

Spatial Resolution – What are the limits?

TABLE 1-1. THE LIMITING SPATIAL RESOLUTIONS OF VARIOUS MEDICAL IMAGING MODALITIES: THE RESOLUTION LEVELS ACHIEVED IN *TYPICAL* CLINICAL USAGE OF THE MODALITY

Modality	∆ (mm)	Comments				
Screen film radiography	0.08	Limited by focal spot and detector resolution				
Digital radiography	0.17	Limited by size of detector elements				
Fluoroscopy	0.125	Limited by detector and focal spot				
Screen film mammography	0.03	Highest resolution modality in radiology				
Digital mammography	0.05-0.10	Limited by size of detector elements				
Computed tomography	0.4	About ¹ / ₂ -mm pixels				
Nuclear medicine planar imaging	7	Spatial resolution degrades substantially with distance from detector				
Single photon emission computed tomography	7	Spatial resolution worst toward the center of cross-sectional image slice				
Positron emission tomography	5	Better spatial resolution than with the other nuclear imaging modalities				
Magnetic resonance imaging	1.0	Resolution can improve at higher magnetic fields				
Ultrasound imaging (5 MHz)	0.3	Limited by wavelength of sound				
and Kalnana M. Kanal, Ph.D., DARR		c.f. Bushberg, et al. The Essential Physics of Medical Imaging 2 nd ed. p. 15				

Ima	ge Noise – Qi	uantum Noise	
 Noise as perceive	ed by a human obs	erver in an image is the r	elative
noise As number of pho	itons or x-rays incr	ease, relative noise decre	eases,
signal to noise rat	io (SNR) increases	s improving image quality	,
Photons/Pixel (N)	Noise (σ)	Relative Noise	SNR
	($\sigma = \sqrt{N}$)	(ơ/N) (%)	(N/ơ)
10	3.2	32	3.2
100	ing 10	10	10
1,000	31.6	3.2	32
10,000	100	1.0	100
100,000	316.2	0.3	316
© UW and Kalpana M. Kanal, Ph.D., DABR		c.f. Bushberg, et al. The Essentia of Medical Imaging, 2 nd ed., p. 27	al Physics 78. 1

TABLE 3-6. RADIOLOG	ICAL QUANTITIES, SYSTE		IA UNITS, AN	D TRADIT	IONAL UNITS
Quantity	Description of Quantity	SI Units (Abbreviations) and Definitions	Traditional Units (Abbreviations) and Definitions	Symbol	Definitions and Conversion Factors
Exposure	Amount of ionization per mass of air due to x- and gamma rays	<u>C kg-1</u>	Roentgen (R)	x	1R = 2.58 × 10 ⁻⁴ C kg ⁻¹ 1R = 8.708 mGy air kerma © 30 kVp 1R = 8.767 mGy air kerma © 60 kVp 1P = 8.967 mGy air kerma © 60 kVp
Absorbed dose	Amount of energy impart- ed by radiation per mass	Gray (Gy) 1 Gy = J kg ⁻¹	rad 1 rad = 0.01 J kg ⁻¹	D	1 rad = 10 mGy 100 rad = 1 Gy
Kerma	to charged particles per unit mass	Gray (Gy) 1 Gy = J kg ⁻¹	-	ĸ	-
Air kerma	Kinetic energy transferred to charged particles per unit mass of air	Gray (Gy) 1 Gy = J kg ⁻¹	-	Kair	1 mGy = 0.115 R @ 30 kVp 1 mGy = 0.114 R @ 60 kVp 1 mGy = 0.113 R @ 100 kVp 1 mGy = 0.014 rad (dose to skin)
Imparted energy	Total radiation energy imparted to matter	Joule (J)	-	Dı	Dose (J kg ⁻¹) × mass (kg) = J
Equivalent dose (defined by ICRP in 1990 to replace dose equivalent)	A measure of radiation specific biologic damage in humans	Sievert (Sv)	rem	н	H = w _R D 1 rem = 10 mSv
Dose equivalent (defined by ICRP in 1977)	A measure of radiation specific biologic	Sievert (Sv)	rem	н	100 rem = 1 Sv H = Q D 1 rem = 10 mSv
Effective dose (defined by ICRP in 1990 to replace effective dose	A measure of radiation and organ system specific damage in	Sievert (Sv)	rem	£	$\frac{100 \text{ rem} = 1 \text{ Sv}}{E = \Sigma_T w_T H_T}$
equivalent) Effective dose equivalent (defined by ICRP in 1977)	humans A measure of radiation and organ system speci-	Sievert (Sv)	rem	He	$H_{\rm E} = \Sigma_{\rm T} w_{\rm T} H_{\rm T}$
Activity	Amount of radioactive material expressed as the nuclear transformation cate	Becquerel (Bq) (sec ⁻¹)	Curie (Ci)	A	1 Ci = 3.7 × 10 ¹⁹ Bq 37 kBq = 1 μCi 37 MBq = 1 mCi

Radiation Protection and Exposure Control There are three principal methods by which radiation exposures to persons can be minimized: time, distance, shielding Time reducing time spend near a radiation source

- Distance
 - * inverse square law
 - ✤ For diagnostic x-rays, a good rule of thumb is that at 1 m from a patient at 90 degrees to the incident beam, the radiation intensity is 0.1% of the intensity of the beam incident upon the patient

© UW and Kalpana M. Kanal, Ph.D., DABR

	Maximum permissible annual do						
Limits	mSv	rem					
Occupational limits							
Total effective dose equivalent	50	5					
Total dose equivalent to any individual organ (except lens of eye)	500	50					
Dose equivalent to the lens of the eye	150	15					
Dose equivalent to the skin or any extremity	500	50					
Minor (<18 years old)	10% of adult limits	10% of adult limit					
Dose to an embryo/fetus ^b	5 in 9 months	0.5 in 9 months					
Nonoccupational (public limits)							
Individual members of the public	1.0/yr	0.1/yr					
Unrestricted area	0.02 in any 1 hr ^c	0.002 in any 1 hr ^c					
These limits are exclusive of natural background and purposes; inclusive of internal committed dose equival cotal effective dose equivalent). Applies only to conceptus of a worker who declares h mrem) at declaration, conceptus dose for remainder o This means the dose to an area (irrespective of occup the dose of the do	any dose the individual has ent and external effective of the pregnancy. If the limit ex- f gestation is not to exceed ancy) shall not exceed 0.02 to to 0.02 ms/dr (2 mrem/h	received for medical lose equivalent (i.e., cceeds 4.5 mSv (450 0.5 mSv (50 mrem). mSv (2 mrem) in any 1 r)					

Typical Patient Absorbed and Effective doses

TABLE 24-3. ABSORBED DOSES TO SELECTED TISSUES AND EFFECTIVE DOSES FROM SEVERAL COMMON X-RAY EXAMINATIONS IN THE UNITED KINGDOM

	Act bone r	tive narrow	Bre	asts	Ute (embry	erus o, fetus)	Thy	roid	Gor	ads*	Effect	ve dose
Examination	(mGy)	(mrad)	(mGy)	(mrad)	(mGy)	(mrad)	(mGy)	(mrad)	(mGy)	(mrad)	(mSv)	(mrem)
Chart	0.04	4	0.09	9	•	•	0.02	2	•	•	0.04	4
CT chast	5.9	590	21	2100	0.06	6	2.3	230	0.08, *	8, *	7.8	780
Skull	0.2	20			*	•	0.4	40	•	•	0.1	10
CT head	2.7	270	0.03	3	•	•	1.9	190	•	•	1.8	180
Abdomen	0.4	40	0.03	3	2.9	290	•	•	2.2, 0.4	220, 40	1.2	120
CT abdomen	5.6	560	0.7	70	8.0	800	0.05	5	8.0, 0.7	800, 70	7.6	760
Thoracic spine	0.7	70	1.3	130		•	1.5	150	•	•	1.0	100
Lumbar spine	1.4	140	0.07	7	3.5	350	*	•	4.3, 0.06	430, 6	2.1	210
Palvis	0.2	20	*	•	1.7	170	•	•	1.2, 4.6	120, 460	1.1	110
CT nelvis	5.6	560	0.03	3	26	2600	•	•	23, 1.7	2300, 170	7.1	710
Intravenous urography	1.9	190	3.9	390	3.6	360	0.4	40	3.6, 4.3	360, 430	4.2	420
Rarium enema (including fluoro)	8.2	820	0.7	70	16	1600	0.2	20	16, 3.4	1600, 340	8.7	870
Mammography (film-screen)			2	200	•	•	•	•	•	•	0.1	10
Note: *, less than 0.01 mGy (1 mrad) "When two values are given for the g Source: Adapted from International ICRP principles for protection of the multipations of the National Radiolog	CT, comp onads, the Commissic patient in gical Prote	uted tomo first is for n on Radik diagnostic ection Boar	graphy. the ovaries ological Pro <i>radiology</i> , d of the Ur	and the sec tection. Su 1993, and o hited Kingd	ond is for t nmary of t data from om.	the testes. <i>the current</i> two						
© UW and Kalpana M. Kanal, Ph.E	D., DABR							c.f. Bush of Medic	berg, et al. 1 al Imaging, 2	The Essential 2 nd ed., p. 798	Physics 3.	28

Kalpana Kanal, Ph.D., DABR

Effective Do	ose Comparis	son with Ches	st PA Exam	
Procedures	Eff. Dose [mSv]	Equivalent no. of chest x-rays	Approx. period of background radiation	
Chest PA	0.02	1	3 days	
Pelvis	0.7	35	4 months	
Abdomen	1.0	50	6 months	
CT Chest	8	400	3.6 years	
CT Abdomen or Pelvis 10-20		500	4.5 years	
Typica	al Background Rad	liation - 3 mSv per	year	

