructions for a period of time called its quantum,
a certain number of time units. When a program’s time quantum expires, another ready
program will be selected to run. Any instruction currently being executed when the time
quantum expires will be allowed to complete.

Programs are queued first-in-first-out for execution in a ready queue. The initial order
of the ready queue corresponds to the original order of the programs in the input file. This
order can change, however, as a result of the execution of lock and unlock statements.

The lock and unlock statements are used whenever a program wishes to claim mutually
exclusive access to the variables it is manipulating. These statements always occur in pairs,
bracketing one or more other statements. A lock will always precede an unlock, and these

1



statements will never be nested. Once a program successfully executes a lock statement,
no other program may successfully execute a lock statement until the locking program runs
and executes the corresponding unlock statement. Should a running program attempt to
execute a lock while another one is already in effect, this program will be placed at the
end of the blocked queue. Programs blocked in this fashion lose any of their current time
quantum remaining. When an unlock is executed, any program at the head of the blocked
queue is moved to the end of the ready queue. The first statement this program will execute
when it runs will be the lock statement that previously failed. Note that it is up to the
programs involved to enforce the mutual exclusion protocol through correct usage of lock

and unlock statements. (A renegade program with no lock/unlock pair could alter any
variables it wished, despite the proper use of lock/unlock by the other programs.)

Input and Output Format

The first line of the input consists of seven integers separated by spaces. These integers
specify (in order): the number of programs which follow, the unit execution times for each of
the five statement types (in the order given above), and the number of time units comprising
the time quantum. The remainder of the input consists of the programs, which are correctly
formed from statements according to the rules described above.

All program statements begin in the first column of a line, and there will only be one
statement per line. White space appearing in a statement should be ignored. Associated
with each program is an identification number based upon its location in the input data (the
first program has ID = 1, the second has ID = 2, etc.).

Your output will contain of the output generated by the print statements as they occur
during the simulation. When a print statement is executed, your program should display the
program ID, a colon, a space, and the value of the selected variable. Output from separate
print statements should appear on separate lines. A sample input and correct output are
shown below.

Sample Input

3 1 1 1 1 1 1

a = 4

print a

lock

b = 9

print b

unlock

print b

end

a = 3

print a

2



lock

b = 8

print b

unlock

print b

end

b = 5

a = 17

print a

print b

lock

b = 21

print b

unlock

print b

end

Sample Output

1: 3

2: 3

3: 17

3: 9

1: 9

1: 9

2: 8

2: 8

3: 21

3: 21

Statement of Work

Develop your concurrency simulator so that it reads its input from cin and writes its output
to cout. You will need to implement a queue and a list class for this assignment; they should
be linked implementations. You may refer to the textbook’s implementations of these, but
you will need to adapt them to your purposes. Do not use the textbook’s classes verbatim;
develop the classes specific to our purposes here.

This program is specifically designed to be too big for you to solve “all at one shot”.
You will need to very carefully adhere to a systematic development process to be successful.
Nevertheless, you should be able to successfully complete the assignment without trouble.
The key is to not try to solve the whole thing, but rather to break the task down into
manageable pieces. An outline of the steps you might take are:

3



1. Get to work right away and work on this every day.

2. Don’t try to write code yet. Instead, develop a clear understanding of what this
program is supposed to do. While you do this, write down your understanding. This
is part of your design. If there is anything you don’t understand, ask a question on the
class discussion forum to get an answer.

3. Now that you understand what the program should do, don’t write code yet either. It is
still too early. Instead, now start thinking of how the program will work. Identify the
major data types/classes/instances you will need to create. These will include things
like the ready queue, the blocked queue, a program, the variable store, etc. Which of
these are classes and which are instances? Is it possible that some of these are multiple
instances of the same class? Do any of your classes contain data types/structures that
should be classes in their own right? If a class is a container, what sort of thing does
it contain?

4. It’s still not time to write code. For each identified class, take a first stab at listing the
operations the class must provide. For each operation, write a brief synopsis, determine
and document its parameters and return type, and document any restrictions on its
input, output, conditions that must be true before it can be called, error handling (if
any), etc.

5. Don’t write code just yet! Now think about how you will test your program. I suggest
that you consider each class separately and develop a plan for each separately. So,
for instance, if you have a queue class that holds programs, you first might develop a
queue class that holds ints and get that working. Then you might start on the program
class. If it contains a list of statements, then you would plan to first implement and test
the statement class, then a list of ints, then a list of statements, then the program
class, and then finally a queue of programs. When it comes to the entire program,
you might plan on first getting a version working that doesn’t support locking, and
once that’s fine, implement the locking mechanism.

6. Everything you’ve done so far is your design. Go for a run or bike ride.

7. Take your class definitions and make two (electronic) copies of each; these are the
boilerplate comments for your .h and .cpp files.

8. You are now ready to start coding. Follow your implementation and test plan and
get each component working separately and then working integrated together. At
any particular point in time, you should have a partially working program. As time
progresses, the functionality of what you have will gradually approach the final desired
functionality.

4


