

Communicating Warnings: Does Color-Coding Help?

Gala Gulacsik, Susan L. Joslyn, & John Robinson **University of Washington**

Introduction

- Currently, severe weather risk is communicated using "Watches" and "Warnings," although their effectiveness is debated.
- Research suggests that including explicit numeric probabilities in forecasts improve people's understanding of risk as well as the quality of their decisions [1].
- However, in a dynamic situation with multiple updates, including probabilities with each may overwhelm users ability to process the information.
- In many applied contexts, color-coded risk information is promoted as a simpler approach despite minimal evidence supporting this claim.

Research Questions

- Do people make better decisions with event likelihood information compared to the conventional Watch & Warning forecasts?
- Does the expression of likelihood make a difference to understanding (e.g. numerical, color-coded).
- Do people trust one format more than another?

Dependent Variables

- Likelihood Rating: Impossible Certain
- <u>Severity Rating</u>: Not severe Very severe
- Not at all Completely • Trust Rating:
- Decision Quality: Expected Loss ((Cost of Shelter or Penalty) x Pr(Hitting Home))

Results: Understanding

Method

Task

- Participants (N=268) experienced 40 virtual storms (trials) that could produce tornadoes. Wind speeds of all storms were 73-112 mph.
- Participants received 7 sequential forecasts per trial. At each of the 7 decision points, they chose to *wait* for more information or to make a final decision for that trial – to take shelter or not take shelter. They learned whether a tornado hit at the end of the trial (based on a experiment by Schwartz and Howell, 1985).
- Participants earned extra credit and a cash reward for performance.

Cost-Loss Structure

Starting balance of 24,000 points. Participants were to minimize costs and losses.

Decision Cost Wait Decision points 1-3: no cost Decision points 4-7: 20-points per wait decision Shelter Cost = $300 + [3 * decision point^2]$ Take Shelter Not Take Shelter No cost

1500-point penalty if a tornado hit and the participant chose to not take shelter

Conditions & Stimuli

Longitude (Decision Point)

Participants were randomly assigned to one of 3 between groups conditions.

1) Watch & Warning	2) Color	Probability	Optimal Decision
no watch or warning		< 13%	Not shelter
watch		$\geq 13\%$ and $\leq 24\%$	Wait
warning		> 24%	Take Shelter

Likelihood Rating

- Main Effect: Likelihood difference was greatest in Color and Watch & Warning forecasts, and lowest in Probability, F(2,765) =324.88, p<.001, η^2 =.85.
- Main Effect: As tornado probability increased so did the error in likelihood rating, F(2,765) =241.29, p < .001, $\eta^2 = .63$.
- Interaction: Likelihood difference was greater in the higher tornado probability for Color and Watch & Warning than for Probability forecasts *F*(4,765)=7.29, *p*<.001.

Results: Trust

• Trust in Probability (M=48.65, SD=18.49) > Color (M=40.16, SD=18.61), p<.01, but was not significantly different from the Watch & Warning forecasts (M=45.94, SD=19.11).

Mistaking Likelihood for Severity

Main Effect: Participants with color-coded forecasts showed the least difference in likelihood and severity ratings suggesting that they were mistaking likelihood for severity, and those with probability showed the most difference, $F(2,255) = 15.23 p < .001, \eta^2 = .12$.

Storm Location Grid with Forecast Stimuli and Optimal Decision

		1	2	3	4	5	6	7	8	
					no w/w	no w/w	no w/w	no w/w	no	Optimal Decision Key.
	1				green 6%	green 3%	green 0%	green 0%	tornado hit	wait
				watch	no w/w	no w/w	no w/w	no w/w	no	take shelter
	2			yellow 13%	green 12%	green 11%	green 9%	green 0%	tornado hit	not take shelter
			watch	watch	watch	watch	watch	warning	no	
	3		yellow	yellow	yellow	yellow	yellow	orange	tornado	
		. 1	19%	20%	21%	23%	24%	30%	hit	
	4	watch	watch	watch	warning	warning	warning	warning	tornado	
2	4	yellow 20%	yellow 21%	yellow 23%	orange 25%	orange 29%	orange 34%	orange 40%	hit	
			watch	watch	watch	watch	watch	warning	no	
	5		yellow	yellow	yellow	yellow	yellow	orange	tornado	
			19%	20%	21%	23%	24%	30%	hit	
	-			watch	no w/w	no w/w	no w/w	no w/w	no	
	6			yellow	green	green	green	green	tornado	
de				13%	12%	11%	<u>9%</u>	0%	hit	
Latitude	7				no w/w	no w/w	no w/w	no w/w	no tornado	
Lat	/				green 6%	green 3%	green 0%	green 0%	tornado hit	
					070	570	070	070	IIIt	

Conclusions

References

- Despite the expected heavy cognitive load of numeric probabilities, participants made better decisions, understood the forecasts best, and trusted, and did so with multiple forecasts updates.
- Decision quality and trust in the forecast was lowest for watch & warning and color-coding decisions.

Between subjects: <u>Forecast format (Watch & Warning; Color; Probability</u>)

Within subjects: <u>Tornado Probability Range</u>

