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ABSTRACT

Two behavioral experiments tested the use of predictive interval forecasts and verification graphics by

nonexpert end users. Most participants were able to use a simple key to understand a predictive interval

graphic, showing a bracket to indicate the upper and lower boundary values of the 80% predictive interval for

temperature. In the context of a freeze warning task, the predictive interval forecast narrowed user expec-

tations and alerted participants to the possibility of colder temperatures. As a result, participants using

predictive intervals took precautionary action more often than did a control group using deterministic

forecasts. Moreover, participants easily understood both deterministic and predictive interval verification

graphics, based on simple keys, employing them to correctly identify better performing forecast periods.

Importantly, participants with the predictive interval were more likely than those with the deterministic

forecast to say they would use that forecast type in the future, demonstrating increased trust. Verification

graphics also increased trust in both predictive interval and deterministic forecasts when the effects were

isolated from familiarity in the second study. These results suggest that forecasts that include an uncertainty

estimate might maintain user trust even when the single-value forecast fails to verify, an effect that may be

enhanced by explicit verification data.

1. Introduction

Although weather forecasts continue to improve,

user complaints continue as well, fueled by high-profile

misses such as ‘‘No-maggeden,’’ the name given by The

Washington Post to a major snowstorm predicted for

the east coast of the United States during the Christmas

holiday season of 2010. Despite the fact that the initial

forecast was given a ‘‘low confidence’’ rating and it

continued to be downgraded over subsequent days, in

the end the focus was on the fact that the major storm

that was initially forecasted failed to materialize. Many

believe that mistrust caused by such misses could be

reduced if forecasts included specific numeric uncertainty

estimates (e.g., National Research Council 2006). Indeed,

it is now clear that everyday users understand that all

forecasts involve uncertainty, expecting a wide range of

values even when given a deterministic forecast com-

prising a single-value such as a nighttime low temperature

of 328F (Joslyn and Savelli 2010). Acknowledging the

uncertainty explicitly (e.g., 30% chance) might convey

the notion that the forecast was intended as probabi-

listic and should be evaluated as such. Perhaps, then,

forecasts that were previously regarded as ‘‘misses’’

would be seen as reliable.

In addition to increasing user trust, uncertainty fore-

casts provide potentially useful information about the

likelihood of various possible outcomes that could in-

form forecast-related decision making. There is now
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strong behavioral evidence that decisions based on fore-

casts including the probability of freezing are eco-

nomically superior to decisions based on deterministic

temperature forecasts when the decision task involves

a freeze warning (Joslyn and LeClerc 2012; Roulston

et al. 2006).

For situations in which the forecaster does not know

the users’ threshold of concern, uncertainty can be ex-

pressed as a range of values (Murphy andWinkler 1974),

derived from forecast ensembles and referred to as

a predictive interval (Raftery et al. 2005). A predictive

interval provides the upper and lower boundaries of the

range within which the observed value is expected with

a specified probability, indicating, for instance, that

there is an 80% chance that the nighttime low temper-

ature will be between 308 and 368F. Predictive intervals

could be useful to decision makers with various pa-

rameter concerns and tolerances for risk. Furthermore,

although predictive intervals are conceptually complex,

there is preliminary evidence that nonexperts un-

derstand them when they are defined in simple terms

compatible with the task at hand (Joslyn et al. 2009). It is

not yet known, however, whether decisions based on

predictive interval forecasts are significantly different

than decisions based on conventional single-value

forecasts. Nor is it known whether predictive interval

forecasts inspire trust. These two issues were addressed

in the work presented here.

It is possible that people will mistrust predictive in-

terval forecasts to the same degree that they mistrust

deterministic forecasts. They might think, for instance,

that the forecast has described a range that is too nar-

row. In other words, given an 80% predictive interval,

they may understand what is intended but expect the

observed temperature to fall within the boundaries only

50% of the time. In fact, there is evidence that people

often describe boundaries that are too narrow for con-

fidence intervals. Confidence intervals are the minimum

and maximum values thought to contain a particular

number such as the population of Spain, with a certain

probability. When people designate such values the

correct answer tends to fall beyond the boundaries more

often than is indicated by the probability, suggesting

overconfidence (Alpert andRaiffa 1982), although there

are other possible interpretations for this effect (e.g.,

Erev et al. 1994).

Thus, people may think that forecasters are over-

confident when providing predictive intervals. If so,

users may require verification showing the frequency of

observed events relative to the forecasted probability

over a large set of events to determine whether the

forecast is ‘‘well calibrated’’ (i.e., the relative frequency

matches the probability). As far as we know, however,

the impact of verification on trust in either deterministic

or probabilistic forecasts has not been tested empiri-

cally. This issue was also addressed in the work pre-

sented here.

To summarize, the work presented here had three

major goals. The first was to test whether untrained

users understand predictive interval forecasts and veri-

fication expressed here in simple graphics with definition

keys. If so, this kind of information could be provided

in a web format serving a wide range of users. The sec-

ond goal was to determine whether predictive intervals

influence user decisions. The third goal was to test the

impact of predictive intervals and verification graphics

on user trust. Both experiments involved a realistic

freeze warning task embedded in an agricultural con-

text. The first experiment provided an initial test of the

forecasts and graphics. Based on the results, the defini-

tion provided in the key was refined and the procedure

was simplified to conduct the second experiment.

2. Experiment 1

a. Method

1) DESIGN

The experiment was a two by two full factorial design.

Participants were randomly assigned to either a predictive

interval or a deterministic forecast condition.Within each

forecast format condition, participants were randomly

assigned to either verification or no verification. The

dependant variables were expected temperatures, freeze

warning decision, uncertainty ratings, forecast perfor-

mance evaluation, and a decision about using the forecast

type again.

2) PARTICIPANTS

Participants were 302 University of Washington intro-

ductory psychology students of whom 54%were women.

They ranged in age from 18 to 49 years and earned course

credit for their participation.

3) PROCEDURE

The experimenter administered informed consent

procedures and read general instructions describing the

goal of the computerized task (see the appendix). Par-

ticipants were to decide whether to issue a freeze

warning for an agricultural community so that farmers

could protect their crops from temperatures at or below

328F.1 They were cautioned against posting the warning

1 Water freezes at 328F.
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when freezing temperatures were not expected because

crop protection involved material and labor costs.

After the instruction phase, participants saw a fore-

cast graphic for 13 and 14 January that included daytime

high and nighttime low temperatures for each date. The

forecast was presented in one of two formats, a conven-

tional single-value deterministic temperature forecast

(Fig. 1) or a format that included the same single value

as well as the temperatures at the upper and lower

boundaries of the 80% predictive interval (Fig. 2). Par-

ticipants were given no explicit instruction in decoding

the graphics beyond the keys that accompanied them.

Participants were to use the forecast to decide whether

to issue a freeze warning for each night. Then, partici-

pants indicated the temperature they expected to ob-

serve for all four predictions (two daytime highs, two

nighttime lows). For the nighttime low temperatures

they also indicated the highest and lowest temperature

that they would not be surprised to observe. The fore-

cast graphic remained on the screen as participants

worked through related questions. Questions targeting

a particular time period (e.g., daytime high for 14 January)

were shown simultaneously. Finally, to determine whether

participants trusted the forecast, they were asked whether

they would choose to use the same kind of forecast

again. We selected this operationalization of trust for

two reasons. The first is that a direct question about

‘‘trust’’ could have multiple interpretations. In addition,

the primary concern from a practical perspective is the

translation of trust into action: Will people actually use

the information?

When all of these questions were answered, the

forecast disappeared and a new set of questions was

displayed. Participants in the verification condition saw

a verification graphic and related questions while others,

acting as a control group, saw a set of demographic

questions, described below. The verification graphic

showed the predicted and observed values for the pre-

vious 14 nights (1–14 January). There were two kinds

of verification. Those in the deterministic-verification

condition saw a comparison of the deterministic forecast

to the observation, depicted visually as the distance

FIG. 1. Deterministic forecast graphics for experiment 1.

FIG. 2. Predictive interval forecast graphics for experiment 1.
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between the two and referred to as ‘‘error’’ (Fig. 3). Those

in the predictive interval-verification condition saw a de-

piction of the ‘‘calibration’’ of the probabilistic forecast,

depicted visually as the proportion of observations that fell

within the predictive interval over a two-week period2

(Fig. 4). All participants in the verification condition an-

swered three questions requiring them to use the verifi-

cation graphics to evaluate forecast performance. For the

first question they rated performance over the entire two-

week period on a scale of 1 (outstanding) to 7 (terrible).

For the second they identified the single week that repre-

sented better forecast performance. The second week was

both better calibrated and had the smallest error. For the

third question participants ranked three individual days

(1 January, 8 January, and 9 January). On one day, clearly

the best by any standard (9 January in Figs. 3 and 4), the

observed temperature and deterministic forecast were the

same. For both of the other two days the error was four

degrees, although on one day the observation fell within

the predictive interval (1 January) and on the other day it

was outside of the interval (8 January).

Next the screen was cleared again and a forecast for 28

and 29 January was shown. It was identical in format to

the first forecast and participants answered the same

questions as well as three additional questions about

forecast uncertainty. Participants were asked to esti-

mate the probability that the observed temperature

would be at or above the temperature at the upper

bound and at or below the temperature at the lower

bound of the predictive interval. Theywere also asked to

estimate the probability that the observed temperature

would be between the two. Only temperature values

were mentioned in these questions. The terms ‘‘upper

bound’’ and ‘‘lower bound’’ were not used. Participants

indicated their answers on a drop-down menu with

choices from 0% to 100% in 10% increments. All of the

uncertainty questions were also asked of participants in

the deterministic condition to ascertain whether the pre-

dictive interval had an influence over pre-experimental

expectations. Then, for those in the verification condi-

tions, a second verification graphic (15–29 January) was

presented and participants answered the same questions

as for the first verification period.

To hold constant the time between the first and second

forecasts, participants in the no-verification control con-

dition answered questions about their age and educational

background between the two forecasts. Participants in the

verification conditions answered these questions last.

4) WEATHER DATA

The forecasts and observations were based on ar-

chived forecast data for the month of January 2009 from

a local weather station. The month was split into two

14-day periods referred to here as weather datasets

A and B. To test whether participants were sensitive to

predictive interval reliability, each 14-day period was

duplicated and adjusted so that one version of each had

79% (11/14) of the observations within the 80% pre-

dictive interval (well calibrated) and the other had 64%

(9/14) of the observations within the 80% predictive

interval (ill calibrated). In all other respects they were

similar. The mean predictive interval width for all four

periods was 88F. The mean forecast error (predicted

minus observed temperature) was similar for the 79%

(SE 5 3.778F) and the 64% (SE 5 3.788F) calibration
levels. For all four periods the average error above the

single-value forecast was equal to the average error

below it. All four periods had two days on which the

observed temperature matched the single-value forecast

temperature. The last two nights in each verification set,

for which participants had seen the forecast, resulted in

correct rejections. Both the forecast temperature and

the observation were above 328F. Each participant

saw two different forecasts: one from weather dataset A

and the other from weather dataset B. Half of partici-

pants saw forecast A first and the other half saw forecast

B first.

FIG. 3. Deterministic forecast verification graphic for experiment 1.

2 Two weeks was selected as themaximum length for the graphic

that was clearly visible in most web browsers, but long enough to

depict trends.
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In the predictive interval condition in which verifica-

tion was provided, participants saw one example of each

of the calibration levels from different original weather

datasets. Half the participants saw a 79% calibration

first and half saw a 64% calibration first. Thus there were

three verification conditions with approximately equal

numbers of participants: well-calibrated (79%) first, ill-

calibrated (64%) first, and no-verification. The forecasts

and observations in the deterministic condition that

corresponded to these calibration sets were similarly

counterbalanced.

5) GRAPHICS

The single-value forecast was represented by a black

point and number, located vertically in a box with higher

position indicating higher temperature, 10 pixels for

every one degree Fahrenheit (Fig. 1). The key read,

‘‘The temperature will usually be closest to this value.’’

The predictive interval included a bracket as well, with

numbers at the ends indicating the upper and lower

bound temperatures of the 80% predictive interval

(Fig. 2). The predictive interval key read ‘‘8 in 10 days

like this, the temperature will be between these values.’’

A frequency definition was used because it corre-

sponded directly to the calibration metric and has been

shown to be superior to probability in some reasoning

tasks (e.g., Gigerenzer and Hoffrage 1995).

The verification graphics were built on the forecast

graphics for ease of interpretation (Figs. 3 and 4). They

showed 14 nighttime low temperature forecasts in

chronological order from left to right with forecasted

values in dark gray and observed values as black dots

connected with a black line. The verification keys in-

cluded an additional black arrow pointing to observed

temperature that said, ‘‘The temperature was measured

at this value on this day.’’

b. Results

First we examined participants’ temperature estimates

to determine whether they understood the forecast. Then,

to determine whether the predictive interval influenced

participants’ response to the forecast, we examined freeze

warning decisions, range of temperature expectations,

and certainty ratings comparing the predictive interval

to the deterministic format conditions. Next we exam-

ined answers to questions targeting participants’ un-

derstanding of the verification graphics. Finally we

examined whether participants would choose to use the

forecast again to determine whether predictive intervals

or verification influenced trust in the forecast.

1) UNDERSTANDING THE FORECAST

Some participants in the predictive interval condition

appeared to misunderstand the temperature forecast.

Asked what they thought the daytime high temperature

would be, they gave the value at the upper bound of the

interval. For the nighttime low temperature they gave

the value at the lower bound of the interval. There were

two possible explanations for these ‘‘errors.’’ One was

that participants mistook the bracket for an expression of

diurnal fluctuation with the top indicating the high tem-

perature and the bottom the low temperature for each

12-h period. Alternatively, participants may not have

believed that the forecast would verify exactly and choose

these values coincidentally. To distinguish between these

two explanations, we compared the predictive interval

condition to the deterministic condition where no

boundary values were included. For each participant we

calculated the total errors over the four temperature

questions in the first forecast and the four temperature

questions in the second forecast. Indeed, there were

significantly more errors in the predictive interval than

in the deterministic condition, ruling out the ‘‘coincidence’’

explanation (Table 1). A repeated-measures one-way

TABLE 1. Mean number of deterministic construal errors in

experiment 1 with standard deviations in parentheses.

Forecast format Forecast A Forecast B Total N

Predictive interval 0.82 (1.18) 0.48 (0.98) 0.65 (0.72) 155

Deterministic 0.20 (0.48) 0.29 (0.58) 0.25 (0.72) 147

Total 0.51 (0.63) 0.39 (0.59) 0.45 (0.71) 302

FIG. 4. Predictive interval forecast verification graphic for experiment 1.
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analysis of variance (ANOVA) was conducted on mean

errors with forecast format (predictive interval, de-

terministic) as the between groups independent variable

and forecast order (forecast 1, forecast 2) as the within

groups independent variable. Participants with pre-

dictive interval forecasts made significantly more errors

than did those with deterministic forecasts, F(1, 300) 5
23.41, p , 0.001. However, there were significantly

fewer errors on the second as compared to the first

forecast, F(1, 300) 5 5.41, p 5 0.02. In addition, there

was a significant interaction between forecast format

and forecast order, F(1, 300) 5 15.60, p , 0.001. Errors

decreased in the predictive interval condition from the

first to the second forecast, although they remained low

and approximately the same in the deterministic con-

dition. Because this suggests that participants using the

predictive interval misconstrued it as a deterministic

forecast with additional information about diurnal

fluctuation, we refer to it as a ‘‘deterministic construal

error’’ (DCE). Although the DCE constitutes a serious

misinterpretation, it appears that prior exposure alone

reduces it significantly, without explicit explanation.

2) INFLUENCE OF THE PREDICTIVE INTERVAL

The goal of the task was to decide whether to post

a freeze warning. Few participants in any condition de-

cided to post a warning for the single-value forecasts of

358, 378, and 388F (Table 2) and there were no significant

differences by forecast format (358F, p5 0.36; 378F, p5
0.19; and 388F, p 5 0.47). We focus here on the forecast

for 338F, for which 71% of participants overall decided

to post a warning. We conducted a logistic regression

analysis on the binary decision with forecast format

(predicative interval, deterministic) and forecast order

(forecast 1, forecast 2) as the independent variables. A

significantly greater proportion of those in the predictive

interval than in the deterministic condition decided to

post a warning, Exp(B) 5 13.74, p 5 0.003. In addition,

participants weremore likely to post a warning when the

338F forecast was presented second (81%) than first,

(52%), Exp(B) 5 8.31, p , 0.001. Moreover, there was

a significant forecast order by forecast format in-

teraction, Exp(B)5 4.35, p, 0.007. Few of those in the

deterministic condition posted a warning for 338F in the

first forecast (38%) while many more did so for 338F in

the second forecast (84%). For those in the predictive

interval condition, however, the majority posted warn-

ings for 338F in both the first (66%) and second (79%)

forecast.

The impact of the predictive interval was also seen

in participants’ temperature expectations. Participants

with predictive intervals expected lower temperatures

overall than did those using the deterministic forecast.

Participants indicated the temperatures they would not

be surprised to observe above and below each of the four

nighttime low temperature forecasts. We subtracted

participants’ answers from the single-value forecast and

calculated a mean difference score for the high-end and

low-end estimates across all four questions. A multi-

variate ANOVA conducted on participants’ mean high-

and low-end difference scores with forecast format

(predictive interval, deterministic) as the independent

variable revealed that the mean low-end difference

score was significantly smaller in the deterministic con-

dition (M 5 22.86, SD 5 1.43) than in the predictive

interval condition (M 523.92, SD 5 1.13), F(1, 300) 5
51.44, p, 0.001. Themean high-end difference scores in

the predictive interval (M 5 3.72, SD 5 1.85) and de-

terministic conditions (M 5 3.69, SD 5 2.55) were not

significantly different. This suggests that those with the

predictive interval anticipated lower temperatures than

did those using deterministic forecasts.

The influence of the predictive interval was also ob-

vious in participants’ certainty ratings made after the

second forecast (Table 3).3 Participants in the predic-

tive interval condition expected a significantly smaller

chance of temperatures a few degrees from the fore-

casted value. AmultivariateANOVAwas conducted on

mean percent chance selected for above the upper

bound temperature, below the lower bound tempera-

ture, and between the two, with forecast format (pre-

dictive interval, deterministic) as the independent

variable. Participants with predictive interval forecasts

TABLE 2. Percent of participants issuing a freeze warning for each

single-value temperature forecast in experiment 1 (excluding those

who made DCE on that forecast).

Temperature forecast 338F 358F 378F 388F

Predictive interval N 5 155 74% 23% 8% 3%

Deterministic N 5 147 67% 23% 4% 4%

Total N 5 302 71% 25% 6% 3%

TABLE 3. Mean certainty rating selected by participants in

experiment 1 for temperatures above the upper bound, between

the two bounds, and below the lower bound (standard deviations in

parentheses).

Above Between Below N

Predictive interval 28% (19%) 75% (16%) 24% (16%) 129

Deterministic 35% (16%) 75% (17%) 31% (16%) 104

3 Sixty-six participants, evenly distributed across conditions,

were omitted from this analysis because of an error in the question.

Therefore the N for these analyses is 231.
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indicated a significantly smaller chance of observing

temperatures above the upper bound than did those

with deterministic forecasts, F(1, 229) 5 11.24, p 5
0.001. They indicated a significantly smaller chance of

observing temperatures below the lower bound than did

those with deterministic forecasts, F(1, 229)5 10.27, p5
0.002. However, the mean percent chance of observing

temperatures between the two boundary values was

similar for the two forecast formats and not significantly

different, F(1, 229) 5 0.02, p 5 0.88.

Taken together, this set of analyses demonstrates that

the 80% predictive interval narrowed the range of

temperatures participants considered likely and alerted

them to colder outcomes. This combination may seem

initially contradictory. However, it is important to re-

member that narrowed range expectations were re-

vealed in smaller probability estimates for observing

temperatures a few degrees from the single-value fore-

cast. Colder outcome expectations were revealed in

lower temperature values, indicating what would not

surprise participants. We do not know the probability

that corresponds with participants’ notion of ‘‘not sur-

prising,’’ so it is not possible to match up participants’

answers to these two different questions. In fact, it may

be that predictive interval changes what would not sur-

prise people, precisely because it informs them of

a range of possible values. The bottom line, however, is

that this combination allowed them to post the warning

more often for the 338F temperature forecast.

3) UNDERSTANDING VERIFICATION GRAPHICS:
EVALUATING FORECAST PERFORMANCE

The next set of analyses, conducted on participants’

judgments of forecast performance over various time

periods, tested whether they understood the verification

graphics. Participants in the 80% predictive interval

condition saw two verification periods, one that was well

calibrated (79%) and one that was not (64%). If par-

ticipants understood the notion of calibration based on

the graphic alone, ratings for the 79% period should be

significantly higher than ratings for the 64% period and

that difference should exceed any difference in rating

among those in the deterministic condition who were

not exposed to calibration differences. For the first

verification period, all of the mean ratings4 were just

above themiddle of the 7-point scale (Table 4) and there

were no significant differences. At that point partici-

pants had nothing with which to compare, having seen

only one verification graphic. However, for the second

verification period a clear pattern emerged in which

participants with the predictive interval rated the 79%

calibration higher and the 64% calibration lower than

did those with the deterministic forecast. A univariate

ANOVA conducted on performance ratings in the sec-

ond verification period, with forecast format (predictive

interval, deterministic) and forecast calibration (79%,

64%) as the between-groups independent variables

revealed that participants rated the 79% calibration sig-

nificantly higher than the 64% calibration, F(1, 216) 5
33.95, p , 0.001. In addition, there was a significant

interaction between forecast calibration and forecast

format F(1, 216) 5 5.02, p 5 0.026. Those in the pre-

dictive interval condition made a greater distinction

between the two calibrations than did those with the

deterministic forecast.

We also asked participants to identify the single week

within each 2-week period in which the forecast per-

formed better. Because the second week in each period

had both lower error and better calibration, participants

who understood the verification graphic in both the

deterministic and the predictive interval conditions

should have chosen the second week. Indeed, this was

the choice of themajority of participants in both forecast

format conditions (Table 5). Chi-square analyses con-

ducted on the number of participants selecting the cor-

rect week in the first verification period confirmed that

the proportion was significantly greater than would be

TABLE 4. Mean forecast performance rating (standard deviations in parentheses) for first and second verification period by calibration in

experiment 1 (7-point scale with higher number indicating better performance).

Forecast format

First verification period Second verification period

79% 64% Total 79% 64% Total

Predictive interval 4.39 (1.19) 4.58 (0.93) 4.49 (1.06) 4.86 (1.13) 3.65 (1.00) 4.27 (1.22)

N 5 54 N 5 57 N 5 111 N 5 57 N 5 54 N 5 111

Deterministic 4.45 (0.86) 4.26 (0.91) 4.36 (0.89) 4.61 (1.19) 4.07 (1.14) 4.34 (1.19)

N 5 55 N 5 54 N 5 109 N 5 54 N 5 55 N 5 109

Total 4.42 (1.03) 4.42 (0.93) 4.42 (0.98) 4.74 (1.16) 3.87 (1.08) 4.30 (1.20)

N 5 109 N 5 111 N 5 220 N 5 111 N 5 109 N 5 220

4 The original rating scale ranged from 1 (outstanding) to 7

(terrible); however, it was inverted in these analyses so that

a higher rating indicates better performance.
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expected by chance in both the deterministic (x2 5
75.97, p , 0.001) and the predictive interval conditions

(x2 5 59.11, p , 0.001). Similarly, for the second veri-

fication period, significantly more participants than ex-

pected by chance selected the correct week in both the

deterministic (x2 5 57.26, p , 0.001) and the predictive

interval conditions (x2 5 62.06, p , 0.001).

Finally, participants rated forecast performance on

three individual days. We focus here on the two days

with identical error for which one observation was

within and the other outside of the predictive interval

bracket. If those in the predictive interval condition

understood that the intent of the bracket graphic was to

capture the majority of observed temperatures, a con-

cept that was not explicitly explained to participants,

they should have rated the ‘‘within’’ day higher than the

‘‘outside’’ day. Indeed, the majority of participants with

the predictive interval did so. However, those in the

deterministic condition rated the two days approxi-

mately equally (Table 6). For this analysis, the patterns

of ratings in the first and second verification periods

were similar so we combined them by calculating means

for each day. A repeated measure ANOVA on ratings,

with days (‘‘within’’, ‘‘outside’’) as the within-groups

independent variable and forecast format (predictive

interval, deterministic) as the between-groups in-

dependent variable revealed that participants in the

predictive interval condition rated the days significantly

higher overall than did those in the deterministic con-

dition F(1, 218) 5 14.85, p , 0.001. In addition, the

‘‘within’’ day was rated significantly higher than the

‘‘outside’’ day, F(1, 218) 5 93.88, p , 0.001. Impor-

tantly, there was a significant interaction between fore-

cast format and day indicating that there was a greater

discrepancy in the rating for the two days among par-

ticipants in the predictive interval condition than in the

deterministic condition, F(1, 218)5 113.78, p, 0.001. In

other words, although the error in the single-value

forecast was identical, those in the predictive interval

regarded performance of the two forecasts as markedly

different.

It is obvious from these analyses that participants in

both conditions understood the verification graphics

based on the written explanation in the key. This

information, pointing out the forecasted and observed

temperatures, was sufficient to allow those in the de-

terministic condition to select the week with the least

error. It was sufficient to allow those in the predictive

interval condition to identify the two-week period that

was well calibrated, despite the fact that the single-value

forecast error was almost identical to that in the ill-

calibrated period. Furthermore it is clear that the

majority of participants understood the intent of the

predictive interval graphic because they rated the day

in which the observation was within the bracket more

highly than the one in which it was outside of the

bracket.

4) TRUST IN THE FORECAST

One of our main questions concerned trust in the

forecast. As an indication of trust, we asked participants

if they would use the same kind of forecast again. A

greater proportion of those with the predictive interval

forecast said ‘‘yes’’ both times they were asked (Table 7).

Two separate binary logistic regressions were performed,

one for participants’ responses to this question asked

after each forecast. After the first forecast, partici-

pants in the predictive interval condition were more

than twice as likely to decide to use the forecast again

as were those in the deterministic condition, Exp(B) 5
2.12, p5 0.002. After the second forecast, participants in

the predictive interval condition were again more than

twice as likely to decide to use the forecast again as those

in deterministic condition, Exp(B) 5 2.31, p , 0.001.

There was no effect of verification, Exp(B) 5 0.74, p 5
0.25, tested only in the second forecast. Interestingly,

a McNemar’s chi-square statistic suggests that signifi-

cantly fewer participants overall said they would use

the forecast again the second time they are asked as

compared to the first time they are asked, l2 5 27.91,

p , 0.001.

c. Discussion of experiment 1

Thus, experiment 1 established that the majority of

participants understood both the predictive interval and

verification graphics based on a simple key. Moreover,

TABLE 5. Percent of participants in experiment 1 identifying

second week forecast, with less error and better calibration, as

better performing.

Verification period First Second Total

Predictive interval 87% 87% 87% (N 5 111)

Deterministic 92% 86% 89% (N 5 109)

Total 89% 87% 88% (N 5 220)

TABLE 6. Mean and standard deviation of forecast performance

ratings (1–3 with higher number indicating better performance) for

three individual days in experiment 1.

Within

day

Outside

day

Matching

day Total

Predictive

interval

2.15 (0.58) 1.29 (0.43) 2.91 (0.26) 2.11 (0.27)

N 5 111

Deterministic 1.42 (0.47) 1.44 (0.44) 2.9 (0.37) 1.93 (0.27)

N 5 109

Total 1.79 (0.64) 1.36 (0.44) 2.9 (0.27) N 5 220
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predictive interval graphics significantly influenced ex-

pectations, 1) narrowing the range of temperatures that

seemed likely, thereby 2) allowing participants to con-

sider lower temperatures and 3) encouraging them to

take precautionary action more often.

To understand these advantages, it is useful to con-

sider responses in the deterministic condition. Notice

that those in the deterministic condition expected al-

most a degree less error below as opposed to above the

single-value forecast. This may be because they regar-

ded colder temperatures as locally unusual. Indeed,

there is evidence that people expect rare single-value

forecasts to verify closer to normal values, in this case,

warmer (Joslyn and Savelli 2010). Perhaps this effect

extends to the merely unusual temperatures of concern

here. If so, it suggests that predictive intervals may assist

people in overcoming prior expectations, in this case by

alerting them to the real possibility of colder tempera-

tures in the current situation. This in turn encourages

them to precautionary action.

It is also interesting to note that in the deterministic

condition themajority of participants postedwarnings for

the 338F forecast only when it was presented second,

suggesting that they needed to observe several forecasts

to judge when precautionary action was warranted.

However, the majority of those in the predictive interval

condition posted awarning for 338F regardless of whether

it was presented first or second, suggesting that the pre-

dictive interval supplied the relevant information.

Thus, experiment 1 provides evidence for several

clear advantages for predictive interval forecasts that

could extend to many similar decision-making tasks.

Importantly, although the predictive interval graphic

was substantially more complex, a significantly greater

proportion of participants claimed they would use it

again as compared to those using the deterministic

forecast, demonstrating that participants were aware of

the value of the predictive interval forecast and sug-

gesting that they trusted it.

However, some of those using the predictive interval

initially misinterpreted the graphic. Their responses

suggested that they thought it was a deterministic forecast

with additional information about diurnal fluctuation.

This is psychologically similar to errors in interpretation

for other probabilistic forecasts. For instance, a common

misinterpretation of probability of precipitation is that

it is a deterministic forecast with additional information

about the proportion of time or area over which precip-

itation will be observed (Murphy et al. 1980; Gigerenzer

et al. 2005; Joslyn et al. 2009). There is anecdotal ev-

idence for a similar misinterpretation of the cone of

uncertainty, showing potential hurricane tracks. It is

often misinterpreted as depicting the wind field, a de-

terministic forecast. Why do people make this mistake?

Misinterpreting probabilistic forecasts as deterministic

may function to reduce cognitive load. A probabilistic

forecast requires that one continues to consider multiple

possible outcomes throughout the decision process

whereas a deterministic forecast does not. Thus, the

deterministic interpretation may be psychologically

‘‘easier,’’ although this is not necessarily a conscious

choice. Some participants may have simply assumed

that the forecast expressed diurnal fluctuation, based

on the graphics alone without bothering to read the

key. This may have been exacerbated by the lengthy

definition provided for the single-value forecast. These

issues were addressed in experiment 2.

In addition, although those in the predictive interval

condition expected a smaller chance of observing tem-

peratures beyond the interval than did those in the de-

terministic condition, they expected almost twice as great

a chance of observations above and below the interval

(about 20%) as was intended by the forecast (10%). This

is what one would expect if participants regarded the

forecast as overconfident. It suggests that participants

believed the interval would fail to capture as many ob-

servations as intended. On the other hand this effect may

have been due to the definition provided in the key that

focused on the values within the interval (8 in 10). To

determine the chance of observations above or below

the interval, a multiple step calculation was required

involving converting frequency into percent [(8/10) 3
100 5 80%], subtracting that amount from 100%

(100%2 80%), and then dividing by 2 (20%/25 10%).

TABLE 7. Percent of participants in experiment 1 indicating that they would use the forecast again.

Forecast format Forecast 1 (no verification)

Forecast 2

No verification Verification (64% and 79%) Total

Predictive interval 66% 57% 51% 53%

N 5 155 N 5 44 N 5 111 N 5 155

Deterministic 48% 39% 30% 33%

N 5 147 N 5 38 N 5 109 N 5 147

Total 58% 49% 41% 43%

N 5 302 N 5 82 N 5 220 N 5 302x
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Omitting the last step in this process could lead to the

error that was observed here. We attempted to resolve

this issue in experiment 2 as well.

Finally, although it was clear that participants under-

stood the verification graphics, verification did not impact

trust in the forecast. However, effects on trust may have

been obscured by effects due to forecast order. Recall

that there was a reduction in the number of participants

saying they would use the forecast again after the second

forecast. Because the impact of verification on trust could

only be tested in the second forecast after participants

had been introduced to the verification graphics the order

effect may have overpowered an effect of verification.

Experiment 2 attempted to disentangle the two.

3. Experiment 2

Experiment 2 was conducted to replicate the main

findings of experiment 1, to test methods for reducing

the two errors in interpreting the predictive interval

forecast described above, and to provide a stronger test

of the effect of verification on user trust.

In an attempt to reduce deterministic construal errors,

the experimenter read the keys aloud to ensure that all

participants were exposed to this information at the

beginning of the experiment. In addition, the definition

for the single-value forecast was simplified to ‘‘best

forecast’’ to emphasize this value. If the DCEs in ex-

periment 1 were due to ignoring or misunderstanding

the definition provided in the key, then there should be

no more DCEs in the predictive interval than in the

deterministic conditions in experiment 2.

In addition, the predictive interval definition was

changed to specify the probability (10%) of observing

temperatures beyond each boundary. If the probability

selected by participants in experiment 1 was due to

a calculation error, rather than to regarding the forecast

as overconfident, then it should be reduced with the new

definition.

The procedure in experiment 2 was simplified as well

in an attempt to disentangle any potential verification

effects from order effects. Participants responded to

a single forecast presented after an instruction phase in

which all of the graphics were introduced. This allowed

us to test whether exposure to the verification graphic,

manipulated in the instruction phase, affected partici-

pants trust in their initial encounter with the forecast.

a. Method

1) DESIGN

The experiment was a two by two full factorial design.

Participants were randomly assigned to either a predictive

interval or a deterministic forecast condition. Within each

forecast format condition participants were randomly

assigned to either verification or no verification. The de-

pendant variables were the expected temperatures, freeze

warning decision, uncertainty rating, forecast performance

evaluation, and trust decision.

2) PARTICIPANTS

Participants were 312 University of Washington in-

troductory psychology students of whom 54% were

women. They ranged in age from 18 to 39 years old.

They received course credit for their participation.

3) PROCEDURE

The procedure for experiment 2 was similar to that of

experiment 1 with two exceptions. First, after explaining

the computer interface and the freeze warning task, the

experimenter showed an example of the forecast graphic

and read the text in the key aloud (see the appendix).

For those in the verification conditions, the experi-

menter then showed a 14-day verification graphic, with

79%of the observations within the interval, and read the

key aloud. After the instruction phase, participants an-

swered the same questions as were asked in experiment 1

about a single 2-day forecast. Uncertainty ratings were

requested only of participants in the nonverification

conditions. Those in the verification conditions were not

exposed to the uncertainty concepts introduced in the

questions to avoid influencing their understanding of the

verification graphic. Instead, a verification graphic was

presented and participants answered the three forecast

performance evaluation questions from experiment 1.

The rating scale for the question targeting 2-week period

and individual days was changed to 7-point scale, rang-

ing from 1 (very bad) to 7 (very good), to make them

more similar to one another.

4) WEATHER DATA

The forecasts and observations were based on the same

archived forecast data used in experiment 1. The first

14-day period, used in the instruction phase, was adjusted

so that 79% of the observations were within the interval

and the standard error was 3.98F. The second 14-day

period was adjusted to produce two calibration levels,

79% (SE 5 3.5) and 64% (SE 5 3.7). For both verifica-

tion sets the mean error above and below the deter-

ministic forecast was about 3.58F and mean predictive

interval width was 7.718F. The predictive interval widths

for three of the four forecasts (2 days and 2 nights) were

reduced to 68F to provide a more precise forecast. Again,

there were three verification conditions with approxi-

mately equal numbers of participants: well-calibrated

(79%), ill-calibrated (64%), and no-verification.
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5) GRAPHICS

The graphics from experiment 1 were changed for

experiment 2 to reflect the changes in forecast values

and text in the key described above (Fig. 5).

b. Results

1) UNDERSTANDING THE FORECAST

Using the same data analysis plan as for experiment 1,

we began by examining participants’ temperature esti-

mates. Despite reading the key aloud and simplifying

the definition, DCEs were approximately as common in

the predictive interval condition in experiment 2 (M 5
0.63, SD5 1.04) as they had been in experiment 1 (M5
0.65, SD5 0.72). Moreover, the mean number of DCEs

across all four questions was significantly greater in the

predictive interval than in the deterministic forecast

condition (M 5 0.20, SD 5 0.47) according to an in-

dependent samples t test, t(1, 310) 5 24.75, p , 0.001.

2) IMPACT OF THE PREDICTIVE INTERVAL

As with experiment 1, significantly more participants

with predictive intervals (60%) than with deterministic

forecasts (41%) decided to post a freeze warning for the

338F forecast, Exp(B) 5 2.18, p 5 0.001. Very few par-

ticipants (2%) decided to post a warning for the warmer

(388F) nighttime low forecast and there were no signifi-

cant differences between groups, Exp(B)5 5.38, p5 0.13.

Participants’ temperature expectations were also

influenced by predictive interval forecasts. As with ex-

periment 1, those using predictive intervals indicated that

they would not be surprised by temperatures that were

generally colder than temperatures indicated by par-

ticipants using deterministic forecasts. Again, difference

scores were calculated by subtracting participants’ high-

and low-end temperature estimates from the single-value

forecast.AmultivariateANOVAwas conducted onmean

high-end and low-end difference scores with forecast for-

mat (predictive interval, deterministic) as the independent

variable. Participants’ mean low-end difference score was

significantly larger in the predictive interval condition

(M 5 23.41; SD 5 1.71) than in the deterministic condi-

tion (M522.54; SD5 2.01),F(1, 310)5 16.92, p, 0.001.

Participants’ mean high-end difference score was signifi-

cantly smaller in the predictive interval condition (M 5
3.38; SD5 1.72) than in the deterministic condition (M5
4.08; SD 5 2.53), F(1, 310) 5 8.04, p 5 0.005.

The influence of the predictive interval was also obvi-

ous in participants’ certainty ratings (Table 8). As with

experiment 1, participants in the predictive interval

condition expected a significantly smaller chance of

temperatures a few degrees from the forecasted value.

FIG. 5. Predictive interval forecast graphic for experiment 2, forecast A.

TABLE 8. Mean certainty rating selected by participants for observing temperatures above the upper bound, between the two bounds, and

below the lower bound in experiment 1 (no-verification condition only) and experiment 2 (standard deviations in parentheses).

Forecast format Above Between Below

Predictive interval Experiment 1 N 5 44 22% (16%) 81% (13%) 20% (15%)

Experiment 2 N 5 50 13% (11%) 78% (16%) 14% (13%)

Deterministic Experiment 1 N 5 38 33% (15%) 79% (19%) 24% (14%)

Experiment 2 N 5 50 29% (18%) 74% (21%) 33% (20%)
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A multivariate ANOVA was conducted on mean

percent chance selected above the upper bound tem-

perature, below the lower bound temperature, and be-

tween the two, with forecast format (predictive interval,

deterministic) as the independent variable. Participants

with predictive interval forecasts indicated a signifi-

cantly smaller chance of observing temperatures above

the upper bound than did those with deterministic

forecasts F(1, 98) 5 26.68, p , 0.001. They indicated

a significantly smaller chance of observing temperatures

below the lower bound than did those with deterministic

forecasts, F(1, 98) 5 32.62, p , 0.001. Although the

mean percent chance of observing temperatures be-

tween the two boundary values was larger in the pre-

dictive interval than deterministic condition, F(1, 98) 5
1.56, p 5 .24, the difference did not reach significance.

Notice that the mean percent chance in the deter-

ministic condition is remarkably similar to that in ex-

periment 1; however, in the predictive interval condition,

the percent chance beyond the boundary values is about

half a large as that in experiment 1 andmuch closer to the

10% intended by the forecast, suggesting that the change

in key definition helped. Indeed, this difference was sig-

nificant in a multivariate ANOVA5 conducted on the

three intervals (i.e., above the upper bound, below the

lower bound, and between the two boundaries) with ex-

periment (1, 2) and forecast format (predictive interval,

deterministic) as independent variables. The mean per-

cent chance above the upper bound was significantly

smaller in experiment 2, F(1, 178)5 8.24, p 5 0.005. For

mean percent chance below the lower bound, there was

a significant interaction F(1, 178) 5 10.10, p 5 0.002, in-

dicating that the mean percent chance selected in the

deterministic condition was larger in experiment 2 while

it was smaller in the predictive interval condition.

3) UNDERSTANDING VERIFICATION GRAPHICS:
EVALUATING FORECAST PERFORMANCE

Next we examined participants’ evaluation of forecast

performance over the three time periods. For the two-

week period, those in the predictive interval condition

rated the 79% calibration higher (M5 4.39, SD5 1.33)

than the 64% calibration (M 5 4.02, SD 5 1.18). Those

in the deterministic condition rated the 79% (M5 4.29,

SD5 1.44) only slightly higher than the 64% (M5 4.17,

SD 5 1.12). However, neither the main effect for cali-

bration F(1, 208) 5 1.85, p , 0.18 nor the interaction

F(1, 208) 5 0.49, p , 0.48 reached significance in this

analysis. For the one-week period, chi-square analyses

revealed that a significant majority of those in both the

deterministic (98%), x2 5 101.15, p , 0.001, and pre-

dictive interval (92%), x2 5 70.14, p, 0.001 conditions

correctly choose the week with lower error and better

calibration. For the individual day ratings (Table 9),

a repeated measures ANOVAwas conducted on rating

for the two days with identical error, with day (observa-

tion within, outside the predictive interval) as the within-

groups independent variable and forecast format (de-

terministic, predictive interval) as the between-groups

independent variable. Participants with the predictive

interval rated the days significantly higher overall than

did those with the deterministic forecast F(1, 210)5 9.34,

p5 0.003. In addition, participants rated the ‘‘within’’ day

significantly higher than the ‘‘outside’’ day, F(1, 210) 5
152.20, p , 0.001. Importantly, there was a significant

interaction between forecast format and day, indicating

that the discrepancy in rating between the two days was

much greater for participants in the predictive interval

condition than for those in the deterministic condition,

F(1, 210)5 114.08, p , 0.001.

4) TRUST IN THE FORECAST

Finally, we asked how the graphics influenced par-

ticipants’ trust in the forecast as reflected in their choice

to use the same kind of forecast again. Here we found

that trust was enhanced both by the predictive interval

forecast and by verification (Table 10). A binary logistic

regression was performed on participants response with

forecast format (deterministic, predictive interval) and

verification (verification, no verification) as the between-

participants independent variables. Participants in the

predictive interval condition were almost twice as likely

to decide to use the forecast again as were those in the

deterministic condition, Exp(B) 5 1.75, p 5 0.03. In ad-

dition, participants with verification were twice as likely

to decide to use the forecast again as those without ver-

ification Exp(B) 5 2.18, p 5 0.003.

TABLE 9. Mean forecast performance ratings (1–7) for the three individual days for experiment 2 with standard deviation in parentheses.

Forecast format Within day Outside day Matching day Total

Deterministic N 5 109 3.38 (1.2) 3.51 (1.11) 6.22 (0.73) 4.37 (0.08)

Predictive interval N 5 103 4.83 (1.18) 2.91 (1.25) 6.21 (0.74) 4.65 (0.08)

Total N 5 212 4.17 (0.77) 3.15 (1.25) 6.22 (0.73) 4.51 (0.06)

5 We include only the no-verification condition from experiment

1 so that it is comparable to experiment 2 in which these questions

were only asked in the no-verification conditions.
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c. Discussion of experiment 2

All of the major effects found in experiment 1 were

replicated in experiment 2, providing strong evidence

that predictive interval forecasts influence participants

understanding of future weather events as well as the

resulting decisions. As with experiment 1, participants

in both conditions appear to have understood the ver-

ification graphics. Both those using the deterministic

and predictive interval forecasts selected the week with

the least error. Predictive interval participants rated

the day for which the observation fell within the in-

terval significantly higher than the day for which it fell

outside of the interval, despite the fact that both ob-

servations were 48F from the single-value forecast. In

addition, most of those in the predictive interval con-

dition identified the better-calibrated 2-week period,

although the effect failed to reach significance perhaps

because of the simplified procedure in which only one

verification graphic was evaluated. Recall that in ex-

periment 1 the effect was prominent only on the second

evaluation after participants had interacted with a

previous graphic.

Only one of the two attempts to reduce interpretation

errors was completely successful. Participants estimated

smaller percentages beyond the predictive interval with

the new probability-beyond definition, suggesting that

much of the overestimation in experiment 1 was due to

a calculation error. Unfortunately, however, the number

of DCEs was approximately equivalent to that observed

in experiment 1, despite reading the key out loud and

referring to the single-value forecast as ‘‘best.’’ This

suggests that for some participants the DCE is a partic-

ularly persistent misconception. The implications of

these two results will be discussed in the conclusions

below.

In addition, in experiment 2 there was a significant

advantage for verification. Both predictive interval and

verification graphics appeared to have increased trust in

the forecast, as those who used them were more likely to

choose to use the same kind of forecast again than were

those with no verification graphics.

4. Conclusions

In the two experiments reported here, we demon-

strated that nonexpert end users understood simple

graphics depicting the 80% predictive interval as well as

verification graphics for both deterministic and proba-

bilistic forecasts. Because participants were given only

the information in a simple key and no explicit training,

this suggests that such information could be successfully

conveyed to general public end users in a web or print

format.

Moreover, the 80% predictive interval significantly

influenced participants’ understanding of the future

weather. In this freeze warning task, it alerted users to

the possibility of colder temperatures, at the same time

narrowing the range of temperatures that were regarded

as likely. Importantly, the predictive interval influenced

decisions, encouraging participants to take precautionary

action. As such, the predictive interval forecast reduced

risk seeking, an error that is common in situations inwhich

precautionary action is regarded as costly (Joslyn and

LeClerc 2012).

Furthermore, the predictive interval increased trust in

the forecast. Those using the predictive interval were

more likely to say that they would choose it again, in

both experiments, compared to those using the de-

terministic forecast. This is particularly impressive be-

cause the predictive interval forecast was considerably

more complex, with more information to process, much

of which was abstract in nature and unfamiliar to the

undergraduate participants in this study. These results

suggest that, despite the additional cognitive load, par-

ticipants clearly saw the value of the predictive interval

forecast.

What about the impact of verification? In experiment 1

trust in the forecast was not influenced by verification

graphics, perhaps because of the order effects detected

in that experiment. When the procedure was simplified

in experiment 2, those with verification were more likely

to say that they would use the forecast again, constitut-

ing evidence that verification also increased trust in the

forecast. This was true both of the predictive interval

and deterministic conditions, suggesting that simple

verification graphics may provide general public end

users with information required to evaluate a wide range

of forecasts. However, the fact that this effect was ob-

scured by order in experiment 1 suggests that it is not

robust. Obviously additional research is required before

clear recommendations can be made.

We also noted two important misunderstandings of

the graphics as well as methods for reducing them. In

experiment 1 participants thought the probability of

observations beyond the 80% predictive interval was

TABLE 10. Percent of participants indicating that they would use

the forecast again in experiment 2.

Forecast format No verification Verification Total

Deterministic 46% 73% 65%

N 5 50 N 5 109 N 5 159

Predictive interval 72% 78% 76%

N 5 50 N 5 103 N 5 153

Total 59% 75% 70%

N 5 100 N 5 212 N 5 312
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about twice what was intended. This appears to have

been largely due to the definition, which focused on the

proportion of observations expected within the interval,

thus requiring additional calculations to determine the

percentage beyond it. In experiment 2, the interval was

defined in terms of the probabilities of observing tem-

peratures above and below the boundaries of the in-

terval, providing participants with information that was

compatible with the questions targeting these values.

This led to probability estimates that were muchmore in

line with what was intended and illustrates the impor-

tance of expressing the forecast in a manner that is

compatible with use. Interestingly, the ‘‘beyond’’ defi-

nition used in experiment 2 did not appear to have

a negative impact on participants understanding of the

probability of observing temperatures within the in-

terval. In fact, the estimate was somewhat closer to the

80% intended by the predictive interval forecast in ex-

periment 2 than it was in experiment 1 in which the

within definition was used. This suggests that the

‘‘probability-beyond’’ definition used in experiment 2

may indeed be more easily understood by users than the

‘‘frequency-within’’ definition that was used in experi-

ment 1. In addition, it appears that there was little dif-

ference between the two definitions in all other respects,

as the results were very similar for the two experiments

in terms of both understanding the predictive interval

and its impact on decision making.

The second major misunderstanding was the deter-

ministic construal error. Not only does this error prevent

users from taking advantage of the uncertainty infor-

mation, but it also affects their understanding of the

single-value forecast. The good news is that DCEs were

considerably reduced by prior experience and familiar-

ity with the forecast. In experiment 1 we saw a significant

decline in DCEs on the second forecast. We did not see

an equally low level of errors with mere exposure to the

forecast in the instruction phase of experiment 2. Per-

haps one must deliberately interact with the forecast,

using it to answer specific questions, to reach this level of

understanding.

Since thesemisunderstandings have clear solutions we

are confident that predictive intervals could be benefi-

cial to general public end users in a variety of domains.

The predictive interval is a particularly adaptable form

of uncertainty information because the forecaster need

not know the users’ specific threshold of concern. As

such the same forecast can be applied to a variety of

decision tasks. Furthermore, because predictive in-

tervals explicitly acknowledge forecast uncertainty, they

can be regarded as reliable when compared with a range

of observations. Thus, forecasts that include an estimate

of uncertainty, like the predictive interval, may well

counteract the negative impact of high-profile misses

such as ‘‘No-maggeden’’ described in the introduction.
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APPENDIX

Instructions to Participants

a. Experiment 1

‘‘These are weather forecasts from a new weather

website. Please answer the questions below the display

to the best of your ability, using the information on

the website. Assume that it is your job to issue freeze

warnings (temperatures are expected to fall below 328F)
in an agricultural community. Freezing temperatures

can result in partial loss in yield and/or quality of current

and future harvests. Farmers use the warning to decide

when to protect crops. Protective measures involve

covering plants with lightweight plastic to reduce heat

loss. These measures are costly, as additional labor must

be hired to place the covers over the plants and then

remove them when temperatures rise above freezing.

For this reason, it is important NOT to issue freeze

warnings unless freezing temperatures are expected,

because farmers would implement expensive precautions

for which there was no need.’’

b. Experiment 2

Forecast graphic is shown and experimenter says,

‘‘These are weather forecasts from a new weather

website. Please study the graphic and be sure you un-

derstand it. Notice the forecast is for two days, with

nighttime low and daytime high information for both

days. There is also a key below. The key says [experi-

ment reads text in key].’’

Verification graphic is shown and experimenter says,

‘‘Below is a two-week graph for the nighttime low

temperature from January 1st to 14th that shows how

well the forecast did. Please study the graphic and be

sure you understand it. Again, there is a key below. It

says [experimenter reads text in key].’’

[Experimenter then reads task description identical to

experiment 1 instructions here.]
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