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ABSTRACT: The likelihood of threatening events is often simplified for members of the public and presented as risk
categories such as the “watches” and “warnings” currently issued by National Weather Service in the United States. However,
research (e.g., Joslyn and LeClerc) suggests that explicit numeric uncertainty information}for example, 30%}improves
people’s understanding as well as their decisions. Whether this benefit extends to dynamic situations in which users must
process multiple forecast updates is as yet unknown. It may be that other likelihood expressions, such as color coding, are
required under those circumstances. The experimental study reported here compared the effect of the categorical expres-
sions “watches” and “warnings” with both color-coded and numeric percent chance expressions of the likelihood of a
tornado in a situation with multiple updates. Participants decided whether and when to take shelter to protect themselves
from a tornado on each of 40 trials, each with seven updated tornado forecasts. Understanding, decision quality, and trust
were highest in conditions that provided percent chance information. Color-coded likelihood information inspired the
least trust and led to the greatest overestimation of likelihood and confusion with severity information of all expressions.
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1. Introduction

Despite improved forecasts with increasing lead time, resi-
dents of tornado-prone areas in the United States continue to
be injured or killed by tornadoes every year. There is a grow-
ing consensus that deadly outcomes such as this may be due
at least in part to the influence of psychological and social fac-
tors on public response to warning forecasts (Lindell and
Perry 2012; Lindell 2018). According to a study looking at tor-
nado seasons 2008–10, the likelihood of taking shelter was no
greater for those under a tornado warning than for those out-
side of the warning area living in the same county (Nagele
and Trainor 2012). While there are many reasons for noncom-
pliance, some beyond the control of residents, the effective-
ness of the risk communication may well be a contributing
factor. Here, we define risk as a function of the likelihood and
value of a future event, usually involving loss (Eiser et al.
2012).

One way that the National Weather Service (NWS) cur-
rently communicates tornado risk to the public is by issuing
either a tornado watch or a tornado warning. A “watch”
means tornadoes are possible in and near the designated area.
A “warning” means that a tornado is imminent or occurring
and taking shelter is advised (NWS 2012).

a. Forecast uncertainty

Although the current warning system fails to acknowledge
it directly, meteorologists know that the probability of a

tornado varies geographically within the warned area and
changes over time (Karstens et al. 2015). Nonetheless, at pre-
sent this information is not made available to members of the
public. Whether to communicate probabilistic information
such as this is the subject of continued debate. Evidence sug-
gests that people understand that all forecasts involve some
level of uncertainty (Joslyn and Savelli 2010), due to their
own prior experience with the reliability similar forecasts. For
instance, in the tornado season of May 2011 to May 2014,
more than one-half (58%) of the 132 tornado warnings were
false alarms, that is, no tornado was observed anywhere
within the warned area (NWS 2011). Moreover, research links
false alarm ratios to subsequent tornado casualties (Simmons
and Sutter 2009) suggesting a reduction in compliance as
a result of increasing false alarms. Thus, residents may re-
gard some warnings as “wrong” and ignore future forecasts
(Ripberger et al. 2015). However, the relationship between
false alarms and public perception of the validity such warn-
ings is likely complex. For instance, perceived false alarm rate
is not necessarily correlated with the actual false alarm rate
and may depend on whether the false alarm is a “close call”
(Barnes et al. 2007; Lim et al. 2019). Nonetheless, noncompli-
ance with warnings may be due, at least in part, to lack of
trust.1

If so, it may help to add an uncertainty estimate. Experi-
mental evidence suggests that adding numeric uncertainty in-
formation (e.g., 30% chance) attenuates the reduction in trust
due to increased error in forecasts (Joslyn and LeClerc 2012).
In addition, there is evidence that adding explicit uncertainty
information to the forecast preserves trust to a greater degree
than does reducing false alarms (LeClerc and Joslyn 2015).
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Moreover, there is now strong evidence that the advantages
for probabilistic forecasts go beyond trust, improving both un-
derstanding and decision quality as well (Joslyn et al. 2007,
2009; Joslyn and LeClerc 2012). Indeed, these advantages
may be the reason that numeric uncertainty estimates in-
crease trust: better understanding allows users to reach their
decision goals.

b. Multiple forecast updates

However, there are some important differences between
the experimental settings cited above and real-world weather
warnings. In experimental settings participants are generally
asked to make a decision on the basis of a single forecast.
However, in natural settings forecasts often begin several
days in advance of major events and are updated over time.
In the case of a tornado, for instance, residents can receive
multiple forecast updates in a single day as the situation con-
tinues to evolve. With each update the information may
change, requiring residents to replace old with current infor-
mation. Keeping track of rapidly changing information such
as this can be challenging due to limitations in what is referred
to as “working memory” capacity, our ability to maintain and
update information in consciousness (Baddeley 2000). Be-
cause uncertainty information constitutes additional and
somewhat more complex information than what is currently
provided in most warnings, it may not be fully processed
when rapid updates are provided. However, to our knowl-
edge, no experimental research has yet tested this question.
Therefore, the experiment reported here was designed to test
the following hypotheses, in a simulated tornado warning situ-
ation with multiple forecast updates, to determine whether
probabilistic forecasts remain beneficial when this complexity
is added:

1) Participants will have a better understanding of the likeli-
hood of a tornado when forecasts include explicit numeric
likelihood expressions as compared with categorical ex-
pressions such as the conventional watch and warning
format.

2) Participants will have greater trust in forecasts that in-
clude explicit numeric likelihood expressions as compared
with categorical expressions.

3) Participants will make better decisions (for specific opera-
tionalizations2 of this construct, see procedure section be-
low) when forecasts include explicit numeric likelihood
expressions as compared with categorical expressions.

c. Second-order uncertainty

The processing challenge may be compounded by the fact
that assigning a single probability may not be possible for
some weather events. In practice, a range of likelihoods such
as 10%–20% chance of a tornado may be used. This is re-
ferred to as second-order uncertainty, an expression that indi-
cates uncertainty about the uncertainty. Research suggests

that users can understand likelihood ranges and sometimes
regard them as more credible than single probabilities
(Dieckmann et al. 2010). However, likelihood ranges further
increase the amount of information that must be processed
and may be particularly challenging in a dynamic decision en-
vironment. Thus, another goal of the research reported here
was to test whether probability ranges provide the same ad-
vantages as a single estimate.

d. Color coding

Because of the increased processing demands in dynamic
decision environments like a tornado event, numeric expres-
sions of likelihood such as probabilities or probability ranges
may be too challenging. Therefore, it may be necessary to
simplify likelihood expressions to allow for rapid and easy un-
derstanding. Many believe, for instance, that color coding,
due to its high salience (Wogalter et al. 2002), may be appro-
priate. In fact, evidence suggests that a multihue color-coded
expression of wildfire likelihood led to better decisions under
time pressure, although simple text expressions were more ad-
vantageous otherwise (Cheong et al. 2016). Therefore, in the
research reported here, in addition to testing numeric expres-
sions of likelihood, we also tested color-coded likelihood
expressions.

There are two main types of color coding, multihue as men-
tioned above, and a single hue, such as red, that varies in
value. The research on these formats is mixed, but slightly fa-
vors multihue formats. Multihue schemes have been shown to
be read faster and sometimes preferred by users although
they are not significantly different in terms of reading accu-
racy than a red scale varying in value (Miran et al. 2017).
However, some research suggests that users find a multihue
scale less intuitively linked to uncertainty than a single hue
with variation in value (MacEachren et al. 2012), although
neither reading accuracy or speed of interpretation were
tested in that research. Thus, it is not clear which color-coded
format is superior overall.

Here we focus on a multihue color-coded scheme, as it has
already been integrated into risk communication tools devel-
oped by the National Oceanic and Atmospheric Administra-
tion in the Forecasting a Continuum of Environmental
Threats (FACETs) framework for tornado threats. Our main
question was how accurately multihue uncertainty formats
communicate likelihood. At present, the research addressing
this issue is sparse. There is evidence that people prefer color
coding, such as a “traffic light” (red, yellow, and green) con-
figuration to represent uncertainty in such situations (Radford
et al. 2013; Tak and Toet 2014). Color-coded likelihood has
also been shown to correct the common but incorrect assump-
tion that tornadoes are more likely to occur in the center of
the warned area (Ash et al. 2014). Although it is difficult to
discern whether this effect is due to the color coding per se, or
to the contours that it creates. However, to date, as far as we
are aware, there is no research that investigates whether users
understand that color coding is intended to indicate likelihood
alone when that is the case, or whether their interpretations
match the precise level of likelihood intended by forecasters.

2 By “operationalize” we mean to translate the theoretical con-
struct into an overt measurable quantity.
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We address both potential misunderstandings in the para-
graphs below.

e. Likelihood–severity confusion

The fundamental question about people’s understanding of
color coding is what they construe the colors to represent.
This is an issue due in part to the fact that color coding in-
volves an extra step, reading a legend or explanation that
translates the colors into an expression of something else, in
this case likelihood. Whether or how carefully people engage
in this step may be influenced by prior experience with color
coding in other contexts that gives rise to expectations about
what the colors mean. For instance, in the context of weather,
color coding is often used to represent the severity of the
event, that is, estimates such as wind speed or the amount of
precipitation. In other cases, color coding is used to indicate
risk, a combination of the likelihood and severity. Because of
these precedents, users may have expectations about the
meaning of the color coding that cause them to assume they
already understand and misread or ignore the legend. As a re-
sult, users may misinterpret color-coded likelihood as an ex-
pression as severity or the extent of potential damage, or
some combination of likelihood and severity, rather than as
likelihood alone.

This inclination may be reinforced by the fact that even
when color is not involved, there is evidence for a tendency to
misinterpret graphically depicted likelihood information as
some deterministic quantity such as wind speed or precipita-
tion amount, referred to as a deterministic construal error
(Joslyn and Savelli 2021). For example, users tend to misinter-
pret visualizations of percent chance of precipitation as du-
ration or geographic extent of precipitation (Joslyn et al.
2009). In another study, bracket visualizations depicting the
80% predictive interval for nighttime low temperature [e.g.,
358–428F (1.78–5.68C)] were misinterpreted as diurnal fluctua-
tion. In other words, participants thought the endpoints of
the range depicted two single-value forecasts, one for daytime
high and the other for nighttime low (Savelli and Joslyn
2013). Similarly, many people think the cone of uncertainty,
intended to show the possible hurricane path, depicts the ex-
tent of the wind field (Broad et al. 2007). Therefore, it may be
that people have a general tendency to misinterpret likeli-
hood expressions as some expression of severity if the expres-
sion permits it. This may have to do in part with cognitive
load. A probabilistic forecast indicates that multiple outcomes
are possible and thus, requires consideration of more informa-
tion than a forecast describing the severity of a single out-
come. It is possible that users tend to avoid the more difficult
probabilistic interpretation and instead choose the easier se-
verity interpretation, referred to as “attribute substitution”
(Kahneman and Frederick 2002). One of the major goals of
the research reported here is to determine the degree to
which the likelihood–severity confusion arises from color-
coded likelihood representations. Therefore, we add a predic-
tion (in italics below) to hypothesis 1:

1) Participants will have a better understanding of the likeli-
hood of a tornado when forecasts included explicit

numeric likelihood expressions as compared with cate-
gorical expressions such as the conventional watch and
warning format or color coding. Participants will tend
to confuse likelihood and severity when likelihood is
color-coded.

f. Understanding the level of likelihood

The other issue about users understanding of color-coded
likelihood, even when they understand that it is intended
to portray likelihood, is whether color coding conveys the
precise level of likelihood intended by forecasters. Here the
research is sparse. Much of the work to date has been con-
ducted on color-coded scales intended to indicate risk, a
combination of likelihood and severity for which the depen-
dent variable is the order in which participants rank colors to
represent risk. The majority of the evidence suggests substan-
tial variability in rank order, suggesting that there may be is-
sues. Indeed, with the exception of red, often found to convey
the notion of greatest risk (Borade et al. 2008; Hellier et al.
2010), there is little consensus on the rank order of colors to
convey risk (Chapanis 1994; Wogalter et al. 1995; Griffith and
Leonard 1997; Rashid and Wogalter 1997). In addition, there
are cultural differences. Orange, rather than red, is considered
of greatest hazard by Chinese participants (Lesch et al. 2009).
Moreover, a study of the now retired Homeland Security Ad-
visory System (HSAS), using color to indicate terrorist threat,
showed that more than half of the participants (57.8%)
ranked the colors from most threatening to least in an order
that conflicted with that intended (Mayhorn et al. 2004).
Therefore, color-coded risk may convey different levels of
risk to different individual users as well as different levels of
risk than what was intended.

It is important to note that the studies reviewed above
tested the rank ordering of color-coded risk. It is possible that
participants could accurately rank colors and still misunder-
stand the precise likelihood of the adverse event. In other
words, orange may be ranked as the second highest risk and
assigned 90% chance by the user when it was intended to rep-
resent 50% chance. Indeed, no studies of which we are aware
have asked participants to assign likelihoods (e.g., “a 40%
chance”) to each color category to determine how they com-
pare with the intended values. Determining whether color
coding conveys the likelihood intended is another of the ma-
jor goals (see hypothesis 1, above) of the research reported
here.

In sum, public trust in forecasts may be critical for appro-
priate and timely precautionary decisions in the face of severe
weather. Moreover, trust may be maintained by providing un-
derstandable event likelihood information. Likelihood infor-
mation may also improve decisions based on the forecast. At
present however, whether these benefits will be seen in a dy-
namic decision environment and how best to convey likeli-
hood information in that context remains an open question.

The experimental study reported here investigated these is-
sues using a computerized decision task (based on Schwartz
and Howell 1985). Participants decided whether to seek
shelter based seven updated tornado forecasts presented
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sequentially. Although more complex than the experimental
scenarios tested previously, it was a vastly simplified version
of the real-world task in which many other factors (e.g., geo-
graphic knowledge, environmental cues, prior experience),
options (e.g., rearranging schedules, increasing monitoring),
and information sources (e.g., social media) are considered at
different stages (Lindell 2018). However, this simplification
allowed for the experimental control necessary to infer direct
causal relationships between the way in which the forecast in-
formation was expressed and differences in understanding,
trust, and hypothetical shelter decisions. The conventional
watch or warning format that served as our control condition
was compared with numeric probabilistic forecasts (both
single probabilities and ranges) and color-coded likelihood
expressions.

2. Method

In the experimental study reported here, we compared the
effects of various forecast formats (see stimuli section below)
on participant understanding of forecast likelihood, trust in
the forecast, and decision-making.

a. Participants

Of the 489 University of Washington students who partici-
pated in the study for extra course credit, 57% were female. All
participants were between 18 and 24 years of age, with an aver-
age age of 19 years. All were enrolled in a psychology course. Al-
though racial information was not collected for this sample, the
composition was likely similar to that of the student population
in the year in which the experiment was conducted, 2019 (40%
Caucasian, 25% Asian American, 8% Hispanic/Latino, 4%
African American, 1% American Indian, and 0.9% Hawaiian/
Pacific Islander; University of Washington 2019). Most partici-
pants were residents of Washington State, where tornados are
rare. Evidence suggests that most University of Washington
psychology students (80%) have no experience with tornados
(C. Qin et al. 2021, unpublished manuscript).

b. Procedure

Participants performed as computerized decision task (de-
tails described below) individually on desktop computers in a
laboratory room that accommodated approximately 10 partic-
ipants per session. The task was presented in an online html
platform. The researcher read the instructions aloud (see the
online supplemental material) as participants viewed the
same instructions printed on the computer screens. The in-
structions provided background on the tornado hazard includ-
ing how a tornado is formed as well as the potential damage
to homes and occupants. To familiarize participants with the
range of tornado hazards, instructions described the wind
speeds for both weak (73–112 mi h21; 1 mi h21 ’ 0.45 m s21)
and strong (2601 mi h21) tornadoes. Then, participants were
told that they would receive forecasts for 40 storms with the
potential to produce tornadoes. Severity was held constant by
informing participants that all storms would produce wind
speeds of 90–112 mi h21, consistent with weak tornadoes. Ev-
ery storm moved west to east from the same distance, toward

“home”}a house in which participants were to imagine they
were located. Each storm constituted a single trial. One trial
comprised seven successive forecast updates as the storm
moved from west to east. Participants performed 10 practice
trials followed by 40 data collection trials.

1) COST–LOSS STRUCTURE

To motivate participants to put forth their best effort, they
were given a point balance (24 000 points) at the beginning of
the simulation to spend on protective actions. The goal was to
complete the task with as many points as possible. There were
three decision options at each forecast update: wait, take
shelter, and not take shelter (see Table 1). Participants could
wait for more information at no cost on forecast updates 1–3.
However, on forecast updates 4–7, there was a 20-point cost
for every wait decision to reflect the increasing danger of the
storm approaching home. Participants could choose to go to a
nearby tornado shelter at a cost of 303 points at forecast up-
date 1. This cost increased slightly (see Table 1) at each fore-
cast update to reflect the increasing danger of being caught in
a vulnerable position when a tornado strikes. All costs were
deducted immediately from the onscreen point balance. Third,
participants could choose for no cost to not take shelter. How-
ever, if a tornado hit home and the participant had chosen to
not take shelter or wait as their final decision, a 1500-point
penalty was immediately deducted from their balance. Notice
that, in this task, as in actual weather hazard situations, the cost
to protect oneself is much less than the loss that could result
from inaction if a tornado hit the residents location.

2) STORM MOVEMENT

Participants saw different forecast updates depending on
the path of the storm on a virtual grid of longitude and lati-
tude shown in Fig. 1, although no geographic representation
of storm movement was shown to participants. On each trial,
the storm moved across the grid toward the participant’s
home at the far eastern boundary. As the storm reached each
new longitude, a forecast update was issued. At the start of
every trial, the storm was located at latitude 4, longitude 1.
From that point, storm movement was randomly generated in
real-time but constrained to proceed from west to east and re-
main within the boundaries of the grid (see Fig. 1). When the
storm was located in a cell between latitudes 2–6, there was a
0.3 probability of moving to the cell northeast or southeast
and a 0.4 probability of moving laterally to a cell to the east.
When the storm was located along on the top or bottom of
the grid (latitudes 1 or 7) it advanced laterally to the east with

TABLE 1. Cost of decisions (based on Schwartz and Howell 1985).

Decision Cost

Wait Forecast updates 1–3: no cost
Forecast updates 4–7: 20 points per wait

decision
Take shelter Shelter cost 5 300 1 [3 3 (forecast update)2]
Not take shelter No cost, but 1500-point penalty if a tornado

hits home
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a 0.7 probability and toward the center (i.e., southeast from
latitude 1 or northeast from latitude 7) with a 0.3 probability.
Thus, storm movement was more constrained in this experi-
mental than in the real world, and for no storms was there
reduced likelihood not related to the storm path (e.g., dissipa-
tion) as there might be in the real world. The probability of
the storm being in each location on the grid is shown in Fig. 2.

3) TRIAL STRUCTURE

On each trial participants received a series of updated fore-
casts each time the storm advanced (seven per trial). At each
update they answered two questions that reflected their un-
derstanding of the information provided. They rated the like-
lihood of a tornado hitting their home by clicking on a visual
analogy scale (VAS), anchored on left end with “impossible”
and the right end with “certain” (see Fig. 3). Participants also
rated the damage they would expect if a tornado were to hit
home on a similar VAS anchored on the left with “not se-
vere” and the right with “very severe.” On the next screen,
the same forecast was displayed, and participants indicated
their shelter decision by clicking on one of three radio buttons
labeled “wait,” “not-take-shelter,” or “take-shelter,” shown
in that order. The cost for each choice was shown beside it
(see Table 1). On the same screen, in order to gauge the im-
pact of the information format on trust, participants rated
how much they trusted the forecast by clicking on a VAS, an-
chored on the left with “not at all” and to the right with
“completely.”3 Then, an updated forecast was shown, and
they answered the same set of questions with respect to the
update. A decision to take shelter or not take shelter was a fi-
nal decision for that storm (trial). However, in order to dis-
courage rushing through trials by deciding early, when
participants made a final decision prior to the seventh update,
they saw the remaining forecast updates and answered the
same questions about likelihood, severity, and trust although
they were not allowed to change their decision. Note that

because there were seven updates, there were seven opportu-
nities to make a final decision. Therefore, it was possible to
evaluate both when the participant made a final decision (to
which we refer as “timeliness”) as well as the decision itself.
After all seven forecast updates, the outcome screen informed
participants whether the tornado hit or missed the home, re-
minded them of their final choice and the cost, whether shel-
tering was “necessary” (if the tornado struck home), and
whether they incurred or avoided a 1500-point penalty. An-
other trust rating was taken on the next screen, which also in-
cluded the final score. Then, the next trial with the same
sequence of screens was shown. Participants were told that
each trial represented a storm independent from the others to
discourage them from deducing trends in the weather condi-
tions. After the last trial, the final screen showed the ending
point balance, the number of times a tornado hit home, and a
summary of the participant’s choices.

4) COMPENSATION

Participants were given course credit and rewarded $1 for
every 1500 points above 11 880 points remaining in their point
balance at the end of 40 trials. This payout threshold was de-
signed to further discourage the simplistic and unrealistic
strategy of sheltering at the first update on all trials (24 000
initial point balance2 12 120 spent to shelter5 11 880).

c. Stimuli

All forecasts were based on the probability of a tornado hit-
ting home from the cell in which the storm was currently lo-
cated (Fig. 4). The probabilities of a tornado hitting home in
this simulation (to which we refer as “actual probability”)
were realistic for a geographic region under tornado threat
and ranged from 0 to 0.40.4

Participants saw one of five formats, a watch/warning format
that served as a control and four experimental formats that in-
cluded some expression of tornado likelihood (described in

FIG. 1. Example of storm movement across the grid. This graphic
was not shown to participants.

FIG. 2. Probability of storm being in each location.

3 Confidence was also measured, although no significant differ-
ences were detected and thus it will not be mentioned further.

4 These probabilities were based on tornado statistics from
12 weather forecast offices in the southeastern United States from
1 April 2014 through 31 October 2017 (C. Qin et al. 2021, unpub-
lished manuscript).
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detail below). The watch/warning format was similar to the
communication currently in use. Participants were told that a
“watch” meant that tornadoes were possible in or near the
watch area, and a “warning” meant that a tornado was immi-
nent or occurring and that taking shelter was advised. In this
simplified task, a watch was issued if the storm reached a posi-
tion at which the actual probability of hitting home was greater
than or equal to 0.13 and less than or equal to 0.24. In this
probability range, based on the cost–loss structure described
above in Table 1, the economically optimal decision was to
wait. Here, we define the optimal decision as the one for which
the participant could expect to lose the least points either in
terms of the cost or expected loss (no gains are possible in this
scenario). This constitutes the operationalization of the quality
or “goodness” or participants decisions. The expected loss was
the potential penalty (1500 points) weighted by the probability
of receiving it, the probability the tornado hitting home from
that position. See Eqs. (A1)–(A3) in the appendix. For posi-
tions at which the actual probability of hitting home was less
than 0.13, no watch or warning was issued. In this probability
range the optimal decision was to not take shelter. A warning
was issued for positions at which the actual probability of hit-
ting home was 0.25 or greater, when the optimal decision was
to take shelter.

The four experimental formats included some form of
explicit uncertainty information conveying the underling
percent chance of the tornado hitting home from the current
location of the storm (Fig. 5). In the color-coded condition
participants received a color-coded forecast and were told in
the instructions that warmer colors indicated higher likelihood
of a tornado hitting their area. A green bar was shown when
the actual probability of a tornado hitting home was less than
0.13, yellow when the actual probability was $0.15 # 0.24,
and orange when the actual probability was $0.25 and #0.40.
Notice that these values are identical to those defining “no
watch or warning,” “watch,” and “warning” and correspond
to the optimal decision thresholds.

In the percent chance condition participants saw a numeric
percent chance of a tornado ranging from 0% to 40% on a
continuous scale and rounded to two decimal places. In the
percent chance range condition participants saw ranges
0%–12%, 13%–24%, and 25%–40% (shown in Fig. 5, columnD).
Participants in the color 1 percent chance range condition saw
both the color bar and the corresponding percent chance range
(e.g., green and 0%–12%). Each forecast in the experimental
conditions was preceded with the text: “Chance of tornado in
your area:” (e.g., 6%). Figure 6 shows the storm grid and de-
scribes the stimuli that were shown in each condition at each
position. It is important to note that in conditions with catego-
rized expressions (watch and warning, color, percent chance
range), the category boundaries were aligned to the optimal
likelihoods for each of the three decision choices.

d. Design

This experiment was a two-factor between/within-mixed
design. The two independent variables were 1) forecast for-
mat (between groups) and 2) actual probability (within
groups). The background information, task goal, cost–loss
structure, and underlying probabilities were the same for all
participants. The critical difference was the format by which
the forecast information was presented (factor 1). Participants
were randomly assigned5 to one of five format conditions:

FIG. 3. Questions asked at each update on each trial and response mode: VAS.

FIG. 4. Actual probability of tornado hitting home from each cell
on the grid.

5 Random assignment allowed us to assume that any differences
in abilities or experience would be distributed across conditions.
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1) watch and warning, 2) color, 3) percent chance, 4) percent
chance range, and 5) color 1 percent chance range. Therefore,
each participant saw only a single format throughout the exper-
iment (between groups). The second factor was the probability
level: 1) 0%–12%, 2) 13%–24%, and 3) 25%–40%}all levels
shown to all participants (within groups). There were four
dependent variables: forecast understanding (operationalized
using likelihood and severity ratings), decision quality
(operationalized as expected loss), decision timeliness, and
trust (rating) in the forecast.

3. Results

Our overarching question for this research was whether the dif-
ferences in forecast format affected participants’ understanding of

the likelihood of a tornado, trust in the forecast, or their deci-
sions. Therefore, the results are presented here in three parts,
those addressing 1) understanding, 2) trust, and 3) decision-
making (quality and timeliness). In each section, analyses of
variance (ANOVA) were conducted assessing the effect of
forecast format (watch and warning, color, color 1 percent
chance range, percent chance range, and percent chance) on
each dependent variable. ANOVA was selected because it is
appropriate for categorical independent and continuous de-
pendent variables. It allowed us to determine whether there
were any systematic differences due to forecast format on the
dependent variables tested here.

Effect sizes for ANOVAs were measured with partial eta-
squared values. Effect sizes for contrasts were measured with
Cohen’s d. Planned contrasts were corrected for familywise

FIG. 5. Forecasts by format (in the columns labeled A–E) and optimal decision threshold
ranges. All forecasts were preceded by the phrase “Chance of Tornado Hitting Your Area:.” The
percentages shown in column C are the midpoints of the ranges of percentages (identical to that
in column D) shown in that condition.

FIG. 6. Storm location grid, with stimuli shown in each forecast format. Optimal decisions are
indicated by shading (white5 not take shelter, light gray 5 wait, and dark gray 5 take shelter).
Cells shaded black are impossible positions or are tornado destinations (column marked as 8).
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error using Bonferroni correction (a 5 0.0125). Post hoc com-
parisons were corrected for multiple comparisons using the
Tukey test. [The hypotheses tested below were registered
with the Open Science Framework (https://osf.io/4uc67/).]
Open science framework is a tool that promotes openness
and transparency in the research life cycle by hosting time-
stamped registrations of research hypotheses, methods, and
analysis plans (Foster and Deardorff 2017). Researchers post
this information prior to conducting analyses.

a. Understanding of the forecast (hypothesis 1)

There were two issues related to understanding. The first
was how closely participants’ interpretation of likelihood,
as indicated by their response on the VAS, matched the
actual likelihood value and whether that varied by fore-
cast format. The second was whether using some formats
(e.g., color coding), participants mistook likelihood for
severity.

1) LIKELIHOOD LEVEL

To determine how close participants’ likelihood estimate
was to the intended value, the actual probability of a tornado
hitting home on a given update was subtracted from the par-
ticipant’s likelihood rating for that update. Participants likeli-
hood rating was summarized as the percentage of the line
between the left anchor (impossible) and the position to
which participants moved the handle on the VAS. Then, in
order to determine whether the error differed by actual prob-
ability level (e.g., higher for 25%–40% range), a mean

difference score was calculated for each participant in the
three actual probability ranges, (i.e., 0%–12%, 13%–24%,
and 25%–40%). Negative numbers indicate that partici-
pants’ likelihood ratings were lower on average than the ac-
tual probability of a tornado hitting home, while positive
numbers indicate that it was higher (see Fig. 7 and Table 2).
Then, in order to determine whether estimates differed by
condition, a mean was taken across participants in each fore-
cast format condition, in each probability range (e.g., mean
likelihood difference across participants in color-coded condi-
tion in 0%–12% probability range, color coded green).

Participants overestimated likelihood in all forecast formats
but did so to the greatest degree with color-coded forecasts and
at the highest actual probability range (Fig. 7; Table 2). A
mixed model ANOVA was conducted on mean likelihood dif-
ference scores with actual probability range (0–0.12; 0.13–0.24;
0.25–0.40) as the within-groups factor and forecast format
(watch and warning, color, color 1 percent chance range, per-
cent chance range, and percent chance) as the between-groups
factor. There was a significant main effect of forecast format
F(4, 484)5 47.01, p, 0.001, with h2

p 5 0:28. Planned contrasts,
comparing the control (watch and warning) with experimental
conditions revealed that the mean likelihood difference in the
watch and warning condition was significantly greater than in
all of the other conditions [color 1 percent chance range:
t(484) 5 3.30, p , 0.001, and Cohen’s d 5 0.30; percent chance
range: t(484) 5 7.60, p , 0.001, and Cohen’s d 5 0.69; and per-
cent chance: t(484) 5 10.30, p , 0.001, and Cohen’s d 5 0.94]
except the color only condition. Furthermore, Tukey post
hoc comparisons showed that likelihood differences in both
color: t(484) 5 8.60, p , 0.001, and Cohen’s d 5 0.78, and
color 1 percent chance range: t(484) 5 4.30, p , 0.001, and
Cohen’s d 5 0.39, conditions were significantly greater than
in the percent chance range condition, suggesting that color
significantly increased overestimation despite the addition
of numbers. However, there was no significant difference
between the percent chance range and percent chance condi-
tions, p . 0.05, suggesting that ranges confer a similar ad-
vantage as individual probabilities.

There was also a significant main effect of actual probability
range suggesting that overestimation increased in higher ac-
tual probability levels, F(1.53, 739.05) 5 932.37, p , 0.001,
with h2

p 5 0:66. The degrees of freedom were corrected for vi-
olation of sphericity using the Greenhouse–Geisser correc-
tion. There was also a significant interaction between actual

FIG. 7. Average likelihood difference, by actual probability range
and forecast format.

TABLE 2. Mean differences (with standard deviations) between participants’ likelihood rating and actual probability, by format
forecast and actual probability range (0–0.12, 0.13–0.24, and 0.25–0.40). The final column shows the overall mean difference by
forecast format.

0–0.12 0.13–0.24 0.25–0.40 Overall mean

Forecast format M SD M SD M SD M SD

Watch and warning 11.2 12.1 23.3 15.2 34.3 17.4 21.93 12.7
Color 9.76 12.3 21.2 13.8 42.0 19.2 21.89 11.95
Color 1 percent chance range 5.76 10.4 13.9 11.4 33.7 16.2 15.23 10.29
Percent chance range 0.91 10.3 70.43 10.7 25.3 14.6 80.89 90.8
Percent chance 24.41 7.7 60.53 10.3 17.9 12.9 50.69 90.1
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probability range and forecast format F(6.11, 739.05) 5 8.07,
p , 0.001, with h2

p 5 0:06. As shown in Fig. 7, likelihood dif-
ference for watch and warning and color were similar in the
bottom two percent chance ranges. However, the overestima-
tion for color was much greater in the upper range [mean
M 5 42.02; standard deviation (SD) 5 19.23] than for watch
and warning (M5 34.26; SD5 17.45).

In sum, forecasts that included a numeric estimate of likeli-
hood were less susceptible to overestimation than were those
that did not (color and watch and warning). Surprisingly, per-
cent chance range performed in a manner that was compara-
ble to percent chance alone, suggesting that understanding
was substantially better not only with single probabilities but
also with second-order numeric uncertainty information.

2) LIKELIHOOD–SEVERITY CONFUSION

We were also concerned that participants would misinterpret
the expression of likelihood as an expression of severity, espe-
cially when color coding was used. Mistaking likelihood for se-
verity was operationalized in three ways. The first was the
difference between severity ratings and the likelihood ratings.
The second was the correlation between severity and likelihood
ratings. The third was the variability of severity ratings (in fact
severity was held constant so less variability represents better un-
derstanding). There was evidence for this misunderstanding in
all three operationalizations. Severity ratings were summarized
as the percentage of the rating line between the left anchor (not
severe) and the position to which participants moved the handle.

For the first operationalization, the likelihood rating was sub-
tracted from the severity rating made at the same forecast up-
date (severity 2 likelihood). Then an average difference score
was calculated for each participant. The smaller the difference
(positive or negative) was, the more similarly the participants re-
garded the two constructs and the greater was the confusion
(see Fig. 8). An ANOVA conducted on mean difference score
showed a main effect for forecast format F(4, 484) 5 8.05,
p , 0.001, with h2

p 5 0:06, suggesting that the difference was
least (confusion greatest) in the color (M5 2.43; SD5 10.45) and
most (confusion least) in the percent chance range (M 5 12.92;
SD 5 22.46) condition. Planned contrasts revealed that the
mean difference for color was significantly smaller (more con-
fusion) than percent chance range: t(484) 5 4.15, p , 0.001,
and Cohen’s d5 0.38, and percent chance conditions (M5 13.14;
SD 5 20.84): t(484) 5 4.15, p , 0.001, and Cohen’s d 5 0.38.
Although the difference between color1 percent chance range
(M 5 7.76; SD 5 17.75) and color approached significance,
t(484) 5 2.10, p 5 0.037, and Cohen’s d 5 0.19, it did not fall
below the Bonferroni corrected level of 0.0125. Nor did the dif-
ference between color and watch and warning (M 5 3.06;
SD 5 15.88) reach significance. This suggests that forecasts that
included a numeric estimate of likelihood were less susceptible to
the likelihood–severity confusion than were those that did not.
However, including color reduced this corrective effect to some
degree and gave rise to confusion despite the presence of the nu-
meric expression in the color1 percent range condition.

Mistaking likelihood for severity was also operationalized
as the correlation between severity and likelihood ratings.

Because the sampling distribution for highly correlated varia-
bles is skewed, the distributions were submitted to Fisher’s
z transformation before conducting the ANOVA. The
ANOVA revealed a significant main effect of forecast format
F(4, 484) 5 6.36, p , 0.001, with h2

p 5 0:05, showing that
correlations were highest in the color condition (M 5 0.79;
SD 5 0.30) and least in the percent chance range condition
(M 5 0.56; SD 5 0.43). Planned contrasts showed that the
correlation in the color condition was significantly higher than
in the percent chance range: t(484) 5 4.50, p , 0.001, and
Cohen’s d 5 0.41, and percent chance conditions (M 5 0.58;
SD 5 0.46): t(484) 5 4.08, p , 0.001, and Cohen’s d 5 0.37.
However, the correlation in the color condition did not
significantly differ from the watch and warning (M 5 0.69;
SD5 0.36): t(484)5 2.45 and p5 0.015, and color1 probability
range (M 5 0.68; SD 5 0.37): t(484) 5 2.24 and p 5 0.025,
conditions. This again suggests that forecasts that included color
were most susceptible to the likelihood–severity confusion.

The third operationalization of the likelihood–severity con-
fusion was the variability in severity ratings represented by
the mean standard deviation of each participant’s severity rat-
ings. Recall that participants were informed that all storms in-
volved same wind speed implying the same severity. Thus,
their severity ratings should be the same throughout the ex-
periment. Smaller mean standard deviation values indicated
less variability and therefore less likelihood–severity confu-
sion. A one-way ANOVA on mean severity SD revealed
a significant main effect of forecast format F(4, 484) 5 9.72,
p , 0.001, with h2

p 5 0:07 such that the SD was greatest in the
color condition (M 5 18.46; SD 5 7.07) and least in the per-
cent chance (M5 13.46; SD5 6.52) and percent chance range
(M 5 13.46; SD 5 6.08) conditions. Planned contrasts
revealed that the severity SD of the color condition was sig-
nificantly greater than all other conditions: watch and warn-
ing (M 5 15.44; SD 5 6.56): t(484) 5 3.20, p 5 0.001, and
Cohen’s d 5 0.29; color 1 percent chance range (M 5 15.96;
SD 5 6.87): t(484) 5 2.66, p 5 0.008, and Cohen’s d 5 0.24;
percent chance range (M 5 13.46; SD 5 6.08): t(484) 5 5.38,
p , 0.001, and Cohen’s d 5 0.49; and percent chance condi-
tions (M 5 13.46; SD 5 6.52): t(484) 5 5.25, p , 0.001,
and Cohen’s d 5 0.47. This suggests that participants in the

FIG. 8. Mean difference between severity and likelihood ratings,
by forecast format.
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color-coded condition were confusing severity and likelihood
to a greater degree than those using other formats.

Thus, analyses of all three operationalizations of this misun-
derstanding (severity difference, severity–likelihood correla-
tion, severity standard deviation) suggest that color coding
tends to promote, to a greater degree than the other formats
tested here, a confusion between likelihood and severity.
Participants using color-coded likelihood expressions tended
to think that they were also receiving information about
severity. Including a numeric expression (color 1 percent
chance range) appears to counteract this tendency to some
degree as shown in two of the three operationalizations, but
not completely.

b. Trust in the forecast (hypothesis 2)

To determine whether explicit numeric likelihood estimates
inspired greater trust, we examined trust in the forecast rated
after learning the outcome of the storm at the end of each
trial. Trust ratings were summarized as the percentage of the
rating line between the left anchor, “not at all,” and the posi-
tion to which participants moved the handle. An ANOVA
conducted on mean postoutcome trust rating revealed a main
effect of forecast format F(4, 484) 5 3.10, p 5 0.016, with
h2
p 5 0:025 such that trust was highest in the percent chance

condition (M 5 50.38; SD 5 18.80) and lowest in the color
condition (M 5 42.82; SD 5 15.75). Tukey post hoc compari-
sons showed that trust ratings for percent chance was signifi-
cantly greater than for color: t(484) 5 2.91, p 5 0.031, and
Cohen’s d 5 0.26. In addition, trust was significantly higher in
the color 1 percent chance range [M 5 50.07; SD 5 19.00,
t(484) 5 2.82, p 5 0.040, and Cohen’s d 5 0.26] than in the
color condition. No other significant differences were found.

In sum, the percent chance forecast inspired the greatest
trust. Color, which inspired the least trust, also gave rise to
the greatest overestimation of likelihood, which may explain
the low trust. Because the forecasts were well calibrated,
overestimation of likelihood may have led participants to ex-
pect more tornado hits than they actually experienced. How-
ever, adding the percent chance range to color, helped to
preserve trust. We return to this issue in the discussion section
below.

c. Decision-making (hypothesis 3)

There were three issues related to decision-making that
were of interest, decision quality, cautiousness, and timeliness.
We hypothesized that both quality and timeliness would im-
prove with numeric likelihood estimates. We had no specific
hypotheses about cautiousness.

1) DECISION QUALITY

To determine the effect of forecast format on decision qual-
ity, it was operationalized as the expected loss/cost of partici-
pants’ final decisions (wait, take shelter, or not take shelter).
Each decision was assigned either a point cost (take shelter)
or the expected point loss of a penalty (wait or not take shel-
ter). The expected loss can be thought of as the penalty
amount weighted by the chance that it would be incurred

(probability of the tornado hitting home). See appendix for
the expected loss calculations. The cost or expected loss of
the participants’ decision was then subtracted from the opti-
mal expected value (or cost) on that trial. The smaller the ex-
pected loss difference the better the participants decision.

The ANOVA conducted on expected loss difference
revealed a main effect for forecast format F(4, 484) 5 5.19,
p , 0.001, with h2

p 5 0:041 such that participants in the percent
chance condition had the smallest expected loss difference
(M 524.10; SD 5 2.70), and those in the watch and warning
condition had the largest (M 5 26.65; SD 5 4.92) (see Fig. 9).
Planned contrasts revealed that decision quality in the percent
chance: t(484) 5 24.40, p , 0.001, and Cohen’s d 5 0.40
and the percent chance range (M 5 25.18; SD 5 4.11):
t(484) 5 2.62, p 5 0.009, and Cohen’s d 5 0.21, conditions
were significantly better (smaller difference) than in the
watch and warning condition. Tukey post hoc comparisons
revealed that percent chance (M 5 24.10; SD 5 2.70) was
also significantly less (better) than color alone (M 5 25.75;
SD 5 4.31): t(484) 5 2.89, p 5 0.032, and Cohen’s d 5 0.26.
No other significant differences were found. This suggests
that the forecast showing the percent chance of a tornado led
to better decisions than the conventional watch and warning
as well as color coded likelihood.

2) DECISION CAUTIOUSNESS

Although we had no specific hypotheses about this issue, it
was important to evaluate cautiousness. It could be that some
forecast formats (e.g., watch/warning) lead to more cautious
decisions without leading to economically optimal decisions.
That is because greater cautiousness means shelter more
often overall, whereas economically optimal means sheltering
only when that option constitutes the least point loss. To
understand whether participants were more cautious (i.e.,
shelter more often) with certain forecast formats, a one-factor
ANOVA was conducted on the proportion of take-shelter de-
cisions (across the 40 trials regardless of whether take shelter
was the optimal choice) with the independent variable fore-
cast format (watch and warning; color; color1 percent chance

FIG. 9. Mean expected loss difference, by forecast format. Means
closer to zero indicate better decisions, because there is little differ-
ence between the participant’s and the optimal expected loss
values.
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range; percent chance range; percent chance; see Fig. 10).
There was a significant main effect of forecast format
F(4, 484) 5 5.19, p , 0.001, with h2

p 5 0:041. Participants with
the watch and warning [M 5 0.37, SD 5 0.21, t(484) 5 4.04,
p , 0.001, and Cohen’s d 5 0.37] and color conditions
[M 5 0.36, SD 5 0.18, t(484) 5 3.73, p 5 0.002, and Cohen’s
d 5 0.34] had a significantly higher proportion of shelter
decisions than those with the percent chance condition
(M 5 0.26; SD 5 0.16). Thus, although participants in the
watch and warning and color conditions made fewer good
decisions from an economic standpoint, they were more
cautious overall.

3) DECISION TIMELINESS

The final analysis was conducted on decision timeliness,
operationalized as the difference in the forecast update
number (1–7) at which the participant made a final decision
(shelter or not take shelter) and the point at which it was
optimal to make a final decision (stopping difference). It was
optimal to make a final decision on the first trial on which the
cost of sheltering or the expected loss of not taking shelter
was the less than waiting. The step at which the participant
made a final decision was subtracted from the optimal stop-
ping point on each trial. A negative number means that the
participant made a decision prior to the optimal stopping
point and a positive number means the final decision was
made after the optimal stopping point; zero is indicates that
the two are the same (optimal). A mean was taken for each
participant across all 40 trials.

Participants on average made timely decisions in all
forecast formats although those in the percent chance
condition showed a slight delay beyond optimal stopping
(see Fig. 11). A one-factor ANOVA conducted on stopping
difference revealed a significant main effect for forecast
format F(4, 484) 5 2.45, p 5 0.046, with h2

p 5 0:02. The
stopping difference in the percent chance condition (M 5 0.29;
SD 5 1.22) was significantly different than watch and warn-
ing (M 5 20.33; SD 5 1.81): t(484) 5 2.71, p 5 0.007, and
Cohen’s d 5 0.25. No other significant differences were found.
Thus, although percent chance showed a slight delay, those in
the watch and warning condition made their decisions slightly
too early by about the same amount (about 1=3 of a step).

In sum, participants in the percent chance condition waited
slightly longer to make a decision; however, they made deci-
sions with the highest expected value. Percent chance range
showed comparable decision quality to percent chance alone
but did not delay significantly beyond optimal stopping. Par-
ticipants in the watch and warning and color conditions made
more cautious decisions and earlier, although their decisions
had the greatest expected loss.

4. Discussion

This experiment provides strong evidence for the benefits
of numeric likelihood information to communicate forecast
uncertainty in a dynamic decision environment in which mul-
tiple sequential forecasts must be evaluated to make a final
decision. These benefits were seen in terms of user’s under-
standing of and trust in the forecast as well as in the decisions
that they made based on the forecasts.

a. Understanding

Participants in the conditions in which numerical expres-
sions alone were provided (percent chance and percent
chance range) understood the forecast best both in terms of
the intended likelihood and avoiding the potential confusion
with severity. However, the benefits of color-coded likelihood
are less clear.

1) OVERESTIMATING LIKELIHOOD

Although participants using all forecast formats showed
some tendency to overestimate the likelihood of a tornado
hitting their area, those using forecasts that included color
coding overestimated to the greatest degree. This is in line
with previous research showing that warnings with color are
perceived as more hazardous overall (Braun et al. 1995).
Moreover, in the study reported here, the bias increased with
the actual probability. Although the overestimation was only
about 10% at the low end, it increased to 42% overestimation
at the high end, more than doubling the intended amount.
This was despite the fact that the upper range shown in the
color coded condition was not red (often ranked as indicating
the greatest risk) but rather orange. A possible explanation in

FIG. 10. Proportion of final decision out of 40, by forecast format. FIG. 11. Mean difference in participants’ final decision and optimal
stopping point, by forecast format.
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the color only condition, which did not include a numeric key,
is that participants assumed that each color category repre-
sented one-third of a scale from impossible (0%) to certain
(100%). Under this assumption, the mean likelihood esti-
mates in the 0–0.12, 0.13–0.24, and 0.25–0.40 actual probabil-
ity ranges would have been mistaken as 0%–33%, 34%–66%,
and 67%–100%, respectively. Although participants’ mean
likelihood estimates in the color condition fall within the bot-
tom two of the inflated ranges, 0%–33% (M 5 29.0) and
34%–66% (M 5 40.5) they were much lower (M 5 61.25)
than would be expected in the top range, 67%–100%, ruling
out this explanation. Moreover, it is important to note that
the increase in overestimation extended to the color-coded
condition that did include a numeric key (color 1 percent
chance range), although the overestimation was not as great
as with color alone. An alternative explanation is that color
coding led to greater arousal, which has been shown to inflate
perceived likelihood (Vosgerau 2010) and may have increased
with warmer colors. This is something that could be explored
in future research by adding a measure of arousal. In sum,
although the exact mechanism for the effect is unclear, it is
clear that color coding introduces a bias in perceived likeli-
hood that could be problematic in some situations. Users,
inflating the likelihood, may come to regard color-coded
expressions as untrustworthy over time when the frequency of
the outcome is less than expected. Adding a key explaining
the numeric range represented by each color attenuated but
did not completely eliminate the bias.

Participants also significantly overestimated the likelihood
in the watch and warning condition, although probably for
different reasons. The watch and warning format that func-
tioned as the control did not provide overt likelihood infor-
mation. However, by definition, a tornado warning means
that a tornado is imminent or occurring and thus, may have
implied 100% certainty rather than the 25%–40% that was
the case here. Again, however, the mean estimate in the warn-
ing condition did not approach 100% (M 5 34.3; SD 5 17.4).
Thus, although participants anticipated some uncertainty
even in the watch and warning condition, they may have as-
sumed that the threshold for a warning was higher than it ac-
tually was, which would account for the overestimation in
likelihood observed here.

2) LIKELIHOOD–SEVERITY CONFUSION

In addition, participants had a tendency to misinterpret
color-coded likelihood information as indicating something
about severity. This was supported in analyses of all three op-
erationalizations of the likelihood–severity confusion (sever-
ity difference, severity–likelihood correlation, and severity
SD) and observed despite the fact that participants were ex-
plicitly told that the colors indicated the chance of a tornado.
This misinterpretation may be due to previous exposure to
color-coded weather charts intended to communicate severity,
such as amount of precipitation or intensity of wind speed.
Perhaps prior exposure established expectations about the
meaning of color coding, that color generally indicates some-
thing about severity, which were not fully contradicted by

explanations provided in context of the task. Under some cir-
cumstances the likelihood–severity confusion may be benefi-
cial, serving to encourage caution. However, it may also
damage trust when expectations are not confirmed. This mis-
interpretation could be particularly dangerous when the mag-
nitude of the storm is great, but the likelihood is low.
Residents may interpret the color to mean that if a tornado
were to occur, the damage would be minimal. This may, in
turn, reduce their willingness to take protective action. It is
important to note that misinterpreting likelihood as severity
was least in the numeric conditions in which color was not
used.

The likelihood–severity confusion was also observed in the
watch and warning condition, for which the explanation may
be slightly different. In the absence of explicit likelihood in-
formation (as in the watch and warning condition) one might
be unable to disentangle the concepts of likelihood and sever-
ity and instead assume that as one increases so does the other.
Indeed, there is some evidence that verbal descriptions of
likelihood are translated into a higher percent chance when
the outcomes are severe as opposed to neutral, referred to as
severity bias (Harris et al. 2009; Weber and Hilton 1990). Im-
portantly, in the experiment reported here, participants in the
percent chance and percent chance range conditions were
least susceptible to the likelihood–severity confusion. This
aligns with research suggesting that numeric expressions
of probability tend to reduce the severity bias (Fischer and
Jungermann 1996).

b. Trust

The percent chance forecast also inspired the greatest trust.
Color, which gave rise to the greatest overestimation of likeli-
hood, inspired the least trust. However, adding the percent
chance range to color helped to preserve trust despite inflated
likelihood estimates, mirroring the positive impact of uncer-
tainty estimates on trust seen in previous research (LeClerc
and Joslyn 2015).

c. Decision-making

Not only did numeric expressions of uncertainty lead to
better understanding, but they also led to better decisions in
this dynamic environment. Participants with numeric likeli-
hood forecasts made decisions with higher expected value
than those using categorical forecasts (i.e., color coded or
watch and warning forecast). This was true even though each
forecast included multiple updates, each with its own proba-
bilistic estimate and each choice point included three options
(wait, take shelter, or not take shelter). In sum, these results
suggest that participants were able to evaluate and incorpo-
rate numeric uncertainty information despite the increase in
processing load represented by these complexities.

The advantage of percent chance over categorical expres-
sions is particularly striking in this experimental context be-
cause the boundaries of the categories were aligned with the
optimal decision. When the economically optimal decision
was to not take shelter, the color was green and no warning
was shown. When the economically optimal decision was to
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wait, the color was yellow and a watch was shown. When the
economically optimal decision was to take shelter, the color
was orange and a warning was shown. Therefore, those in the
categorical conditions had information that was perfectly tai-
lored to the cost–loss structure of the task. If participants had
chosen to shelter only when the highest category was forecast
(i.e., warning, or orange), the expected value in these condi-
tions would have been superior (i.e., no difference from opti-
mal). This was not the case. Instead, participants in both the
color-coded and watch and warning conditions chose to take
precautionary action more frequently, often unnecessarily ex-
pending resources to avoid a tornado that was unlikely.

While the percent chance expression proved to be advanta-
geous overall, there was a slight delay in making the decision
(timeliness), less than a single forecast update on average,
which may be the only indication of the extra processing re-
quired with numeric expressions of uncertainty. In addition,
those using the percent chance expression, although they
made better decisions from an economic standpoint, were not
as cautious as those using the watch and warning and color-
coded forecasts who took precautionary action more often
overall. Thus, there might be a trade-off in the choice of fore-
cast format between precision and cautiousness, such that
some forecast formats enhance the first while others the sec-
ond. Some have argued that such trade-offs could be ex-
ploited to fit specific situations (Ash et al. 2014). For instance,
color coding might be used in situations in which additional
cautiousness would be beneficial.

It is important to note, however, that the increased cau-
tiousness observed here is likely directly due to misunder-
standing the forecast (as reflected in likelihood ratings). As
such, there may be a cost in terms of lowered trust that could
affect responses to subsequent warnings. Indeed, postout-
come trust was significantly lower in the color-coded than in
the percent chance condition. It may be that trust in color-
coded forecasts was diminished because of the frequent and
ultimately unnecessary decisions to take shelter, suggesting a
“false alarm” effect, in which participants saw themselves as
receiving an inaccurate forecast.

d. Second-order uncertainty

Importantly, the advantages for numeric uncertainty ex-
pressions extended to the percent chance range condition,
which was also categorical in a sense and added a level of un-
certainty about the likelihood itself. Nonetheless, those using
the percent chance range had a better understanding of the
likelihood of a tornado than did those using the watch and
warning as well as those using color 1 percent chance range,
which was identical with the exception of color. Those using
the percent chance range were also less susceptible to the like-
lihood–severity confusion than those using color alone (as
seen in the severity standard deviation and severity difference
operationalizations). Trust in this format was equal to that of
the single percent chance expression, despite the fact that it
that included uncertainty about the probabilistic forecast it-
self. Moreover, decision quality in percent chance range was
equivalent to percent chance while decisions were made in a

timelier fashion. Taken together, these results suggest that
in a real-world settings, forecasters may be able to include
second-order uncertainty information (e.g., a range such as
0%–12%), without a detriment to understanding, trust or
decision quality.

e. Limitations

As an experimental study using a convenience sample of col-
lege students there are several limitations that should be men-
tioned. First, as with all experimental studies there was a trade-
off between ecological validity and experimental control. In a
natural environment several other factors would also influence
peoples’ decisions. Here those factors have been stripped away
or held constant in order to determine the impact of forecast
format alone. Indeed, research using more realistic storm-
tracking tasks suggests that with multiple potential information
sources, search strategies must be adjusted (Wu et al. 2015a)
and decisions can be delayed (Wu et al. 2015b).

In addition, the consequences in the real-world counterpart
of this task would be far more serious. Here the consequences
were merely a reduction in points that impacted the monetary
reward. Although it is important to note that, unlike many
laboratory-based studies, there were actual consequences in
the task reported here. Participants who made better deci-
sions received a larger cash bonus.

The college student participants may be more prepared to
understand probabilistic forecasts than some members of the
public, giving rise to questions about generalizability. How-
ever, recent evidence suggests that, although they may not
have a theoretical understanding of probability, those with
high school education or less can benefit from forecasts that
include numeric likelihood estimates to the same degree as
those who are college educated (Grounds and Joslyn 2018;
Grounds et al. 2017).

f. Next steps

Although these are promising results, future research
should replicate them using a more diverse sample to verify
that generalization warranted. Research should also explore
decision tasks with different kinds of complexities, such as
multiple sources of information or multiple decision alterna-
tives, to determine whether the advantages for numeric uncer-
tainty estimates continue to hold. Finally, it would be useful
to know if decision quality increases further with a combina-
tion of both numeric uncertainty information and explicit
warning information in this complex scenario, as has been ob-
served in simplified scenarios in previous research (Joslyn and
LeClerc 2012).

5. Conclusions

Taken together, the results of the study reported here pro-
vide compelling evidence for the benefits of including numeric
uncertainty information in warning forecasts in a dynamic de-
cision environment. Granted there are several other factors
that influence protective action decisions in a real-world situa-
tion (Lindell 2018) that interact in complex ways to influence
peoples’ decisions. Here we have examined one critical
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component in that complex process in relative isolation, up-
dating warning messages. Nonetheless, we believe that the
contribution of this work to the bigger picture is key. It adds
to the growing literature that nonexperts have at least a
“working understanding” of fairly complex scientific informa-
tion and can use it to their benefit. Although earlier evidence
for the benefits of numeric uncertainty estimates (Joslyn and
Leclerc 2013) focused on simple situations, here the advan-
tage was seen in a more complex decision scenario in which
participants received seven updates for the same event, each
with its own probabilistic forecast, and three options at every
decision point. Nonetheless, several clear advantages were
seen for both percent chance of a tornado as well as percent
chance range formats. These results have important implica-
tions for risk communication in the context of weather, water
management and climate as well as other situations in which
people need to make decisions about protection in uncertainty
circumstance: People can understand fairly complex scientific
information and make good use of the additional precision to
improve their decisions, as long as the information is relevant
and presented in an understandable format. Omitting explicit
likelihood information when it is available not only leaves
room for miscommunication between scientists/public officials
and members of the public, but it may deprive decision-makers
of information that could help them to make better choices.
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APPENDIX

Expected Loss Calculations

If the participant chose to shelter, there was a one-time
cost (see Table 1). If the participant chose to not shelter or
to wait, the expected loss depended on the actual probability
of the tornado hitting home at that particular storm position.
The expected loss to not take shelter (ELnot_shelter) was
the product of 1500-point hit penalty and the probability of
experiencing that penalty (i.e., a tornado hit home) plus
any wait cost that had been incurred prior to the final
decision:

ELnot_shelter 5 Probability of tornado hitting home

3 1500 1 costwait: (A1)

The expected loss of a wait decision (ELwait) was similar
but also depended on the longitude at which the decision
was being made. For all cells in longitude 7, it was the
product of the penalty (1500) and probability of the tornado
hitting home at that storm position plus the 80-point prior
wait cost (20 points per wait decision for longitudes 3–6):

Longitude 7:ELwait 5 80 points incurred costwait
1 (probability of a tornado hitting home 3 1500): (A2)

The expected loss of wait at longitude 6 (and all previous
longitudes) depended on the three adjacent cells to the east
(see section 2b). The smallest expected loss (ELmin) in each
of those cells was multiplied by the probability of the tor-
nado moving to that cell from its current position. The sum
of these three products was regarded as the expected value
of waiting in the current location:

TABLE A1. Storm location grid with expected loss of decisions. Here, W 5 wait, S 5 shelter, and NS 5 not take shelter. Columns
represent longitude (1–8). Rows represent latitude (1–7).

1 2 3 4 5 6 7 8

1 W: 0 W: 56 W: 107 W: 97 W: 81 W: 60 W: 80 Tornado destination
S: 303 S: 312 S: 327 S: 348 S: 395 S: 448 S: 507
NS: 0 NS: 0 NS: 0 NS: 77 NS: 61 NS: 40 NS: 60

2 W: 80 W: 159 W: 187 W: 192 W: 194 W: 194 W: 80 Tornado destination
S: 303 S: 312 S: 327 S: 348 S: 395 S: 448 S: 507
NS: 0 NS: 0 NS:187 NS: 178 NS: 182 NS: 175 NS: 60

3 W: 196 W: 265 W: 281 W: 308 W:336 W: 373 W: 530 Tornado destination
S: 303 S: 312 S: 327 S: 348 S: 395 S: 448 S: 507
NS: 0 NS: 272 NS: 288 NS: 310 NS: 358 NS: 400 NS: 510

4 W: 278 W: 298 W: 324 W: 360 W: 403 W: 507 W: 680 Tornado destination
S: 303 S: 312 S: 327 S: 348 S: 395 S: 448 S: 507
NS: 286 NS: 307 NS: 334 NS: 371 NS: 440 NS: 550 NS: 660

5 W: 196 W: 265 W: 281 W: 308 W: 336 W: 373 W: 530 Tornado destination
S: 303 S: 312 S: 327 S: 348 S: 395 S: 448 S: 507
NS: 0 NS: 272 NS: 288 NS: 310 NS: 358 NS: 400 NS: 510

6 W: 80 W: 159 W: 187 W: 192 W: 194 W: 194 W: 80 Tornado destination
S: 303 S: 312 S: 327 S: 348 S: 395 S: 448 S: 507
NS: 0 NS: 0 NS: 187 NS: 178 NS: 182 NS: 175 NS: 60

7 W: 0 W: 56 W: 107 W: 97 W: 81 W: 60 W: 80 Tornado destination
S: 303 S: 312 S: 327 S: 348 S: 395 S: 448 S: 507
NS: 0 NS: 0 NS: 0 NS: 77 NS: 61 NS: 40 NS: 60
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Longitude 1:ELwait(LAT, LON) 5 0:7 3 ELmin(LAT, LON 1 1) 1 0:3 3 ELmin(LAT 1 1, LON 1 1),

Longitude 2–6:ELwait(LAT,LON) 5 0:3 3 ELmin(LAT 2 1, LON 1 1) 1 0:4 3 ELmin(LAT,LON 1 1)

1 0:3 3 ELmin(LAT 1 1, LON 1 1); and

Longitude 7:ELwait(LAT,LON) 5 0:7 3 ELmin(LAT,LON 1 1) 1 0:3 3 ELmin(LAT 2 1, LON 1 1): (A3)

At each storm position, the optimal decision was the one
with the lowest cost or expected loss (ELmin). A difference be-
tween the expected loss of the participants’ decision and the
optimal decision was calculated for each of their decisions i
prior to the final decision n, and a mean was calculated for
each trial (ELdifference).

A1 Then, a mean was calculated for par-
ticipants over the 40 trials and in each condition. Table A1
shows the expected loss values of all possible decisions by
storm position. The participant’s expected loss difference was a
negative value or zero when the participant made the optimal
decision:

ELdifference 5

+
n

i51
ELmin 2 ELdecision

n
: (A4)
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