Communicating Warnings: Does Color-Coding Help?

Gala Gulacsik, Susan L. Joslyn, \& John Robinson University of Washington

Introduction

- Currently, severe weather risk is communicated using "Watches" and "Warnings," although their effectiveness is debated.
- Research suggests that including explicit numeric probabilities in forecasts improve people's understanding of risk as well as the quality of their decisions [1].
- However, in a dynamic situation with multiple updates, including probabilities with each may overwhelm users ability to process the information.
- In many applied contexts, color-coded risk information is promoted as a simpler approach despite minimal evidence supporting this claim.

Research Questions

- Do people make better decisions with event likelihood information compared to the conventional Watch \& Warning forecasts?
- Does the expression of likelihood make a difference to understanding (e.g. numerical, color-coded).
Do people trust one format more than another?

Method

Task

- Participants ($\mathrm{N}=268$) experienced 40 virtual storms (trials) that could produce tornadoes. Wind speeds of all storms were $73-112 \mathrm{mph}$.
- Participants received 7 sequential forecasts per trial. At each of the 7 decision points, they chose to wait for more information or to make a final decision for that trial - to take shelter or not take shelter. They learned whether a tornado hit at the end of the trial (based on a experiment by Schwartz and Howell, 1985).
- Participants earned extra credit and a cash reward for performance.

Cost-Loss Structure

Starting balance of 24,000 points. Participants were to minimize costs and losses.

Decision	Cost
Wait	Decision points 1-3: no cost
	Decision points 4-7: 20-points per wait decision
Take Shelter	Shelter Cost $=300+\left[3 *\right.$ decision point $\left.^{2}\right]$
Not Take Shelter	No cost

1500-point penalty if a tornado hit and the participant chose to not take shelter

Conditions \& Stimuli

Participants were randomly assigned to one of 3 between groups conditions.

1) Watch \& Warning	2) Color	3) Probability	Optimal Decision
no watch or warning		$<13 \%$	Not shelter
watch	$\geq 13 \%$ and $\leq 24 \%$	Wait	
warning		$>24 \%$	Take Shelter

Storm Location Grid with Forecast Stimuli and Optimal Decision

Optimal Decision Key. \square wait
\square take shelter
\square not take shelter

Indent Variables
Between subjects: Forecast format (Watch \& Warning; Color; Probability) Within subjects: Tornado Probability Range

Dependent Variables

- Likelihood Rating: Impossible	Certain	
- Severity Rating:	Not severe	Very severe
- Trust Rating:	Not at all	Completely

- Decision Quality: Expected Loss ((Cost of Shelter or Penalty) x Pr(Hitting Home))

Results: Understanding

Likelihood Rating

- Main Effect: Likelihood difference was greatest in Color and Watch \& Warning forecasts, and lowest in Probability, $F(2,765)=$ $324.88, p<.001, \eta^{2}=.85$.
- Main Effect: As tornado probability increased so did the error in likelihood rating, $F(2,765)=$ 241.29, $p<.001, \eta^{2}=.63$.
- Interaction: Likelihood difference was greater in the higher tornado probability for Color and Watch \& Warning than for Probability forecasts $F(4,765)=7.29, p<001$.

Mistaking Likelihood for Severity

- Main Effect: Participants with color-coded forecasts showed the least difference in likelihood and severity ratings suggesting that they were mistaking likelihood for severity, and those with probability showed the most difference, $F(2,255)=15.23 p<.001, \eta^{2}=.12$.

Results: Trust

- Trust in Probability ($M=48.65, S D=18.49$) > Color ($M=40.16, S D=18.61$), $p<.01$, but was not significantly different from the Watch \& Warning forecasts ($M=45.94, S D=19.11$).

Results: Decision Quality

Expected Loss (EL) Difference Formula
$E L_{\text {difference }}=\frac{\sum_{i=1}^{n} E L_{\text {min }}-E L_{\text {decision }}}{n}$
$E L_{\text {min }}=$ Expected loss of the optimal decision.
$\boldsymbol{E} \boldsymbol{L}_{\text {decision }}=$ Expected loss of the participant's decision. $n=$ Number of decisions up to the final decision.

- EL differences of decisions with Probability forecasts ($M=-3.89, S D=2.71$) were the smallest, while Color ($M=-5.65, S D=5.08$), and Watch \& Warning ($M=-5.69, S D=4.27$) showed the greatest EL difference, $F(2,255)=5.53, p<$.001, $\eta^{2}=.04$.
EL difference of Probability < Color, $p<.01$, and watch \& warning forecasts, $p<.01$.

Conclusions

- Despite the expected heavy cognitive load of numeric probabilities, participants made better decisions, understood the forecasts best, and trusted, and did so with multiple forecasts updates - Decision quality and trust in the forecast was lowest for watch \& warning and color-coding decisions.

References

. Joslyn, S. L., \& LeClerc, J. E. (2013). Decisions with uncertainty: The glass half full. Current Directions in Psychological Science, 22(4), 308-315 2. Schwartz, D. R., \& Howell, W. C. (1985). Optional stopping performance under graphic and numeric CRT formatting. Human Factors, 27(4), $433-444$.

