

AgentTeamwork

Design Sheet

Munehiro Fukuda∗
Miriam Wallace∗

∗ Computing and Software Systems, University of Washington, Bothell

 2

AgentTeamwork Design Sheet
Table of Contents
Table of Contents..2
Table of Figures..2
1. Commander Agent..3
2. User Program Wrapper and Sentinel Agent..4

2.1 Sentinel Agent ...4
2.2 User Program Wrapper ...5

3. Bookkeeper Agent ..5
4. Resource Agent and XML Database...6

4.1 Resource Agent...6
4.2 XML Database...8

5. Sensor Agent ..8

Table of Figures
Figure 1. Remote user invoking Commander Agent ...3
Figure 2. Root Sentinel Agent spawns children ..4
Figure 4. Root Bookkeeper spawns children ..5
Figure 5. Resource Agent contacts the XML Database ..7
Figure 6. Sensor Agents probing another cluster..9

 3

1. Commander Agent
This agent is responsible for launching all other AgentTeamwork system agents and all
user ATeam programs.

Commander Agent uses functions provided by the AgentUtil class to manage utility
operations shared across all AgentTeamwork agent classes (including but not exclusive
to: counting the number of children, sending agent id and ip information to all agents in
the tree, and receiving messages from children).

When invoked by the user, the Commander Agent is constructed on the local machine,
following the execution model of the UWAgent class. Commander Agent’s general
constructor receives an array of arguments that indicate user options. After construction,
the commander migrates to its host system and begins execution with the its init
function.
The init function of the Commander Agent catches errors in construction and
terminating the launch. If construction was successful, init spawns the necessary
child agents (Sentinel, Bookkeeper, and Resource) using spawnAll as seen in Figure
1.

Figure 1. Remote user invoking Commander Agent for a host in a remote cluster

The spawnAll function begins with spawning a Resource Agent, immediately followed
by a Sentinel Agent and Bookkeeper Agent when specified by the user (for more
information about what these agents do once they are spawned see their sections on the
following pages). When not specified by the user, the spawning of Sentinel and
Bookkeeper Agents is delayed until the Commander Agent receives an itinerary from the
the Resource Agent indicating what hosts are available to run the Sentinel and
Bookkepper Agent tasks.

 4

Once all the necessary child agents have been spawned, the Commander Agent uses
the mainMethod function to ping children and wait for all agent and user processes to
be completed before terminating.

2. User Program Wrapper and Sentinel Agent

2.1 Sentinel Agent
This agent is owns the User Program Wrapper containing and controlling the user
program to be executed with the AgentTeamwork system.

When invoked by a Commander Agent, like other agents, the Sentinel Agent is
constructed at the current location (with the Commander Agent) and then immediately
transmitted to its target remote location (specified in the construction call) where
initialization process begins.

The first Sentinel created by the Commander is the root Sentinel and spawns children as
needed for current program execution as seen in Figure 2. Child Sentinels can be cluster
gateways, public-desktop computing-nodes, or remote-cluster computing-nodes all of
which have different spawning behavior. While all Sentinels maintain a list of nodes to
assist in resumption, different Sentinel types can have different lists in order to allow for
better performance across clusters. All Sentinels use an instance of the AgentUtil
class to manage the user program’s arguments and name.

Figure 2. Root Sentinel Agent spawns children

When a Sentinel Agent is initialized it begins monitoring communications from other
agents. Communications are monitored on an separate threads of execution from other
agent work. New threads from the current agent process are established for tasks
including: processing incoming communications; pinging other agents in case of
crashes; and receiving output files.

Once these system threads have been spawned the Sentinel Agent calls the
funcMethod function, which launches and monitors the given user program in the

 5

Figure 3. Sentinel posses User Program Wrapper which encapsulates User Program

main thread of the executing Sentinel Agent by instantiating an instance of the User
Program Wrapper and calling its funcSch function.

2.2 User Program Wrapper
User Program Wrapper captures and controls a user program
execution within a Sentinel Agent in the AgentTeamwork
execution platform as illustrated in Figure 3. Once the
funcSch function is invoked by a Sentinel, the User Program
Wrapper immediately saves a snapshot of its current state and
then ensures that all processes are synchronized before
invoking the user’s program.

Arguments being passed to the user’s program are passed to
the User Program Wrapper at construction.

3. Bookkeeper Agent
Bookkeeper Agents are responsible for storing and retrieving the snapshots of other
agents using a hash table and the local disk allowing snapshotted agents to resume
effectively after a crash.

The Bookkeeper constructor, much like other agents, takes the number of bookkeeper
agents to be created from the Commander agent which instantiates it, and a list of host
computers. Once constructed, the new Bookkeeper Agent migrates to its target host and
completes initialization with the init function there.

The first Bookkeeper created by the Commander is the root Bookkeeper and spawns
children as needed for current program execution as shown in Figure 4. All Bookkeepers
use an instance of the AgentUtil class to manage the user program’s arguments and
name. New threads from the current bookkeeper agent process are created to handle
receiving messages from other agents. Once initialization is complete, Bookkeepers
continue to their mainMethod.

Figure 4. Root Bookkeeper spawns children to help store and retrieve agent execution snapshots

 6

A Bookkeeper Agent’s mainMethod tracks its left and right siblings (or neighbors) in
order to send snapshots of itself to them in case recovery from a crash of the current
agent is needed. The Bookkeeper then begins a loop where it continuously pings it’s
parents and siblings in order to detect a crash, while simultaneously waiting for incoming
communication from other agents with its receive message thread.

When a Bookkeeper agent receives a communication from another agent, priority
switches from pinging parents and children to processes the incoming message(s).
Bookkeepers handle three special messages from other agents: messages to save a
snapshot of a given Sentinel Agent; receipt of snapshots which are forwarded to the
current Bookkeeper by a neighbor; and retrieving snapshots for agents when they are
requested.

When a snapshot is received, the Bookkeeper Agent saves it to the local disk to assure
its availability even if the Bookkeeper crashes and must resume. When a request to
retrieve a snapshot is received, the Bookkeeper retrieves the snapshot from the hash
table and sends it to the agent that requested the snapshot. If no snapshot is found, the
Bookkeeper notifies the requesting agent of the failure.

Bookkeepers’ most important function is the storing and retrieving of snapshots of other
agents therefore, receiving and processing agents’ communications is extremely
important in any Bookkeeper Agent process.

4. Resource Agent and XML Database

4.1 Resource Agent
The Resource Agent spawned for a user program execution owns and maintains a
database of resources available to the AgentTeamwork system and user programs.
Resources include clusters and individual node computers which may be used in
execution of a user’s program. The Resource Agent is also responsible for allocation
and deallocation of resources as needed by the system and uses specialized child
Agents called Sensor Agents to report the status of remote nodes.

The Resource constructor takes an ftp address, user name and password for a remote
database of resources to be integrated with any specific resources specified by the user
at invocation of the AgentTeamwork system. Once constructed, the new Resource
Agent migrates to its target host and completes initialization with the init function
there.

The init function of a Resource Agent is responsible starting the local database of
resources available to the user’s program and updating resource data from the remote
ftp XML Database files as shown in Figure 5. Init also creates a new thread to receive
incoming communications from other agents.

 7

Figure 5. Resource Agent contacts the XML Database

Once initialization and updates are complete, the Resource Agent moves to its
mainMethod where it begins probing available resources for the specified domain (if
no domain has been specified it chooses a default domain of “UWB”). In order to make
the best use possible of available resources, the Resource Agent spawns children called
Sensor Agents which track usage across host clusters and computers and reports back
to the Resource Agent on availability.

In the interest of managing accessible computing resources, the Resource Agent receive
a few types of messages which other Agents do not, including notification of: need for
additional resource allocation; call for deallocation of resources; previously accessible
resources have been lost; and incoming status reports on remote nodes from Sensor
Agents.

When the Resource Agent receives notice of a need for additional resources to be
allocated, it searches known computing resources for a destination which meets the
need indicated in the message. When appropriate resource is found the Resource Agent
mark it allocated and responds to the requesting Agent with an itinerary indicating the
location of exploitable resources.

When the Resource Agent receives a call for deallocation of resources it returns the
resources to the pool of available resources held in its local database and marks those
resources which are unresponsive with crashed status.

When the Resource Agent receives notice that previously accessible resources have
been lost, it updates their status in its local database as failed, keeping the database’s
list of accessible resources current for future allocations.

When the Resource Agent receives status reports from Sensor Agents the reports are
processed and stored in the Resource Agents hash tables for reference.

 8

4.2 XML Database
The XML Database contains information XML resource definitions for available nodes
and clusters. A Resource Agent can use the information provided in the database to
connect the AgentTeamwork platform with the resources provided therein, allowing
agents to utilize these computing nodes for task completion.

Upon construction, the XML Database first checks its local file system (typically the ftp
server it is located on) for information and then waits for a client connection with a
resource agent. Once a connection is established the Resource Agent can update the
database with information, as well as reference existing information on available
resources.

In this way, the XML Database allows all AgentTeamwork processes to be kept updated
with the best possible list of available resources from a central location.

5. Sensor Agent
The Sensor Agents are spawned by the Resource Agent to keep track of resources and
to act as gateways to other networks. There are several types of Sensor Agents:
Gateway; Client; and Server. The constructor collects and store invocation arguments,
but the init function does the work of setting up the different Sensor types after the
agent migrates to its first target location.

The init function establishes Gateway Sensors to link agents on remote computing
nodes with other agents, and provides a conduit for two-way communication between
remote nodes on a given cluster and other agents. Client and Server Sensors use TTCP
to measure network throughput and communication performance data through the agent
hierarchy back to the Resource Agent as illustrated in Figure 6. All Sensor agents also
spawn a thread to listen for Agent communications. Once initialization of the different
types of Sensotr Agents is complete, control passes to the mainMethod.

 9

Figure 6. Sensor Agents probing another cluster

The mainMethod function Client and Server Sensors begin probing clusters for
performance data using TTCP, and listening for a message signaling the agents to kill
themselves.

