
Design as Exploring Constraints

by

Mark Donald Gross

S.B. Art and Design
Massachusetts Institute of Technology

1978

SUBMITTED TO THE DEPARTMENT OF ARCHITECTURE IN PARTIAL

FULFILLMENT OF THE REQUIREMENTS OF THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN DESIGN THEORY AND METHODS

AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY

FEBRUARY, 1986

© Mark Donald Gross 1985

The Author hereby grants to M.I.T. permission to reproduce and to distribute
publicly copies of this thesis document in whole or in part.

Signature of the author
Mark Donald Gross

Department of Architecture
October 31, 1985

Certified by
N. John Habraken

Professor of Architecture
Thesis Supervisor

Accepted by
Stanford Anderson

Chairman
Departmental Committee for Graduate Students

Acknowledgements.

I am grateful to the following people.

My parents, Sonja Osaki Keller Gross and Eugene Paul Gross, for making me in the first place, for
showing me the beauty of nature, and for encouraging me to follow my interests.

My dissertation committee, for their patience, intellectual community, continued confidence, and
friendship; in particular,

Aaron Fleisher, for good arguments and hard questions;
N. John Habraken, for revealing a new way to understand built environments;
Seymour Papert, for articulating a vision of the computer as laboratory for learning.

Annette Dula, who taught me how to write, using this dissertation as a vehicle, and for continuing and
patient criticism throughout the writing.

Jean Nilsson, whose insightful comments are always extremely useful.

Catherine Chimits and Fred Wu, who intrepidly implemented parts of the constraint explorer in
constantly changing computing environments, and for continued interest in and criticism of the ideas
presented here.

Gary Drescher, David Levitt, Margaret Minsky, and everyone at the Atari Cambridge Research
Laboratory (1982-1984) for being a stimulating intellectual community. I am especially lucky to have
been part of this unique group of friends that also includes many of the other people named on this page.

Danny Hillis and Ken Haase for suggesting some good references early on.

Steven Ervin, for helping to debug many of the ideas, for patiently sorting out confused arguments, and
for following in my footsteps nevertheless; Sandy Isenstadt for improving an early draft of chapter two;
Ming Wang for good discussions at an early stage.

Coral Software Corporation, for their dedication to excellence in personal computing and for technical
support, and Linda Laplante Okun for knowledgeable administrative guidance through M.I.T.

Maurice K. Smith, whose unparalleled clarity in articulating principles of form first convinced me to
undertake the present work.

Alfonso Govela and Michael Gerzso, for taking me seriously and directing my early efforts as an
undergraduate.

Ranko Bon, Louis Bucciarelli, and William Porter, for asking sharp questions, and Donald Schon, for
enthusiastic support despite skepticism; Robert Lawler and Patrick Purcell, for kind support when it was
needed most.

Design as Exploring Constraints

by

Mark Donald Gross

Submitted to the Department of Architecture on October 31, 1985

in partial fulfillment of the requirements for the Degree of

Doctor of Philosophy in Design Theory and Methods.

ABSTRACT

A theory of designing is proposed, developed, and illustrated with examples from the domain of

physical form. Designing is seen as the exploration of alternative sets of constraints and of the regions

of alternative solutions they bound. Designers with different objectives reach different solutions within

the same set of constraints, as do designers with the same objectives operating under different

constraints. Constraints represent design rules, relations, conventions, and natural laws to be

maintained. Some constraints and objectives are given at the outset of a design but many more are

adopted along the way. Varying the constraints and the objectives is part of the design process. The

theory accounts for various kinds of expertise in designing: knowledge of particular constraints in a

design domain; inference--calculating the consequences of design decisions; preference--using

objectives to guide decision-making; and partitioning--skill in dividing a large and complicated design

into sets of simpler pieces, and understanding the dependencies between decisions. The ability to

manage ambiguity and vagueness is an important aspect of design expertise.

A computational model supporting the theory is proposed and its implementation discussed briefly. The

constraint explorer, a computational environment for designing based on constraint descriptions is

described. We see how the constraint explorer might be used in connection with a simple space-

planning problem. The problem is taken from the procedures of the Stichting Architecten Research

(S.A.R.), a specific architectural design methodology developed to help architects systematically explore

layout variability in alternative floorplan designs. Finally, a selected review of related work in

constraint-based programming environments, architectural design methods, and the intersection of the

two fields is presented.

Thesis Supervisor: N. John Habraken

CHAPTER 1

Introduction

The art of design involves considerable expertise. We do not learn this expertise-

-how to design--explicitly, as a set of procedures to follow, as for example, we learn how

to add, subtract, and multiply. Rather, we learn to design gradually, by observing more

expert designers, studying designs that are known to be good, and through constant

practice and criticism. We learn many techniques, rules-of-thumb, formulae, and tricks,

but never a systematic method. Many design disciplines are now approaching a

"complexity barrier" [Winograd 73] where traditional methods fail to produce acceptable

solutions. More systematic design methods are needed to coordinate the efforts of teams

of more than a very few designers, and also to tackle more complex problems. This

thesis proposes a theoretical framework for understanding design processes, viewing

design as exploring constraints and alternatives. The test of this theoretical framework

shall be in the performance of a computer program that implements the operations of the

theory. The dissertation also describes this computer program, called "the constraint

explorer".

Some will object strenuously to the idea of a systematic design method, arguing

that design is a creative endeavor and that efforts to make an explicit account of the

design process remove some essential artfulness. The objection is often amplified when

the efforts involve a computer, and to many readers, the word "constraint" connotes an

Design as Exploring Constraints

unpleasant restriction of free will and creativity*. It is not my intent to argue here against

this point of view. My purpose is only to advance explicit understanding of design

processes. I believe that such an understanding is necessary in order to build a

foundation for more comprehensive and powerful ways to design.

The theory presented here is not a normative theory of design; it does not

distinguish good designs from bad ones. It is also not a psychological theory of design; it

does not attempt to account for what goes on in designers' minds. Nor does the present

theory prescribe any particular design expertise. That job remains for applications of the

theory to particular design domains. For example, we might apply the theory to the

design of housing, bridges, or integrated circuits. Each such design domain entails vast

amounts of specific expertise. This theory is about how designers manage and

manipulate this expertise. The theory rests on the assumption that designers work within

rules, principles, conventions, and laws. We can describe all these as constraints on

design attributes, or variables. Then we can see a design process as exploring alternative

sets of constraints and exploring alternative solutions within each set of constraints.

These two parts of the process are not seen as separate phases of design; rather they are

integrated in time.

We begin to design by selecting a first constraint: "I need 40,000 square feet of

floor space", or "bedrooms must be in a quiet part of the house". We add to the

constraints and we change them. We explore alternatives by setting, or fixing the values

of design variables. Each fix may affect other parts of the design. For example, the

* One might just as properly call the present theory "design as exploring objectives", or "design as
exploring relations". We shall see that constraints, relations, and objectives are intimately related.

Introduction 3

placement of one room may affect the position of another. Thus design expertise

involves predicting the consequences of a fix on the rest of the design. Each decision is

tentative at first and becomes more definite with time; hence we sometimes need to undo

or retract previous fixes.

We work with many constraints. They come from many sources and are more

and less flexible. The design of a building, for example, includes structural constraints,

use-dimension constraints, temperature constraints, surface-material constraints, and

others. A few constraints, such as gravity, are fundamental laws of nature and cannot be

altered; others, chosen by the designer, can be changed; for example, stylistic

conventions or the choice of a construction system. Some constraints are general

architectural principles; others pertain only to the design at hand. We select and position

building elements so as to meet all these constraints. We realize many constraints

operationally, as rules-of-thumb for selecting and positioning material and space

elements. The daylight in the hall will be good if there are windows on one side. The

building will stand if beams span no more than twelve times their depth. For ordinary

practice, these rules-of-thumb suffice; a simple position or dimension rule can often

subsume a detailed understanding of structural or daylighting behavior.

Constraints form the boundaries of a multi-dimensional region where each

dimension represents an independent design attribute; each point represents a variant, or

alternative solution. For example, we can describe the size of a room using three

variables: height, width, and length. To describe the room's color or its area we must

introduce additional variables. These may relate to variables already in use, or they may

Design as Exploring Constraints

be entirely independent. Area, for example, is the product of width and length; whereas

color is an independent variable.

We explore the region of alternatives by trying different values for variables and

comparing the results. Designers may have different exploration strategies. Trying

extreme settings of values is one strategy. Fixing positions before dimensions is another.

To select among alternatives we must have preferences, or objectives. We may prefer

long rooms, square rooms, or rooms whose width-to-length ratio is the golden mean. We

almost always, however, have more than one objective. For example, we may want both

the largest and the least expensive alternative. Usually our objectives do not coincide;

therefore we must compromise.

We can compromise among competing objectives by partitioning, or

decomposing, the design into pieces and optimizing each piece for a different objective.

In designing the foundation of a house, for example, we might optimize for strength,

while in designing the wood frame we might optimize for light penetration. We must

make some decisions together because they interrelate, while other decisions are easily

separated. Based on constraint connectivity, this structuring of decisions can only be

performed after the constraints have been stated. Seldom can we partition a design

perfectly, but often we can partition a design in different ways.

 Rules are essential to design; without them we have only free-expression. The

concept of design rule is therefore central to the present enterprise. Architectural design

rules specify the allowable building elements--both material elements such as columns,

walls, and beams, as well as spaces such as gardens, halls, and rooms--and their proper

Introduction 5

positions relative to one another and to their built context, or site. How are rules adopted,

adapted, invented, and explored in designing buildings and places? We can obviously

use rules to check already executed designs. But rules also play an integral part in the

process of defining and exploring designs. We sometimes abstract rules from a

traditional building type, then use the rules to generate additional instances of that type.

The ability to see patterns in, and abstract rules from a given set of designs is certainly

important for the architect, but we shall not address it here.

Many traditional built environments have been studied and described in this way.

Examples include work on traditional Japanese houses; San Francisco Victorian house

form, siting, and facades; Spanish hilltowns; and Pompeii courtyard houses [Engel 64;

Vernez-Moudon 85; Hille 82; Smith, Hille, and Mignucci 82; Habraken, Akbar, and Liu

82]. All these examples identify a set of elements and the rules to assemble them into

coherent configurations that belong obviously to a certain building type. In his masters

thesis, for example, Hille shows that we can understand San Francisco Victorian facades

as discrete horizontal and vertical zones with minimum and maximum dimensions. He

also shows that the combination of facade elements in these zones is strictly governed by

rules. Hille presents these rules and shows how they can be used to generate new

variations on the theme [Hille 82].

Design, however, is more than following rules; it is making rules as well. Design

concerns inventing and adapting systems of form-organization as well as generating

specific forms within a given rule-system. By making new rules and combining and

modifying existing ones designers invent new styles and occasionally even new building

types. Moreover, the rules are not all decided before the designing begins; rather they

Design as Exploring Constraints

are adopted and invented throughout the design process. Rule-making may even

continue into the process of building. For example, where the architect has simply said

"there shall be bricks", the mason may impose a pattern.

Architects seldom express rules explicitly. Even when abstracting rules from a

built reference, we draw until we come to understand the building's theme, or system of

rules. Then we can invent variations on that theme. Usually the understanding remains

implicit--we do not articulate the rules. One obstacle to explicitness is the lack of a way

to express, or notate, architectural rules. As drawings (along with scale models) have

been the traditional medium for communicating about the design of buildings since at

least the Renaissance, one might reasonably suggest drawings as an appropriate medium

for notating design rules. Drawings are useful for indicating specific design solutions,

but not for indicating ranges of possible decisions. For example, in a single drawing one

cannot easily express a range of alternative facade arrangements. Nor can one draw a

room known only to have an area of one-hundred-fifty square feet. A drawing can

illustrate a rule by showing a typical or extreme variant. Diagrams and sketches

(drawings without dimensions), on the other hand, show position relations between

elements and can more effectively convey the essence of a rule than can an exact

drawing. The advantage of a diagram is its ambiguity, its ability to stand for a range of

alternatives.

A typical design involves thousands of rules, or constraints, at many different

levels. The theory requires that we express the rules explicitly using a formal notation

that will be introduced in chapter 3. Without a computer program to manage the

constraints, experiments would be too unwieldy. The computer becomes therefore a

Introduction 7

laboratory instrument that supports the investigation of the theory. The computer helps in

several ways: it calculates the consequences of changes to the constraints and variables, it

maintains a history of the design process and enables the designer to retract decisions in

any sequence; it provides explanations for automatic inferences; it assists with the

partitioning of large designs into smaller pieces; and it allows a set of constraints and

variables to be partitioned in different ways, affording multiple views of the design.

The dissertation is organized as follows. Chapter 2 presents a general statement

of the theory of design as exploring constraints. Architectural examples are used to

illustrate the theory. Chapter 3 introduces the constraint explorer, a computer assistant

based on the theory. We look first at an interactive session with the constraint explorer

where we design a simple configuration of two columns and a lintel, then we look behind

the scenes at the same session, observing the structures that the constraint explorer

constructs to represent the simple design. Finally we look at two classes of constraints

that are especially important in architectural design: position constraints and dimension

constraints. In chapter 4 we examine other structures that make up the constraint

explorer's model of a design: a hierarchy of elements and configurations, a hierarchy of

general prototypes and specific instances, and the dependencies between elements, both

inherent and induced. Chapter 5 shows how the constraint explorer would assist the

designer in making basic-variants, a particular space-planning task in the S.A.R. design

method. Chapter 6 explains how the constraint explorer might be implemented, showing

the parts of the program and the data structures the constraint explorer uses. Finally,

chapter 7 presents a review of other related work. I have placed the discussion of related

work at the end of the dissertation in order to come more quickly to the main idea.

Design as Exploring Constraints

Chapter 7 also sketches further work to be done in developing and testing the present

theory: design as exploring constraints.

 Design as Exploring Constraints 9

CHAPTER 2

 Design as Exploring Constraints.

We now present and discuss the theory of design as exploring constraints*. In

order to present the theory, however, we must first introduce its basic vocabulary, a set of

terms used throughout the dissertation. The terms are explained more fully in the

paragraphs following this introduction, but, for convenience, here is a brief summary.

We describe a design as a set of constraints, or relations on a set of variables. Each

variable has a value, that the designer may set, or fix. Some variables the designer may

fix directly; others are calculated as consequences of those fixed. Every collection of

constraints, variables, and values may constitute a partial design context, or package.

The constraints in any context bound a region of alternative solutions, or variants*. Each

independent variable represents one dimension of the region, or a degree of freedom.

The degrees of freedom in a design fluctuate, increasing as the designer introduces new

variables, and decreasing as variable values are fixed. The region's boundaries also

fluctuate as the designer adds and changes constraints. Points in the region represent

particular variants, or completely specified alternatives with definite values assigned to

each variable. We explore, examine, and rank variants according to various objectives,

or preferences.

* One may notice similarities between the present theory and that presented by Herbert Simon in the
Science of Design [Simon 69]. In Chapter 7 we compare and contrast Simon's theory with the present one.
* Designers sometimes leave a design intentionally unfinished leaving room for the user, the builder, or
more generally, for the next level of designer to complete the design..

We adopt this somewhat sparse vocabulary because we want to formulate the

theory using a small number of precisely defined terms. Though the terms may sound

technical, they refer to concepts already largely familar to designers. For example,

adding constraints and fixing variable values correspond to what designers call 'moves'

and 'decisions'. Likewise, designers know a region of variants as a set of options,

possibilities, solutions, or alternatives. We shall refer often to these more familiar terms

in the ensuing exposition of the theory.

Constraints are the rules, requirements, relations, conventions, and principles that

define the context of designing. There are many constraints on a design and they come

from different sources. Constraints are imposed by nature, culture, convention, and the

marketplace. Some are imposed externally, while others are imposed by the designer.

Some are site-specific, others not. Some are the result of higher-level design decisions;

some are universal, a part of every design. Gravity, for example, is universal. Other

constraints apply only in certain design contexts. The general position rules on windows

and other facade elements that characterize facades in the Back Bay section of Boston are

less universal constraints than gravity, but they are more universal than the additional

constraints that operate in any particular Back Bay facade.

We can describe a design problem or task as a collection of constraints and

relations on attributes of the object to be designed. That is, to design is to describe and

identify constraints and to specify an object that satisfies all these constraints. For

 Design as Exploring Constraints 11

example, constraints on the design of a pencil are that it must leave an erasable mark on

paper, that it be lightweight and comfortable to hold. But we could design many pencils

that satisfy all these constraints: hard pencils, soft pencils, red pencils, thin pencils. Thus

design problems are atypical problems in that they have many solutions. We do not find

the solution to a set of design specifications; we find one solution out of many

alternatives. Although we may prefer some alternatives to others, all are solutions to the

initial constraints. At each step in a design we can distinguish among alternatives by

adding constraints. The adding of constraints is as much a part of design as the searching

for solutions. The design process consists of adopting constraints and then exploring for

"good" alternatives in the region the constraints bound.

Examples of constraints are:

1. "Bearing walls occur on 5', 8', or 11' guide lines."
2. "X must be offset from Y by at least its own thickness."
3. "Kitchens must be at least 6' x 8' and occur only in beta zones."
4. "This window must admit at least 1 hour of direct sun."
5. "All material elements must be supported."

Constraints are always relations between variables that represent the attributes of

the object being designed. In constraint 1 above, the variables represent positions of

bearing walls and guide lines. In constraint 2, the variables are the positions of X and Y,

and the thickness of X. In constraint 4, the amount of sun that enters the window is a

variable (as, presumably, are some properties of the window itself: its position,

dimension, orientation). These variables are simple; they stand for attributes of the

design that can be represented by a single number. It is sometimes useful to aggregate

variables to describe more complex attributes of a design. For example, a window can be

a variable, its value to be chosen out of a set of possible windows. The window variable

would then be an aggregate or compound variable consisting of the many simpler

variables that describe attributes of windows: shape, size, material, transparency, method

of opening, and manufacturer, for example. Constraint 5 expresses a universal constraint,

gravity.

It is useful to distinguish between variables directly set by the designer and

variables the designer controls only indirectly. In the design of our pencil, for example,

we directly control the color, length, radius, and shape of the pencil but its mass is a

function of its length, radius, and materials. Architectural designers control the selection,

position, and dimensions of material and space elements. Other variables in the design

are determined consequentially. For example, a variable representing the privacy of a

room might be related to the number of turns needed to enter the room from the nearest

major access, and whether one can see in from nearby locations. Though a designer may

determine to provide a certain degree of privacy, it is ultimately by adjusting the

positions and dimensions of building elements that the architect affects the privacy of a

place.

The amount of daylight entering a room is another example. The designer

controls daylight indirectly, by directly controlling the positions, dimensions, and

orientations of openings in the room's exterior surfaces. (S/he may do it in other ways as

well.) The amount of daylight admitted is related to the size, orientation, and position of

each opening. This natural law about light and openings conveys a small piece of design

 Design as Exploring Constraints 13

knowledge. Architects know this relation though offhand they may not know its

mathematical expression.

Consider the difference between a design specification and a set of construction

drawings for a building. The former consists of performance constraints--on variables

that the designer can control only indirectly, such as daylight and privacy. The latter

consists only of constraints on variables the designer controls directly--the relative

placement of material and space elements within certain tolerances. It takes an expert

designer to transform a set of constraints on variables such as privacy, outlook, and

daylight into a set of constraints on the positions and dimensions of material and space

elements. For example, the constraint, "the room must be at least moderately light in the

afternoon" might be alternately and equivalently expressed as constraints on the

positions, dimensions, and orientations of windows -- "window sills must be at least three

feet from the floor and the room must have at least thirty square feet of window area on

the west side".

Constraints describe a region in space, not in physical space but in an n-

dimensional mathematical one. Let us call the space an "n-space" to distinguish it from

the architectural meaning of the word "space". The number "n" stands for the number of

dimensions, degrees of freedom, or independent qualities in the design; n may be large

and it changes throughout the design process as variables are introduced and eliminated.

Each dimension in the n-space represents one independent variable in the design. Each

point in the n-space describes a complete set of variable values. A point in the region

describes a complete set of variable values that meet all the present constraints. Hence

each point in the region represents an alternative solution, or variant. Typically the

region contains many such points. The region need not have a simple shape. It may be

large in some dimensions and small in others. It may be all together in one place or in

many small "islands". Both the dimensions of the n-space itself and the region within it

change throughout the design process. In this change there are two overall tendencies.

One tendency introduces new independent variables--new decisions to be made--

throughout the design; the other tendency fixes values for variables that have been

already introduced.

In most designs the initial constraints describe a large region of alternatives. That

is, the solution to the design problem as first stated is grossly underconstrained; a great

deal of freedom remains in the design. Novice designers experience a difficulty

associated with this--with so much freedom it is hard to choose a course of action. Not

only are there many degrees of freedom--many variables are unfixed, but also for each

unfixed variable there is a large range of possible values. Suppose in our design of a

pencil we have chosen values for all variables except length and color. We say then that

two degrees of freedom remain in the design. Within each of those two degrees,

however, there may be a large or a small range of options. For example, constraints may

strictly limit the pencil's length while allowing a large range of colors. When all

variables are fixed, the design is complete, having zero degrees of freedom.

 Design as Exploring Constraints 15

The design is "complete", however, only relative to the constraints already

adopted. New constraints may be added at any time. Instead of narrowing the range of

possible alternatives, the new constraints may introduce new decisions. Consider

designing a window in a wall. We may begin with constraints on the window's

dimensions and position pertaining to the view, the amount of daylight, etc. At some

point, not necessarily after fixing the position and dimension variables, we may begin to

design the parts of the window itself. This entails new constraints and new variables.

We may introduce constraints on the size of the panes and mullions, on the window's

moving parts. These constraints introduce new variables to the design. They may be

independent from the earlier decisions about the window's overall dimensions and

positions but more likely they are not. For example, the window's overall dimension is

related to the number, size, and arrangement of its panes and mullions.

At the outset there may be relatively few constraints and variables. Design

proceeds from a general set of specifications to a set of specific solutions. At completion,

many more constraints and variables have been introduced, and all variables have values.

Thus each set of constraints and associated variable values represents only one instant of

a design process. Each such instant we call a design state or context. In any state, some

variables have particular values, others are unspecified. The more values defined in a

state, the more specific the design. A region of alternatives exists only if the context is

consistent; that is, no constraints or values conflict. The region at all times consists of the

set of alternatives satisfying the present context of constraints. Often there are many

alternatives and the region is very large.

Constraints, variables, and regions of alternatives, or variants make up the basic

terms of the model. We now use these terms to discuss the process of designing. A

design begins with a set of initial variables and constraints; it proceeds with the designer

changing and adding constraints and fixing and unfixing variable values; it ends with a

single complete variant, or sometimes a small, well-understood region of variants* . The

path from specification to solution is usually not direct. Rather, many options are

explored and rejected. Though the general tendency is to fix variable values, on occasion

they are also unfixed, or retracted.

Design can also be understood as a process of successive refinement. Refinement

proceeds in two alternating steps: describing constraints and exploring alternatives, or

variants. The describing-step adds new constraints to the design; the exploring-step

examines variants in the constrained region. These variants suggest changes and

additions to the constraints. The cycle then repeats; the new context of constraints is

explored, generating a new set of variants (figure 2.1 below). This process of refining

constraints and exploring alternatives is repeated until it converges on a small region of

acceptable variants, or alternatives.

Refinement Cycle
Figure 2.1.

 Design as Exploring Constraints 17

Figure 2.2 illustrates the same process, but now we see that each iteration of the cycle

produces a new set of constraints and a new set of variants. From the initial constraint

context C1, a set of variants V1 is generated. Examination of the set V1 suggests a new

set of constraints C2. The process iterates.

Each cycle produces new constraints and variants.
Figure 2.2

After describing a context of constraints and before making many firm decisions

the designer must learn what variants the region contains. This the designer does by

exploring. What are the extreme variants in the region described by the constraints?

What are the degrees of freedom in the design? How large a bedroom can be made in

this floorplan? Suppose this dimension were increased? Can these two rooms be moved

independently? In general, what variants are in the region and what variants are not?

Constraints from different sources may interact to describe a complex region of variants.

The boundaries may be neither apparent nor intuitive. Some exploration may be required

in order to understand the boundary of the region in detail. Therefore the designer may at

first explore the region with only the goal of understanding what variants the region

contains.

Design involves various modes, or aspects of expertise. Among others, design

involves expertise in preference, inference, resolving conflicts, and on occasion,

backtracking. Preference among alternatives is a vital piece of the designer's expertise

and it pervades the design process. Design proceeds within constraints as a sequence of

fixes, or decisions. At each decision we may work out several alternatives that follow

from it. Then we rank the alternatives, choose the one we think best, and proceed to

develop it. The choice of an alternative is not arbitrary; rather it is a skillful choice.

Sometimes, however, we cannot decide immediately on an alternative so we develop two

or three alternatives in parallel until the choice becomes more clear. Of course we cannot

develop more than one alternative for long. It is too much extra work. Soon we must

choose one and discard the rest. It is not that one alternative is right and the others are

wrong; rather, we prefer one alternative to the rest. In exercising preference we apply a

kind of expertise that is unique to design.

Design also involves the ability to infer chains of logical consequences of a

decision. Each design decision has or may turn out to have logical consequences. For

example, choosing a location for one room in a floorplan may determine the locations of

other rooms. The location of a stairway may depend at least partially on its horizontal

run-length, which depends in turn on its height and the ratio of its risers to treads.

Following chains of consequences in reverse is equally important. When a design

 Design as Exploring Constraints 19

decision is retracted, the designer needs to know what other decisions depended on it and

what else needs to be undone.

Determining a sequence of fixes, or settings, is another sort design expertise. The

sequence of settings affects the design outcome. Each decision changes the region, and

the alternatives available at any stage in a design process depend on the previous

decisions. Within one set of constraints a different sequence of fixes often reveals a

different result. For example, consider placing two rooms in a floorplan. If the

livingroom is first placed in the sunniest spot, it may preclude some locations for the

kitchen. But if the kitchen is placed first, then the sunniest remaining spot for the

livingroom may be different. Some kinds of decisions are usually made before others.

One usually (but not always) decides the relative positions of elements prior to fixing

their dimensions precisely. One usually decides a beam span before selecting its depth

and width. There is not, however, only one possible sequence of decisions in a design.

Different architects begin in different places, some with construction details, others with

a site plan. The different starting points, sequences of decisions, and preferences bring

the design in each case to a different conclusion.

Constraints on the design are described by the designer in the beginning, but they

are also added to and changed throughout the design process. Some constraints are

working assumptions. For example, the designer may try to design a building for a

certain cost and using certain materials. But that may turn out to be impossible, or

perhaps possible but undesirable. In that case, the designer may change the initial

assumptions and explore again. Both inconsistency among constraints and dissatisfaction

with alternatives are occasions for changing the constraints.

Constraints on a design come from a variety of sources. Many of the constraints

on a design are standard constraints, not specific to the design at hand, but shared across a

variety of design contexts. The selection of a building technology, wood frame

construction, for example, is a source of many constraints on a building's design, but

these constraints are not specific to that particular building. Likewise, all buildings share

constraints on daylighting, thermal performance, and structural stability. Many of these

constraints are listed in the building code. Others are added to the design context not

only by functional requirements of the building (as given in an architectural program) but

also by systems of form organization imposed by the architect. For example, a designer

may choose to work within the conventions of an architectural style, or adopt or adapt

rules from neighboring buildings. Thus many of the constraints on the design are chosen

by the designer and not imposed from outside.

As constraints are added to the design for many reasons and from many sources,

the constraints on a design may be inconsistent, conflicting with one another. Resolving

the conflicts, or inconsistencies, then becomes another important component of design

expertise. A constraint concerning the support of a beam may locate a column in the

center of the room, a condition perhaps forbidden by another constraint related to

furniture arrangement possibilities. Or one constraint may require that the livingroom be

located near the entry; a second may demand that the livingroom be on the sunny, or

 Design as Exploring Constraints 21

south side; a third insists that the entry be on the north side. The nature of design is to

balance, resolve, and sometimes even exploit conflicting requirements.

For the same reasons that design constraints may be inconsistent they may also be

redundant, or mutually reinforcing. Thus another aspect of design expertise involves

managing redundant constraints. Constraints are redundant when they require the same

thing. This may mean that the constraint is especially important. For example, both

pedestrian access and visual continuity constraints might require an opening at a certain

place in the edge of a public space. Or the size of a livingroom may be governed

simultaneously by use constraints that limit the room size to 20' x 40', and by site

constraints, allowing a maximum size of only 18' x 25'. In this case site constraints

supercede use-dimension constraints. But we would not forget the use constraints, if later

we change the site constraints, say by moving a wall. The site constraints might then no

longer bound the livingroom size. The use constraints, however, still would.

What is the best design? That is a difficult question because there are always

many competing objectives. The house should be sunny, but it should also be large,

inexpensive, and easy to insulate. And there may be hundreds if not thousands of other

objectives. We can optimize only one objective at a time. The sunniest house may not

be the least expensive house. The largest house will not be the sunniest house. The

question is difficult, not because we do not know our objectives, but because we cannot

optimize the design for all of them simultaneously. The "best" house will not be the

sunniest, nor the largest, nor the least expensive. There are trade-offs between these three

qualities. The best house will be sufficiently sunny, sufficiently large, and sufficiently

inexpensive. The best design will turn out to be a compromise or collage among our

many objectives.

Design problems are complex, involving hundreds of constraints and decisions

that require skillful management. Because we have many conflicting objectives we can

not optimize over the entire design at once. Design expertise involves breaking or

partitioning the design into workable-sized pieces, or fragments, working the pieces

separately and then reassembling them. We try to minimize connections between the

pieces so that we may work each piece independently. The pieces can be worked in

parallel by different designers, or sequentially by one designer. We consider each piece

as a separate design problem in which we may optimize a different objective. For

example, we may optimize sunlight in the livingroom and size in the bathroom, if we

choose to work the two rooms separately. We may optimize the foundation for strength,

and the wood frame screens for light penetration. We may have to make adjustments

where the pieces of the design do come together, but this can be kept to a minimum by

cleverly partitioning the design. Later we reassemble the worked pieces of design, and

the overall result shall not be a global optimization of one objective, but instead a piecing

together of local optimizations.

Now let's compare the method of an expert and of a novice designer. The expert

designer has explored extensively in previous sessions and no longer needs to try out

many different alternatives. The expert is confident of immediately choosing a good one,

 Design as Exploring Constraints 23

based on experience. This partly explains the stylistic consistency of expert designers.

Wright's houses, for example, are relatively similar to one other, and different from

houses by another architect. Each of Wright's houses, particularly if we consider a short

time period, represents only a slightly different variation on the same theme. Experts do

not much vary the constraints. They tend to explore a limited and local region of

alternatives, a region that they have come to know well through experience. Because

expert designers proceed rapidly with minimum diversion towards their final alternative,

their method might seem to be more problem-solving than exploration. But their method

must be understood in terms of their previous experience in exploring. The

inexperienced designer, on the other hand, must explore a great deal to learn which

alternatives are more likely candidates. Upon gaining experience, the novice begins to

build a set of preferences. In contrast, the expert designer has already built up a large set

of default constraints and preferences that invariably result in satisfactory designs, and at

least sometimes in excellent ones, thereby reducing the need to explore. However, when

expert designers attempt to operate outside their familiar context of constraints, as in a

foreign culture or in designing an unfamiliar building type, the expert becomes a novice

once again.

Use of the Constraint Explorer 24

Use of the Constraint Explorer 25

CHAPTER 3

Use of The Constraint Explorer

We now illustrate the processes of describing and working with constraints. We

begin with a simple scenario showing a dialogue between designer and constraint

explorer in which the designer describes dimension and distribution constraints of a very

simple configuration. In sections 3.1 and 3.2 we examine this process first from the

designer's point of view, and then from the machine's. In sections 3.3 and 3.4 we look at

examples of various dimension and position constraints. We see how to construct a

vocabulary for describing the relative positions of material and space elements using

combinations of simple arithmetic inequalities. In section 3.5 we take a closer look at a

single constraint concerning the relative positioning of columns in a building.

Although the theory that designing is exploring constraints and alternative

solutions does not depend on a computer, the computer is the only practical way to

explore such a theory. The computer makes the theory easier to test and apply. We need

the computer because there are so many constraints to organize and so many alternatives

to consider. The computer will be asked to do only mundane tasks: remember design

alternatives, keep track of constraints, perform symbolic and numeric mathematical

operations, and rank alternatives according to objectives.

Use of the Constraint Explorer 26

The constraint explorer acts as an assistant, keeping track of the constraints as

they are added, adopted, and removed from the design. It remembers the constraints on

the design and where they came from. It can report which constraints are satisfied and

which are not. It can also indicate what additional decisions are needed to specify the

design, what degrees of freedom remain, the constraints on each degree of freedom, and

issue warnings when it identifies inconsistent constraints or a decision that violates a

constraint. The constraint explorer can calculate consequences of decisions, and it can

exercise a preference you have specified for choosing an alternative from a constrained

set of values. It remembers and can recall all the previous states in an exploration, and it

can combine parts of one state with parts of another. It can remember what sequence of

operations was performed on a previous occasion, and perform that sequence again upon

request.

3.1 A Brief Scenario.

A brief scenario demonstrates some reasoning the explorer can do. A simple

session with the constraint explorer is presented and discussed. Interaction is presented

here as textual dialogue; that is, the designer issues commands and queries by typing at

the keyboard (or by selecting items from menus), and the constraint explorer responds by

typing back answers. Instead of interacting textually, designers may want to indicate

constraints and settings by drawing and sketching. Here however, the topic is design

reasoning, not user-interface. We shall concern ourselves with the design of a simple

Use of the Constraint Explorer A Brief Scenario 27

configuration of three elements--two columns and a lintel--and with three position

relations between the elements: the two columns each support the lintel, and the columns

are some minimum distance apart. The configuration we call for simplicity an "arch"*

(figure 3.1). (This name is used in the sense of the basic structural principle of load-

transferance rather than in the typical sense of a curved structure.)

"arch" configuration
Figure 3.1

To describe the "arch", we enter the following constraints:

>> Column-1 supports Lintel.

>> Column-2 supports Lintel.

>> 4' minimum-distance Column-1 Column-2.

>>
Figure 3.2

The ">>" in each of these lines is typed by the constraint explorer; it prompts the

designer to enter a command or query. Throughout this scenario, text entered by the

* Technically "flat arch" or "portal" would be a more correct name.

Use of the Constraint Explorer A Brief Scenario 28

designer is preceded by the ">>", to distinguish it from the constraint explorer's

responses. Having entered some constraints, we may wish to check that the constraint

explorer remembers them. In figure 3.3 we ask to see the constraints:

>> What-constraints?

A. (given) Column-1 supports Lintel

B. (given) Column-2 supports Lintel

C. (given) 4' minimum-distance Column-1 Column-2

D. (deduced) Lintel length > distance-centers Column-1 Column-2.

>>
Figure 3.3

The constraint explorer lists the three constraints we entered and shows us the

source of each. By printing "(given)" in front of each of constraints A, B, and C, it

reminds us that we typed them in ourselves. Constraint D is a new constraint deduced by

the explorer from the given constraints. The explorer has figured out that the lintel may

be no shorter than the distance between columns! In figure 3.4 we ask the constraint

explorer to account for that deduction. It responds with the basis for its deduction: the

two "support" constraints, A and B. Notice that the minimum distance constraint is NOT

a basis for the deduction of the maximum-distance-between-columns constraint.

>> why D ?

 The deduced constraint:

(Lintel Dimension) > (distance-centers Column-1 Column-2)

 was reached by reasoning from given constraints:

A) Column-1 supports Lintel

Use of the Constraint Explorer A Brief Scenario 29

B) Column-2 supports Lintel.

>>
Figure 3.4

The constraint explorer stores all the design constraints and we can query it about

the constraints on a particular variable. For example, we may ask "what are the

constraints on the position of Column-2?". The explorer shows all constraints presently

in the design that refer to the position of Column-2 (figure 3.5).

>> What-constraints on (Column-2 position) ?

B) Column-2 supports Lintel,

C) Column-2 is at least 4' from Column-1,

D) Column-2 center is at most (Lintel length) from (Column-1 center).

>>
Figure 3.5

These are the same constraints as in figure 3.3 (except for A, that has nothing

directly to do with Column-2) but here they are all expressed from the 'point-of-view' of

Column-2. In this example it is apparent by inspection what constraints reference any

particular variable. But in a design with hundreds of variables and constraints, one

cannot tell by inspection all the constraints that control or might control a variable or

variables. Hence this cross-referencing facilty is especially useful with larger designs,

and perhaps even useful with small ones. The constraint explorer will also report

constraint violations. If we position the columns fifteen feet apart, and specify a twelve

foot lintel, the explorer reports a violation.

>> Set (Column-1 Position) X

Use of the Constraint Explorer A Brief Scenario 30

 OK

>> Set (Column-2 Position) X + 15'

 OK

>> Set (Lintel length) 12'

 The move ...Set (Lintel length) 12'... conflicts with
constraint:

D. Maximum Lintel length

(Lintel length) > distance (Column-1 center) (Column-2 center)

(Lintel length) > 15,

which was deduced from these three relations:

LL. Lintel is rectangular.

(Lintel length) = distance (Lintel left) (Lintel right)

A. Column-1 supports Lintel,

(Column-1 center) is between

(Lintel left) and (Lintel right).

--

B. Column-2 supports Lintel,

Use of the Constraint Explorer A Brief Scenario 31

(Column-2 center) is between

(Lintel left) and (Lintel right).

--

>>
 Figure 3.6

In figure 3.6 we set the columns fifteen feet apart and then called for a twelve foot

lintel. The explorer noticed the inconsistency and reported it. At the end of the sequence

both the conflicting constraint and the setting still remain in the design. We may 1)

reposition one or both columns; 2) unset or change the lintel length; 3) remove one of the

support constraints (this may cause other problems), or 4) let the inconsistency ride. In

figure 3.7 we unposition Column-2.

>> UnSet Position Column-2.

 OK

>>
 Figure 3.7

Next we perform a local optimization, setting the distance between columns.

>> Maximize distance between Column-1 Column-2.

 OK. Distance between Column-1 and Column-2 is now 12'.

>> What is the position of column-1 and column-2?

A. (given) The center of column-1 is at position X, and

B. (deduced) the center of column-2 is at position X + 12'.

>> Why B?

B1. maximize distance column-2 center and column-1 center (12).

Use of the Constraint Explorer A Brief Scenario 32

B2. center of column-1 is at X.

>> What settings?

Lintel length is 12',

Column-1 center is at X.
 Figure 3.8.

In figure 3.8, only the position of one column and the length of the lintel remain

set. Then we asked the explorer to choose the largest possible distance between columns,

and we asked it for the positions of the columns. It reminds us that one of the positions

was given, and the other is an extreme value, the result of maximizing the distance

between columns. Finally, we ask for a list of the settings that hold in this context.

This concludes the brief scenario. Let us summarize the preceding sequences of

interaction with the constraint explorer. First we described three constraints on the

relative positions of three elements (figure 3.2). From these, and using built-in

mathematical expertise, the constraint explorer deduced a fourth constraint, a maximum

distance between the column centers (figure 3.3). We asked for an account of the

reasoning that led to the deduced constraint (figure 3.4), and we asked for a list of

constraints on a particular variable (figure 3.5). Then we placed two elements so as to

violate the deduced constraint (figure 3.6); the explorer reported a violation and by

showing the bases for the constraint that was violated, suggested alternate ways to resolve

the conflict. We choose to resolve the conflict (figure 3.7) by retracting one of the

placements and ask the constraint explorer to re-position the element by maximizing the

distance between columns (figure 3.8).

Use of the Constraint Explorer A Brief Scenario 33

We saw that the explorer can reason about given combinations of constraints and

deduce new constraints as consequences. We saw also that the explorer can calculate the

effect of one setting on other, connected parts of the design, and that it can recognize an

inconsistent state and trace its possible sources. We have seen that the constraint

explorer remembers the bases for its deductions, and can display the chain of events that

has led to any particular state. This can help the designer to understand the steps that

have brought the design to any state.

3.2 Behind the Scenes in the Constraint Explorer.

In the previous section we discussed constraints on the relative positions of parts

of a simple configuration of two columns and a lintel. We looked at an interactive

session with the constraint explorer. Our emphasis was on the role of the user. This

section discusses the same interaction from the constraint explorer's point of view rather

than the user's. We will examine the representation, or model, of the design that the

machine works with. This description consists of the constraints and the values of the

variables in the design--both changing throughout the design; some are set by the

designer and others are computed by the machine. We can diagram the machine's

description as a network of constraints and variables. The figures that follow diagram the

design model as it is constructed, maintained, and modified by the designer in connection

with the constraint explorer.

Use of the Constraint Explorer Behind the Scenes 34

In initially describing the design of an "arch", we wrote three position constraints

on three elements. Figure 3.9a diagrams the description of the initial design state as the

program constructs it in its database. Figure3.9b illustrates the form of the "arch", with

annotated constraints. Figure 3.9b represents one variant of many that meet the

constraints. The constraint explorer can construct such an illustration using default

values for variables in the constraint description.

 Initial description of "arch".

Figure 3.9a, b.

In the previous section we saw that after the three initial constraints were given,

the machine inferred a new constraint, a maximum distance constraint between the two

columns (Section 3.1, Figure 3.3). (We discuss in Chapter 6 how the program makes

such inferences). Figure 3.10a below shows the description after the inferred constraint

is added. Figure 3.10b shows the form of the configuration with the new constraint

annotated.

Use of the Constraint Explorer Behind the Scenes 35

"Arch" description with deduced constraint
Figure 3.10a, b

Now let's look at the description one level deeper in detail than in Figures 3.9 and

3.10. We see that both elements and relations in Figure 3.10 are packages of more

primitive constraints and variables. That is, each of the elements "Column-1", "Column-

2", and "Lintel", and each of the relations "supports", and "minimum-distance" in Figure

3.9 stands for a package of constraints and/or attribute variables, the definitions of which

have been previously put in by a designer. Packages are indicated in the diagrams as

ellipses. Each package has a name and may contain constraints and variables.

We now look more closely at the package of variables that describes the lintel.

To keep matters uncomplicated we shall treat the lintel here as a simple element, that is, it

has no smaller parts. (In chapter 4 we shall discuss configurations of elements). Figure

3.11a shows the relevant variables in the lintel package. These describe the lintel's

qualities, including the positions of its edges: left, right, top, and bottom, and its

dimensions: length and height. Each edge may also be described by a package of

Use of the Constraint Explorer Behind the Scenes 36

variables, but here we shall not be looking in that close detail. Therefore in the diagram

we need not draw the ellipses around names of edges.

Figure 3.11a: Attribute variables inside the Lintel package.

Figure 3.11b shows the relationships between several variables inside the lintel

package. The lintel's length is the distance between its left and right edges. This relation

is entirely inside or local to the lintel package; all variables related by the distance

relation are contained in the lintel package.

Figure 3.11b: Attribute variables and constraints inside the lintel package.

Like the lintel, each "supports" relation in Figure 3.9 is a package of more

primitive components. The "supports" constraint relates two elements, in this case, a

Use of the Constraint Explorer Behind the Scenes 37

column and a lintel (see figure 3.12a). The supports constraint may apply between any

elements that have the necessary attributes for the description, that is, the supported

element must have variables representing the left, right, and bottom edges, and the

supporting elements must have center and top edge variables (figure 3.12b).

Figures 3.12a, b, c

 Figures 3.12c illustrates the constraint explorer's expanded description of the "supports"

package as position relations between variables of the two elements. "Supports" contains

two simpler position constraints. The first constraint is that the top edge of the

supporting element (the column) and the bottom edge of the supported element (the

lintel) must be at the same height, or EQUAL in position. The second constraint is that

the center of the supporting element must lie BETWEEN the right and left edges of the

supported one. Figure 3.12d shows that the "BETWEEN" constraint, like "SUPPORTS",

is a package of more primitive constraints "<", and ">". Here, these constraints may be

Use of the Constraint Explorer Behind the Scenes 38

read "left of", and "right of".

Opening up the "BETWEEN" package inside "SUPPORTS"
Figure 3.12d.

We are now ready to expand the simple model shown in figure 3.10. Figure 3.13

shows how the constraint explorer expands both the element and the constraint packages.

Column and Lintel descriptions each have variables representing their edges, the Lintel

also has a length variable, and each Column has a variable representing its center. The

"supports" relation is expanded into more primitive position relations as in Figure 3.12c

and 3.12d, and the "minimum-distance" and "maximum-distance" packages are opened

up to reveal a distance computation and an inequality constraint.

Use of the Constraint Explorer Behind the Scenes 39

Expanded description of the arch.
Figure 3.13

On the basis of these constraint descriptions, the constraint explorer can perform

various calculations. If we give the positions of the two columns, then the machine will

calculate the effects on the lintel's length. If instead we give the position of one column

and the lintel length , then the explorer calculates the other column's position. (In section

4.3 we shall see that under some conditions, the direction of calculation, or propagation

of effects, may be restricted). Thus the constraint explorer can express each constraint

from the different points of view of each of the variables it constrains. The first support

constraint, for example, can be seen as both "column-1 supports lintel" and "lintel is

supported-by column-1".

Use of the Constraint Explorer Behind the Scenes 40

We next make two settings in the design. Figure 3.14a shows the description

network of Figure 3.13 with a new setting injected: we set the position of the center of

column-1 to X. Assume X names a previously defined position.

Injecting a new value into the network:

>> set (column-1 center) X.

Figure 3.14a

As the new setting is entered, the effects propagate through the design. Figure

3.14a shows the state of the design description after column-1 has been positioned and

effects have stopped propagating. Heavy lines trace the effect of the setting outward

from its injection into the network. Any new constraints on the value of variables are

recorded on the diagram in place of the variable names. (Recall that "< " , and ">" mean

"left of ", and "right of" respectively.)

Use of the Constraint Explorer Behind the Scenes 41

Fixing the center of column-1 at position X has immediate effects on two other

variables. The left edge of the lintel must be left of X, the right edge of the lintel must be

right of X. Notice that although two variables related by the lintel's length-left-right

distance constraint have received effects of the new setting (lintel left and lintel right),

still no changes can be computed for the lintel's length. The lintel's length is computed

by the distance between its right and left edges, and all that is known about the positions

of the edges is that one of them is to the left of position X and the other is to the right. As

yet, nothing can be said about the distance between the edges.

After setting the lintel's length, the design state looks like Figure 3.14b.

Figure 3.14b

The new value for Lintel length, together with the positioning of column-1's

center affects one more variable, the center of column-2. The length of the lintel and the

Use of the Constraint Explorer Behind the Scenes 42

center of column-1 are given, and the explorer now limits the center of column-2 to be

within one lintel-length of the center of column-1. That is,

(Column-2 center) < X + 12.

Notice that the effects of the change did not reach the tops or bottoms of any

elements. Nor is the left edge of column-1 or right edge of column-2 affected. The

center of each column is defined as being midway between its left and right edges. These

constraints are illustrated in Figure 3.15. The center is equidistant from the left and right

edges, and the distance between the edges is equal to the column's width. As we have not

specified the column width, no effects of setting the center reach the position of the

edges.

Figure 3.15

Notice also that had we chosen to first dimension the lintel, we would not observe

any effects until we also had positioned one of the columns. The Lintel length is bound

only by two constraints, the internal "lintel dimension" constraint that relates the lintel's

left, right, and length variables, and the "maximum distance" constraint between the

columns. Each of these requires another variable value in order to compute and transmit

Use of the Constraint Explorer Behind the Scenes 43

a change. Had we positioned column-2 instead of placing column-1, then a different

though symmetric set of calculations would have occurred, as the reader may confirm.

So far the constraints in this model do not fix the values of variables; they only

limit them. Even when we set the position of column-1 and the length of the lintel, the

position of column-2 was still free to vary within a range of 4' to 12' from column-1. To

determine the positions of elements, we might constrain the distance between the column

centers to equal three times the distance from column centers to the lintel edges. Then

setting the lintel's dimension will immediately determine both column positions.

We have seen that constraints and variables may be packaged together under one

name to describe more complex constraints and variables. The elements and position

relations used by the designer to describe the design are actually packages of more

primitive relations between the most primitive relations are "+", ">", "=", "*". We have

also seen how the machine uses the network description to determine the effects of

changes in one part of the design on other parts. Effects of changes may propagate

through the network in various directions outward from their origin. We saw also that a

change only propagates throughout the design when a certain threshold of settings have

been made.

Two questions remain. How does the machine deduce new constraints, for

example the maximum-distance constraint in Figure 3.10? How does the machine tracks

dependencies between values in the design and explain the basis of its reasoning? These

topics are treated in chapter 6, but a brief comment here provides a general idea of the

Use of the Constraint Explorer Behind the Scenes 44

mechanisms. Deduced constraints are added to the model by the program's symbolic

mathematics routines (the solver), and dependencies among values are recorded with

every setting and calculation. The constraint explorer uses the chain of dependencies that

link design moves to provide explanations of the source of particular values and

constraints, and also to minimize destructive effects of undoing design decisions.

3.3 Dimension Constraints.

We discussed in the previous section how the designer can package together

collections of constraints and variables to describe an element or a relation and we

introduced network diagrams as a way to understand the constraint explorer's

representation of design rules. The following two sections present two classes of

constraints of particular importance to the designer -- dimension and position relations.

In the examples following we shall consider constraints on the dimensions of a

room. Each of the following network diagrams represents a package of constraints,

variables, and their connections that the designer might assemble to describe a design rule

to the constraint explorer. Each package in these examples describes a different region of

alternative room sizes.

Let us begin with a package that has no constraints, only variables. Figure 3.16

describes a room with three independent variables: length, width, and height. That is, the

Use of the Constraint Explorer Dimension Constraints 45

three variable values may be set independently and there are no limits on any of their

values.

Room variables packaged; no constraints.
 Figure 3.16

In Figure 3.17 we see a room now constrained to be a cube. Length, width, and

height variables are all constrained to be equal. There is thus only one degree of freedom

in this constraint; as soon as one variable's value is set, the design is completely specified.

That value, however, may be freely chosen. The room must be a cube, but it may be a

cube of any size.

Cubical room.
Figure 3.17

Look at Figure 3.18a. It shows a room constrained to be exactly two thirds as

wide as it is long. This package has two degrees of freedom: length and width are related

by the two-thirds rule and height may be set independently.

Use of the Constraint Explorer Dimension Constraints 46

Two thirds proportion rule.
 Figure 3.18a

Let us now see what happens when we fix, or set, a value that is connected

through a constraint to other values in the design. When we set a value for the width

variable, the constraint explorer calculates a value for the length. Alternatively when we

fix a value for length, the constraint explorer calculates a value for width. Figure 3.18b

shows the two different possible calculations with arrows indicating the direction of

propagation. In addition, if either variable--length or width--in the proportion rule is

connected also to other constraints, then any change may cause other calculations to be

made, inducing a chain of consequences propagating outward from the originally set

variable. Here we have considered only one constraint, but in Figure 3.19 we shall see an

example of propagation through a network of constraints.

Two-thirds constraint calculates both ways.
Figure 3.18b

Use of the Constraint Explorer Dimension Constraints 47

Our next diagram (Figure 3.19a) shows a room constrained to be two thirds as

wide as it is long with its height constrained to be the average of its length and width.

These constraints also have only one degree of freedom: fixing a value for any one of the

variables will determine values for the other two. Figure 3.19b shows the "average"

constraint expanded into more primitive components. For example, if we set the width to

12 feet, then the length is 18 feet (by the 2/3 proportion rule), and the height is 15, half

the sum of width and height. This propagation of values is shown in Figure 3.19c. As

with the cubical room, this room's dimensions are not limited to any numerical range;

rather they are constrained to have a certain relation to one another.

proportional room with average height
Figure 3.19a

"average" constraint expanded to its primitive components.
 Figure 3.19b.

Use of the Constraint Explorer Dimension Constraints 48

Propagating a value.
 Figure 3.19c

Figure 3.20 shows a room constrained; not by proportion relations, but by

maximum and minimum dimensions that are constants. There are three degrees of

freedom; each variable is unrelated to the others and may be set independently.

However, each variable is limited to values in a certain range.

minimum and maximum dimensions.
Figure 3.20

In Figure 3.21, a room is constrained to be at least two thirds and no more than

three quarters as wide as it is long, and at least as high as it is wide. Even though the

Use of the Constraint Explorer Dimension Constraints 49

variables are related, they may be chosen somewhat independently. These relations limit

the range of values but within that range there are still three degrees of freedom.

range of proportions constraint.
Figure 3.21

Next, in Figure 3.22 we see a combination of the packages in Figures 3.21 and

3.20, representing the range-of-proportion constraint from Figure 3.21 and the minimum

and maximum dimension constraint from Figure 3.20.

Combined range-of-proportion and range-of-dimension constraints.
 Figure 3.22

Use of the Constraint Explorer Position Constraints 50

3.4 Position Constraints.

Form, or the arrangement of physical elements in space, is the primary concern of

architectural design. Position relations and rules are therefore of utmost importance to

the architect. This section shows how position relations can be constructed by

combining simple arithmetic constraints and relations. We shall consider a number of

examples describing basic position relations increasing in complexity. Dimensions and

positions are often interrelated and we shall see that combinations of position constraints

may have dimensional implications. Later in this chapter, to illustrate the use of position

constraints in design, we shall consider the effect of applying a particular constraint--a

rule of thumb for placing columns one above the other in a column-and-beam type

building.

We shall look at packages of constraints describing the relative positions of two

elements, A and B. We will say nothing here about their dimensions; we are concerned

only with describing their relative position in space. We shall approximate A and B as

rectangular elements confined to a plane. The terms "above", "below", "left of" and

"right of" name the four primitive position relations of the two elements. (In a three-

dimensional version of the model we would also use relations "in front of" and "behind".)

Each package contains simple combinations of the primitive position relations ("above",

"below", etc.) between the elements' edges. Each example package shows for

comparison: (a) a network of constraints and variables, (b) a representative variant or

variants, (c) the same constraints and variables arrayed in a matrix, and (d) a symbolic

Use of the Constraint Explorer Position Constraints 51

(Lisp-like) representation. We begin with an extremely simple relation and gradually add

and alter constraints.

We see in Figure 3.23a,b,c,d the position constraint, "A's right to the left of B's

left". This relation is often abbreviated, "A entirely left of B". Five representative

variants are indicated. A can be (1) "entirely above", (2) "(passing) above", (3)

"enclosing", (4) "(passing) below", or (5) "entirely below" B in the vertical direction.

Observe no dimensions are given; element A can be anywhere so long as it is to the left

of B, A can be immediately or far to the left of B; it can be above or below, as figure

3.23b indicates. In figure 3.23c the black dot indicates a relation between the variable in

the column and the constraint in the row.

Figure 3.23a. network diagram. Figure 3.23b. representative variants.

Figure 3.23c. constraint/variable matrix. Figure 3.23d. Symbolic form.
A entirely to left of B

Figure 3.23

Use of the Constraint Explorer Position Constraints 52

Remember the spatial uses of the "<", "=", and ">" symbols (section 3.2).

Between right and left edges "<" means "left of", and between top and bottom edges "<"

means " below". When the symbol "<" indicates a relation between two numbers, we read

it "less than". Here, relating two element edges, it means one edge is "less far along" in

some direction than the other edge. The symbol has a different meaning depending on

context. Here "<" measures distance along a direction. Likewise, ">" may mean "right

of" or "above", and "=" may mean that two edges are at the same (horizontal or vertical)

position.

The constraint packages in Figures 3.24, 3.25, 3.26, and 3.27 show how to

distinguish some of the different classes of variants illustrated in Figure 3.23b. For

instance, if we add one constraint to the package in Figure 3.23a, we select the class of

variants in Figure 3.23b.5. The new constraint package is shown in Figure 3.24a. Now

"A is left of and entirely below B" (Figure 3.24b). Another spelling, or name, for the

same constraint is "B right of and entirely above A".

Figure 3.24a. Constraint Network. Figure 3.24b. Example Variant.

Use of the Constraint Explorer Position Constraints 53

Figure 3.24c. Constraint Matrix. Figure 3.24d. Symbolic form.
A entirely left of and entirely below B.

Figure 3.24

By adding two more constraints to the previous package (Figure 3.24) we

describe a "passing" relation as illustrated in Figure 3.25. Element A must be below and

entirely to the left of B. This corresponds to Figure 3.23b.4.

Figure 3.25a. Constraint Network Figure 3.25b. Example Variant

Figure 3.25c. Constraint Matrix. Figure 3.25d. Symbolic Form.
A entirely left of and passing below B.

 Figure 3.25.

A more general passing constraint is demonstrated in Figure 3.26. Two elements

pass vertically but unlike the previous example, this constraint does not distinguish

between A above B and B below A. This corresponds to the variants in Figure 3.23b.2

and 3.23b.4. Notice that the two cases, A above B, and A below B, are covered

Use of the Constraint Explorer Position Constraints 54

separately by two constraints (labelled 'passing above' and 'passing below') OR'ed

together. Figure 3.26a' shows the two relations "passing-above" and "passing-below"

expanded to reveal their component relations. Only one of the component constraints

need be satisfied. In this case, A cannot be both above and below B at the same time.

Constraints packaged with no explicit logical relation (such as OR in this example) are

implicitly ANDed together--all constraints in the package must be satisfied.

Figure 3.26a. Constraint Network

Use of the Constraint Explorer Position Constraints 55

Figure 3.26a'. Constraint Network(expanded)

Figure 3.26b. Example Variants.

Fi
gure 3.26c. Constraint Matrix. Figure 3.26d. Symbolic Form

A and B passing.
Figure 3.26

Use of the Constraint Explorer Position Constraints 56

Figure 3.27 shows A to the left of B, A's top above B's top, and A's bottom below

B's bottom, corresponding to Figure 3.23b.3. In other words, B is entirely--both top and

bottom edges--within the projection of A's right edge. This constraint implies that A's

right side must be longer than B's left edge.

Figure 3.27a. Constraint Network. Figure 3.27b. Example Variant.

 Figure 3.27c. Constraint Matrix. Figure 3.27d. Symbolic Form.
A to the left of and vertically enclosing B.

Figure 3.27.

In Figure 3.28 we see a description similar to the one in Figure 3.27, except A is

offset from B by a minimum distance, or offset. The distance between A's right edge and

B's left edge must be greater than the minimum offset. This package involves a

dimension as well as a position constraint. The offset dimension may be left as a

variable, set to a constant, or, as we shall see in a moment, related to some other quantity

in the design.

Use of the Constraint Explorer Position Constraints 57

Figure 3.28a. Constraint Network. Figure 3.28b. Example Variant.

Figure 3.28c. Constraint matrix. Figure 3.28d. Symbolic form.
 A left offset from B by minimum dimension.

Figure 3.28.

In the next example, A is offset from B by at exactly its own width dimension

(Figure 3.29). The offset that was a free variable in the previous example is now

connected to A's width.

Use of the Constraint Explorer Position Constraints 58

Figure 3.29a Network Figure 3.29b. Variant

Figure 3.29c. Matrix Figure 3.29d. Symbolic Form.

A left offset from B by A's width.
Figure 3.29

 Figure 3.30 shows a package of constraints describing the containment relation,

A inside B. For this constraint to make sense in two dimensions, B must represent a

space element.

Figure 3.30a. Network. Figure 3.30b. Variant.

Use of the Constraint Explorer Position Constraints 59

Figure 3.30c. Matrix. Figure 3.30d. Code.
containment - A inside B.

Figure 3.30.

 Figure 3.31 shows the constraint, A cross B. Again, either A, or B, or both A and

B must be space elements for this package to make sense in two dimensions.

Figure 3.31a. Network. Figure 3.31b. Variant.

Figure 3.31c. Matrix. Figure 3.31d. Symbolic form.

A cross B
Figure 3.31.

Until now we have not mentioned any constraints on direction, although only

orthogonally oriented variants have been illustrated. We have been using absolute names

Use of the Constraint Explorer Position Constraints 60

for position relations between elements and for their edges. Our absolute names assume

we are looking at a vertical section drawing. We have been using terms such as "top",

"above", and "left of" to indicate the relative positions of elements as seen by the reader

of the drawing. Thus, in order to simplify the explanation, we have been assuming that

all elements face "up". We now introduce a direction variable for each element. An

element's direction is represented by a number from 0 to 360, like a compass heading.

By convention, in plan an element's direction is along its longer axis, and is indicated in

diagram by an arrow. The direction of an element may be constrained in much the same

way as the dimension and the position. For example, the constraints in Figure 3.32 allow

up to a 20 degree difference (or turn) in the directions of A and B.

Figure 3.32a. Network. Figure 3.32b. Variants.

Adding an orientation constraint.
Figure 3.32.

 Permitting the directions of elements to vary, we see that our absolute naming

system is less than ideal. For example, as element A rotates clockwise, its "top" edge

gradually becomes its right edge. Figure 3.33 shows another set of element edge names:

front, back, left, and right. These names are not absolute, but relative to the element's

Use of the Constraint Explorer Position Constraints 61

direction. The front edge of an element is the edge towards the element's direction. As

Figure 3.33a shows, if the direction of an element is "up" (in the absolute naming system)

then the absolute edge names we have been using (top, bottom, left, right) map directly to

the local names (front, back, left, right). If we wish to use relative names for edges we

can use a tick mark to indicate the front edge of each element (figure 3.33b).

absolute and local names of edges tick mark indicates front edge.
Figure 3.33a. Figure 3.33b.

However if we rotate two elements A and B so that their directions are different,

we can compare absolute and relative naming systems. The configuration in Figure 3.34

is described using the two reference systems.

absolute and local names.
Figure 3.34.

This concludes our examples of position constraint models. We have seen how to

construct a variety of moderately complex position constraints between two elements

from a small set of more primitive relations. A number of simplifications have been

made for the purposes of explanation. More than two elements may be related by a

Use of the Constraint Explorer Position Constraints 62

single position relation, as we shall see next. Also, we have assumed that elements are

rectangles, although we know that often they are not. More sophisticated position rules

may relate an element's shape and its position. For example, a position rule might say

"orient A's variable edge toward B" (Figure 3.35).

A's variable edge toward B.
Figure 3.35.

3.5 A Position Constraint.

To gain a sense of how the sorts of position constraints described above might

function in a design, we next discuss the application of a particular position constraint in

some detail. We consider a simple structural constraint, expressed as a rule of thumb for

positioning columns. The purpose is not to argue the merits and disadvantages of a

particular constraint, but to see how a constraint fits into an architectural context. It is

interesting that such arguments can be expressed concisely using a vocabulary of

constraints.

When designing with a one-way column-and-beam construction system the

columns (that carry the building) must be positioned according to general and particular

constraints. Columns that support one floor must themselves be supported by the

Use of the Constraint Explorer A Position Constraint 63

columns on the floor below. Although every column must be located over a beam,

columns need not be stacked directly one atop the other; rather, each may be laterally

shifted along the beam upon which it rests, so long as the beam can transfer the load onto

the column below. As a rule-of-thumb the columns may be offset along the beam by a

maximum distance of the beam depth (figure 3.36). The exact safe column offset

depends on the particular beam -- its shape in cross-section and its material -- as well as

the load carried by the upper column. The rule-of-thumb is usually, however, a good

approximation. In the larger design other constraints also limit the positioning of

columns; for example, the maximum beam span and the room layout constraints.

 Maximum column-offset equals floor depth.

Figure 3.36.

Figure 3.37 shows a model of this constraint. Notice that this constraint concerns

variables from three elements: the floor depth, and the positions of two columns.

Use of the Constraint Explorer A Position Constraint 64

Column-offset constraint - network diagram
 Figure 3.37.

Most modern column-and-beam designs do not exploit this column-offset

constraint. Instead, columns are usually placed one atop the other even though they

might be offset without violating any structural constraints. Although "stacked atop" is

only occasionally necessary where an exceptionally heavy load must be carried, many

designers use the more restrictive "stacked atop" constraint as a default. The column-

offset constraint is perhaps a more reasonable default than the stacked-atop constraint, as

the former permits a wider choice of column position than the latter, without significantly

reducing structural integrity.

Alexander recommends an architectural rule or "pattern" similar to the column-

offset constraint, applied to locations of columns when a construction system of vaults is

employed [Alexander, Ishikawa, & Silverstein 77]. In both vaults and column-and-beam

construction the applicability of the constraint is based on a structural principle that the

beam can safely support a load through an angle as low as 45 degrees from the vertical

(figure 3.38). Thus in a vault or true arch the maximum column-offset distance could be

greater than with the column-and-beam system; that distance would be limited by the

intersection of the 45 degree tangent to the curve of the arch with the top surface of the

Use of the Constraint Explorer A Position Constraint 65

floor (Figure 3.39). Bracing can also be used to extend the limit in a column-and-beam

system. A true arch or vault, unlike a column-and-beam system, can also support a

column at its center, or key (Figure 3.40).

 Beam can support loads through a 45 degree angle.
Figure 3.38

Column-offset in a vault
Figure 3.39

Arch can also support at key.
Figure 3.40

The column-offset rule is an example of a local position constraint. It is local

because each application or instance of the constraint concerns the positions of two

particular columns and a beam. As it applies to every pair of columns where one

Use of the Constraint Explorer A Position Constraint 66

supports the other this local constraint can, however, have far-reaching implications on

the design of a building. The constraint allows a variety of beam spans and column

configurations; see for example figure 3.41.

Configurations of vertical support
Figure 3.41.

In these examples we have seen only local position rules. The same sorts of

constraints can be used to describe more global constraints. For example, all elements in

a field may be constrained to have approximately the same direction. Grids and

reference-lines can be used to establish a global position rule. Certain elements may be

limited to certain grid intersections, or to lie in the zones between certain reference lines.

Parts, Prototypes, and Dependencies Elements and Configurations 67

CHAPTER 4

Parts, Prototypes, and Dependencies

4.1 Elements and Configurations.

So far we have been looking at descriptions of designs in terms of position and

dimension constraints on elements. These constraint descriptions, however, are not the

whole story. For not only do elements have position and dimension constraints, they are

also organized into a hierarchy of parts and configurations. In the description of the

"arch" we saw the position constraints between its parts, the two columns and lintel, but

we did not move up in the part/whole hierarchy to view the arch as a part of a larger

configuration, or down to view each of the arch's parts as a configuration of elements.

The hierarchy of elements and configurations is another aspect to the description of a

design, distinct from the constraints on the properties of elements. The two descriptions

are, as we shall see, related. We shall also see that a set of constraints may describe a

range of different configurations, and that a configuration of elements may be described,

or read, in several different ways.

A configuration is a set of elements with certain position relations. An element

may be either a space, or virtual element, or it may be a physical, or material one. In any

case we call the "parts list" of a configuration its "selection" and we call the set of

Design as Exploring Constraints

position relations between its parts its "distribution" [Habraken 83]. For example, two

different configurations may have the same selection of elements but different

distributions, as Figure 4.1a illustrates, or as in Figure 4.1b, they may have the same

distribution but different selections.

4.1a: Same selection, different distribution.
4.1b: Different selection, same distribution

Figure 4.1a, b

Most elements are themselves in turn configurations of smaller elements. We are

all familiar with the idea of a hierarchy of parts and wholes, in which a complex element-

-a house for example--is decomposed into parts and parts of parts. Ultimately the

complex configuration "house" is seen to be composed of a large number of simple,

undecomposable elements, such as columns, beams, bricks, sticks, and nails. Though all

decompositions of a configuration comprise the same set of most basic elements, the

decomposition of a complex configuration into parts and sub-parts is not always unique.

Conventionally, however, one decomposition of configurations and elements is preferred.

An element can also belong to more than one configuration. For example, a light switch

may belong to the configuration "built elements in the living-room" as well as to the

configuration "parts connected electrically to the main power-line".

Parts, Prototypes, and Dependencies Elements and Configurations 69

A configuration is described by its selection and its distribution. The selection

identifies the elements in the configuration. The distribution consists of position

constraints on the elements named in the selection. Each element in the selection may

itself be a configuration of smaller elements. Constraints describe the positions of the

parts relative to one another, but not relative to the configuration. A configuration and its

parts are really the same entity; therefore they cannot enter into position relations with

each other. A set of constraints need not describe a single and unique configuration; it

may describe a range of possible alternative configurations, or variants. For example, in

section 3.1 we described a set of position constraints on three elements, two columns and

a lintel. Those position constraints described the configuration, "arch". As the

constraints permit freedom in both the dimensions and positions of the parts, they do not

describe one single arch but a range or region of possible arches. Figure 4.2 shows four

different extreme arches described (that is, not excluded) by those constraints.

A constraint description may permit variants of a configuration.
Figure 4.2

Although earlier we described the position constraints between the columns and

the lintel elements (section 3.1), we did not view the columns and the lintel as

configurations themselves. Now we shall look at these elements in greater detail. We

may describe a column, for example, as a configuration of three parts: a base, shaft, and

Design as Exploring Constraints

capital, centered and stacked one above the other. Figure 4.3a shows the parts of a

column in the hierarchic description of an arch, and Figure 4.3b shows the constraints

that describe the position relations between the three parts. In Figure 4.3b the small

numbers next to the "stacked" constraint indicate the order of stacking. Figure 4.3c

shows the position constraints between the parts of the column in greater detail.

Figure 4.3a. Selection of parts in "Arch".

Figure 4.3b. Distribution of parts in "Column".

Figure 4.3c. Detailed distribution constraints of "Column".

Parts of a column and their distribution.

Parts, Prototypes, and Dependencies Elements and Configurations 71

Figure 4.3a, b, c

There may also be dimension and proportion constraints that define each of these

parts. In Figure 4.4, position constraints are shown to the left and dimension constraints

are shown to the right. Figure 4.4 illustrates, in addition to the "stacked" and "centered"

constraints of Figure 4.3, the following dimension and proportion rules:

A) base and capital must be square in plan (their width and length dimensions
must be equal),

B) the base and the capital have the same dimension in plan (here their widths are
constrained to be equal),

C) the base and capital length must be between 2 and 4 feet,

D) the depth of the capital is one half the depth of the base, and

E) the column's shaft is at least five times higher than its diameter.

Constraints between parts of a column.
Figure 4.4

Design as Exploring Constraints

Previously we described a column as though it were simply a rectangle, having

top, bottom, left, and right edges (see section 3.2). We were only interested in the

column as a part of the arch; we were content to see it as simply an element. Now we

have described the column in much greater detail, seeing it as a configuration of parts.

Our next step is to connect, or merge these two descriptions; that is, to integrate

the description of "column-as-part-of-arch" with the more detailed description of

"column-as-configuration-of-parts". We would like the constraint explorer to understand

that the two descriptions correspond to the same element. We need to specify, for

example, that the top edge of the column in the first description is the same as the top

edge of its capital in the detailed description. Our integration also shows that the

column's left and right edges are the same as the left and right edges of the base and

capital (figure 4.5).

Integrating the detailed description of the column.
Figure 4.5

In general we will always work with descriptions of a configuration at two

different levels of detail: one describing the parts and their position relations and another

Parts, Prototypes, and Dependencies Elements and Configurations 73

describing the configuration as a part in some other, larger configuration. The latter

description will usually only concern the outside edges of the configuration, and not

position relations between its parts. We would like to automatically generate simple

descriptions from detailed ones. We might use a 'bounding-box' heuristic: select the

outermost edges of the configuration's outermost parts and call these the edges of the

configuration in the simple description. Figure 4.6 shows this scheme applied to several

configurations. In some cases, of course, we may want to override this procedure and

reduce the detailed description using different heuristics.

Bounding-box reduces detailed descriptions to outermost edges.
Figure 4.6

 Often we shall want to position an element relative to some part of a

configuration. For example, we might want to place a screen, or window, between the

capitals of the columns of an arch, directly beneath the lintel (Figure 4.7). The position

relations here concern the edges of the screen and the edges of the capitals of the columns

of the arch. Now we are three deep into the part/whole tree of the arch: the arch itself,

the columns of the arch, and the capitals of the columns of the arch. Figure 4.7a shows

the form of the configuration and Figure 4.7b diagrams the position relations between its

parts. Notice that there are two sorts of relations between elements in this diagram: part-

whole relations and position relations.

Design as Exploring Constraints

Screen between capitals of columns of arch.
Figure 4.7a, b

The following example shows the same idea--that we shall sometimes want to

describe the position of one element or configuration relative to another element that is a

part of a configuration. Let us consider two different ways to describe a linear series of

arches or "arcade". In Figure 4.8, the distribution constraints of the arcade are position

relations between successive arches.

Arcade described as position relations between successive arches.
Figure 4.8

Figure 4.9 describes the same configuration as figure 4.8. Here, however, Arch2

is positioned relative to column-2 in Arch1, and not relative to the configuration Arch1

itself.

Parts, Prototypes, and Dependencies Elements and Configurations 75

Alternate description of the arcade.
Figure 4.9

The next example shows that different configurations may have common

elements. Figure 4.10 shows two arch configurations that share a column. The shared

column is known by a different name in each configuration.

Two arches share a column.
Figure 4.10

Figures 4.8 and 4.9 illustrated the idea that there may be several different ways to

read, or describe a configuration, all of them equally valid. Figure 4.11a shows another

example of this multiple view idea: a lintel with three columns that may be read either as

two arches (A1 and A2) sharing a middle column, or as a single arch (A3) with a third

Design as Exploring Constraints

column placed between its supporting columns. Figure 4.11b shows the different part-

whole relations in these three arch configurations.

Three arches sharing a lintel.
Figure 4.11a, b

Parts, Prototypes, and Dependencies Prototypes, Instances, and Individuals 77

4.2 Prototypes, Instances, and Individuals.

We have seen how elements and position relations can be described by using

packages of constraints and variables and how packages can be organized in a part-whole

hierarchy to describe nested configurations of elements. We now examine a different

organization of these same packages--a hierarchy based on distinguishing prototypes,

instances, and individuals. This structure allows the designer to define new packages by

adding distinctions to existing ones.* Descriptions higher in this prototype hierarchy are

more general; lower ones are more specific and detailed. All but the most specific

packages in the prototype hierarchy refer to classes of elements or relations. For

example, having laboriously constructed an "arch" package by describing all the parts and

their relations (as in section 3.1), the designer can easily make arch-instances that share

the general description, yet each instance may vary in its particular details. Each may

also be a prototype for further sets of even more particular arch-instances.

 We shall use the terms "prototype", "instance", and "individual"† as follows.

Each higher description in the hierarchy is a "prototype" for all its inferiors. The top, or

root, description is therefore an ultimate prototype having no prototype of its own. Each

* Generic, or classification hierarchy is a central feature in many "knowledge representation languages"
and increasingly becoming standard in general purpose programming languages as well. Here the issues
are simplified extremely for the sake of brevity. A clear and simple exposition may be found in Bobrow
and Winograd's Overview of KRL [Bobrow and Winograd 77]. The interested reader should refer to the
programming languages Simula, Smalltalk, and Objectlisp [Dahl and Nygaard 66, Goldberg and Robson
84, Drescher (forthcoming)], and also to the large body of work in knowledge representation. Two good
initial references are Representation & Understanding [Bobrow and Collins 77], and the February 1980
special issue of the ACM SIGART newsletter [Brachman and Smith 80]. A different perspective on these
issues is afforded in NETL- A System for Representing and Using Real-World Knowledge [Fahlman 79].

Design as Exploring Constraints

lower description is an "instance" of its superiors. Instances at the bottom, or fringe,

have no sub-instances. We call these ultimate instances "individuals".*

 If further specifications are not made, the properties of an instance are the same

as those of its prototype. We say that each instance "inherits" its prototype's properties.

An instance may also carry additional properties that supplement and/or supercede its

prototype's properties. If any property is superceded, we say the instance is an exception

to its prototype. The entire set of properties of any instance is the union of its private

properties and the properties it inherits from its prototype. In case a property is assigned

to two instances, the lower value always applies. In figures 4.12 and 4.13, prototype

Column C has two instances CA and CB. In turn, CA and CB are each prototypes for

two instances, individuals CA1, CA2, CB1, and CB2.

Simple prototype hierarchy.

† Often the words "class", "subclass", and "instance" are also used for the same concepts, respectively.

* Although we shall not discuss it here, instances are not limited to a single prototype. Thus the prototype
hierarchy is actually a lattice. The prototype-inheritance mechanisms of the constraint explorer are those
of Objectlisp, and are discussed in The Objectlisp Manual [Drescher (forthcoming)].

