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ABSTRACT

Summary: Modern scientific investigation is generating increasingly

larger datasets, yet analyzing these data with current tools is challen-

ging. DIVE is a software framework intended to facilitate big data

analysis and reduce the time to scientific insight. Here, we present

features of the framework and demonstrate DIVE’s application to the

Dynameomics project, looking specifically at two proteins.

Availability and implementation: Binaries and documentation are

available at http://www.dynameomics.org/DIVE/DIVESetup.exe.

Contact: daggett@uw.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

The advent of massive networked computing resources has

enabled virtually unlimited data collection, storage and analysis

from low-cost genome sequencing, high-precision molecular

dynamics simulations and high-definition imaging data for radi-

ology, to name just a few examples. This explosion of ‘big data’ is

changing traditional scientific methods; instead of relying on

experiments to output relatively small targeted datasets, data

mining techniques are being used to analyze data stores with

the intent of learning from the data patterns themselves.

Unfortunately, data analysis and integration in large data stor-

age environments is challenging even for experienced scientists.

Furthermore, most existing domain-specific tools designed for

complex heterogeneous datasets are not equipped to visually

analyze big data.
DIVE is a software framework designed for exploring large,

heterogeneous, high-dimensional datasets using a visual analytics

approach (Supplementary Fig. S1). Visual analytics is a big data

exploration methodology emphasizing the iterative process

between human intuition, computational analyses and visualiza-

tion. DIVE’s visual analytics approach integrates with traditional

methods, creating an environment that supports data exploration

and discovery.

2 SYSTEM AND IMPLEMENTATION

DIVE provides a rich ontologically expressive data representation and a

flexible modular streaming-data architecture or pipeline (Supplementary

Fig. S2). It is accessible through an application programming interface,

command line interface or graphical user interface. Applications built on

the DIVE framework inherit features such as a serialization infrastruc-

ture, ubiquitous scripting, integrated multithreading and parallelization,

object-oriented data manipulation and multiple modules for data analysis

and visualization. DIVE can also interoperate with existing analysis tools

to supplement its capabilities, such as the Visualization Toolkit

(Schroeder et al., 1996), Cytoscape (Shannon et al., 2003) and Bing

maps (http://bing.com) by either exporting data into known formats or

by integrating with published software libraries. Furthermore, DIVE can

import compiled software libraries and automatically build native onto-

logical data representations, reducing the need to write DIVE-specific

software. From a data perspective, DIVE supports the joining of multiple

heterogeneous data sources, creating an object-oriented database capable

of showing inter-domain relationships. And although DIVE currently

focuses on bioinformatics, DIVE itself is data agnostic; data from any

domain may enter the DIVE pipeline.

A core feature of DIVE’s framework is the flexible graph-based data

representation. DIVE data are stored as nodes in a strongly typed onto-

logical network defined by the data. These data can be a simple set of

numbers or a complex object hierarchy with inheritance and well-defined

relationships. Data flow through the system explicitly as a set of data

points passed down the DIVE pipeline or implicitly as information trans-

ferred and transformed through the data relationships (Supplementary

Fig. S3e). A thorough description of the novel technical contributions of

DIVE is provided elsewhere (Rysavy,S.J et al., 2014).

3 RESULTS

The impetus for DIVE was data mining the Dynameomics

dataset (Van der Kamp et al., 2010). Dynameomics is a large

data-intensive project that contains atomistic molecular

dynamics (MD) simulations of the native state and unfolding

pathways of representatives of essentially all protein folds (Van

der Kamp et al., 2010). These protein simulations and associated

biophysical analyses are stored in a mixed data warehouse

(Simms and Daggett, 2012) and file system environment distrib-

uted over multiple servers containing hundreds of terabytes of

data and4104 times as many structures as the Protein Data Bank

(Bernstein et al., 1977), representing the largest collection of pro-

tein structures and protein simulations in the world.
In the domain of structural biology, Dynameomics exemplifies

the challenges of big data. Here, we present DIVE applications

involving two proteins where specialized modules built on the

DIVE framework are used to accelerate biophysical analysis.
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The first protein is the transcription factor p53, mutations in

which are implicated in cancer. The second protein is human

Cu-Zn superoxide dismutase 1 (SOD1), mutations in which are

associated with amyotrophic lateral sclerosis (Rakhit and

Chakrabartty, 2006).
The Y220C mutation of the p53 DNA binding domain is re-

sponsible for destabilizing the core (Joerger et al., 2006), leading

to �75 000 new cancer cases annually (Boeckler et al., 2008). We

have used the DIVE framework to analyze the structural and

functional effects of the Y220C mutation through a module

called ContactWalker (Bromley et al., 2013), which identifies

amino acids’ interatomic contacts disrupted significantly as a

result of mutation. The contact pathways between disrupted resi-

dues are identified using DIVE’s underlying graph-based data

representation.
Figure 1a shows the most disrupted contacts in the vicinity of

the Y220C mutation. Specific residues, contacts and simulations

were identified for more focused analysis. Interesting interatomic

contact data are isolated and then specific MD time points and

structures are selected for further investigation. For example, see

the contact data mapped onto a structure containing a stabilizing

ligand, which docks closely to many of the disrupted residues,

suggesting a correlation between the mutation-associated effects

and the observed stabilizing effects of the ligand (Fig. 1a).

As another example of the use of DIVE, we have4300 simu-

lations of 106 disease-associated mutants of SOD1 (Schmidlin

et al., 2009). Through extensive studies of A4V mutant SOD1

simulations, Schmidlin et al. (2009) previously noted the instabil-

ity of two �-strands in the SOD1 Greek key �-barrel structure.
However, that analysis took several years to complete and such

manual interrogation of simulations does not scale to allow us to

search for general features linked to disease across hundreds of

simulations. Using DIVE, we were able to further explore the

formation and persistence of the contacts and packing inter-

actions in this region across multiple simulations of mutant

proteins. DIVE facilitates isolation of specific contacts, rapid

plotting of selected data, easy visualization of the relevant struc-

tures and geographic locations of specific mutations, while pro-

viding intuitive navigation from one view to another (Fig. 1 and

Supplementary Fig. S1).

The top panel of Figure 1b maps secondary structure for dif-

ferent variants as an example of DIVE’s charting tools. This

chart is quickly generated, contains results for 4300 SOD1

mutant simulations, is customizable and links to the protein

structure property data (in this case the change in the structure

over time) with a single mouse click (Fig. 1b). These data are in

turn linked to protein structure modules, allowing interactive

visualization of460 000 structures from each of the 300 simula-

tions, all streamed from the Structured Query Language (SQL)

data warehouse (Fig. 1b). With DIVE, we simplified the transi-

tion between high-level protein views and atomic level details,

facilitating rapid analysis of large amounts of data. DIVE can

also show the context of the detailed results on other levels, such

as worldwide disease incidence (Supplementary Fig. S1).

DIVE’s utility is not limited to protein simulations. To demon-

strate its versatility, usability and data-agnostic nature, we applied

it to additional domains. Brief details of these applications are

provided in Supplementary Information. One example shows an

interaction with the Gene Ontology (Ashburner et al., 2000), and

another example explores professional baseball statistics.

4 CONCLUSIONS

Overall, DIVE provides an interactive data-exploration frame-

work that expands on conventional analysis paradigms and self-

contained tools. We provided analytic examples in the protein

simulation domain, but the DIVE framework is not limited to

this field. DIVE can adapt to existing data representations, con-

sume non-DIVE software libraries and import data from an

array of sources. As research becomes more data-driven and

reliant on data mining and visualization, big data visual analytics

solutions should provide a new perspective for scientific

investigation.
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Fig. 1. Interactive visualizations in DIVE. (a) The p53 analysis visualiza-

tions. Top, ContactWalker summary of contact differences between wild-

type and Y220C simulations. The highlighted residues have contacts with

�50% occupancy change. Middle, distances between P151 and L257,

outlined in black in the map above. Bottom, p53 with ligand (stick

figure at bottom) (Protein Data Bank code 4AGQ) in proximity to dis-

rupted colored residues. (b) SOD1 analysis visualizations. Top, aggre-

gated secondary structural data from mutant simulations. Middle, plot

of the C� root-mean-squared (RMS) deviation of the wild-type and A4V

mutant simulations. Bottom,MD structures. (c) Protein dashboard appli-

cation showing a viewer and interactive contact map
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