

AgentTeamwork
Programming Manual

Munehiro Fukuda∗

Miriam Wallace∗

∗ Computing and Software Systems, University of Washington, Bothell

 2

AgentTeamwork Programming Manual
Table of Contents
Table of Contents..2
Table of Figures..2
2. Programming Model..3
3. Snapshots...5

3.1 Using the Snapshot Function ..5
3.2 Recommendations ..6

4. Sockets ...6
5. MPI-Java...7
6. Files ..8
7. C/C++ Programming ...8

7.1 C/C++ Program Flow...8
7.2 MPI..9

8. Final Comments..9
Appendix A: Code...10
Appendix B: C/C++ MPI Reference ..12

Table of Figures
Figure 1. AgentTeamwork implementation layers ...3
Figure 2. A sample Agent deployment tree...4

 3

1. Introduction

The AgentTeamwork grid-computing software allows you to program a multi-processor,
multi-system application for execution on a cluster (or clusters) within the safety of a
fault-tolerant and resource-aware environment. All potential computing nodes which as
registered with the XML resource Database can be accessed by AgentTeamwork in the
execution of your application.

The ATeam class provides a portal into
the power and flexibility of the
AgentTeamwork system by providing a
class inside which users can develop any
number of applications to perform myriad
different computational intensive jobs.

The implementation layers provided by
the AgentTeamwork system, pictured
below in Figure 1, illustrate the framework
of this relationship in a generic computing
node.

Figure 1. AgentTeamwork implementation layers

The UWPlace daemon running on a computing node allows the mobile agents to migrate
to that location and execute tasks. Agents perform all the various function of the system
from agent and resource management to user program execution via the User Program
Wrapper. The GridTcp and GridFile layers allow for user programs to make use
programming tools such as Java Sockets and MPI in their program.

2. Programming Model
When a user creates ATeam program to run using the AgentTeamwork framework and
deploys it to run on the AgentTeamwork grid, AgentTeamwork first deploys a
commander agent which over sees the creation and deployment of bookkeeping and
system agents. These agents allow AgentTeamwork to respond to network load
changes and crashes dynamically, without the need for user code to account for these
anomalies.

Once the AgentTeamwork system agents have been initiated, the user program is
initialized and distributed to child nodes for execution. As shown in Figure 2, where
system agents are colored in green and user program executing nodes are in blue,
Resource and Bookkeeper agents may both spawn children in order to assist with their
system functions.

 4

Figure 2. A sample Agent deployment tree

AgentTeamwork provides a User Program Wrapper which abstracts GridTcp and grid file
needs apart from the user program, allowing the user freedom to use Socket-based or
MPI-based programs and have the flexibility of both Java standard
FileInputStream/OutputStream and RandomAccessFile features.

In creating a user program using the ATeam framework, import and extend the ATeam
class, as normal. The main method should instantiate and initiate the execution of your
class, also as normal, but the main body of the program should be placed in a class
function outside of the main method (see the ATeam sample code table below).

ATeam sample code – See appendix for complete code
import AgentTeamwork.Ateam.*;
import MPI.*;

public class UserProgAteam extends AteamProg {
 ...
 // real const
 public UserProgAteam(String[] args) {
 phase = 0;
 }
 ...
 // application body
 private void compute() {
 System.out.println(“Hello”);
 }
 // start from here
 public static void main(String[] args) {
 MPJ.Init(args, ateam);
 UserProgAteam program = null;
 ...
 program = new UserProgAteam(args);
 ateam.registerLocalVar("program", program);
 ...
 program.compute();
 MPJ.Finalize();
 }

 5

}

In Socket-based user programs, user may communicate directly with other programs
without worrying about what port they are using, as the actual ports are automatically
assigned and managed by the AgentTeamwork execution structure.

Similarly, MPI-based programs may take advantage of most MPI features as normal and
AgentTeamwork automatically establishes communication connection between all user
processes, creating a perfect Java MPI network.

File I/O for the user perspective is also very similar to normal Java programming with a
few small changes. Files are distributed quickly and efficiently to agents via a copying
and sending throughout the tree structure. By allowing the user to user either
FileInput/OutputStreams or RandomAccessFiles AgentTeamwork assures usability to
the programmer.

3. Snapshots
In order to recover from crashes, the ATeam class can take snapshots of the current
state of the program. These records are then transmitted to another node which is
responsible for storing snapshots should they be needed in the case of a program crash.
This allows an ATeam program to resume from the most recent snapshot whenever a
crash occurs.

3.1 Using the Snapshot Function
The snapshot function takes advantage of Java Serialization and therefore, data and
functions to be saved should either be a data member of the class, or be registered
using the register method. Names used to register functions and data for cataloguing
must be unique, as they are stored in a hash table.

While snapshot functionality may be used anywhere in an ATeam program, taking a
snapshot does require a significant amount of overhead and therefore it should be used
only as needed for the specific ATeam program. Please see the following code sample
for a reference on how to make a snapshot in your program.

Snapshot sample code – See appendix for complete code
...
public class UserProgAteam extends AteamProg {
 ...
 // application body
 private void compute() {
 for (phase = 0; phase < 10; phase++) {
 try {
 Thread.currentThread().sleep(1000);
 } catch (InterruptedException e) {
 }

 ateam.takeSnapshot(phase);
 System.out.println("UserProgAteam at rank " +
 MPJ.COMM_WORLD.Rank() +
 " : took a snapshot " +
 phase);

 6

 }
 ...
}

3.2 Recommendations
How often to snapshot a given program varies widely based on the program itself,
however, a couple of general recommendations can be made.

Programs which have growing data sets (frequently calling new) can benefit from more
frequent snapshots in order to prevent loss of data. Also benefiting from taking more
frequent snapshots are programs which send and receive messages frequently, as
messages are saved in memory between snapshots.

4. Sockets
ATeam GridSockets are very similar to the common Java Socket API except that their
constructors require some different arguments for instantiation of the class. Instead of
passing the IP to a Socket constructor pass the rank of the process (indicated by
myRank) which specifies which process is establishing the socket. The port required by
the constructor can be set to any value as is it a virtual port only.

Communications using these ports will be funneled through the GridTcp which has a
wrapper around the actual port chosen by the GridTcp layer. Because they are virutual,
port numbers should be used to idenfity different connections within your program,
without a connection to the actual ports used by ATeam program communications.
ATeams GridTcp Socket-based communications are an error recoverable
implementation.

The code below illustrates how the usage of GridSockets is nearly identical to that of
standard Java Sockets.

Socket sample code – within some function body
import AgentTeamwork.Ateam.GridTcp.*;
...
private final int port = 2000;
private GridSocket socket;
private GridServerSocket server;
private InputStream input;
private OutputStream output;
...
// client
for (int i = start; i < start + trans; i++) {
 try {
 output.write(i % 128);
 } catch (IOException e) {
 }
 System.out.println("Sockets with " + myRank + ": "
 + " output[" + i + "]=" + i % 128);
}
...
// server

 7

for (int i = start; i < start + trans; i++) {
 try {
 System.out.println("Sockets with " + myRank + ": "
 + " input[" + i + "]=" +
input.read());
 } catch (IOException e) {
 }
}
...

5. MPI-Java
User programs run with AgentTeamwork may take advantage of Java’s MPI API.
AgentTeamwork’s MPI specification differs somewhat from the common MPI-Java
specification in that it has an additional feature called check pointing and the arguments
passed to the constructor are slightly different.

Despite these differences, AgentTeamwork’s MPI has the important myRank and
nprocess members which store the current process’s rank and the total number of MPI
(user-based) processes, respectively.

Additionally, when MPI-Java is used AgentTeamwork automatically establishes a perfect
MPI network for the purpose of inter-process communication with every rank having a
direct line of communication to every other rank. These communication links between all
ranks are directly established by MPI.Init which relies on GridTcp for the realization of
the connections. This additional functionality is made possible by an additional argument
passed to the MPI.Init(args, ateam) function (see the below code sample for
usage within a program). The “ateam” argument allows the MPI implementation to be
aware of processes, ram consumed, and other necessary program parameters used by
the user’s ATeam program.

MPI sample code – See appendix for complete code
import AgentTeamwork.Ateam.*;
import MPI.*;

public class UserProgAteam extends AteamProg {
 ...
 // application body
 private void compute() {
 ...
 }
 // start from here
 public static void main(String[] args) {
 MPJ.Init(args, ateam);
 ...
 program.compute();
 MPJ.Finalize();
 }
}

 8

As with Socket-based communication, the implementation of MPI-Java via the GridTcp
layer allows MPI-based communication to be error-recoverable.

6. Files
Java’s FileInputStream/OutputStream can be used according to the original API in an
ATeam program. These files handled by the grid File layer, which uses
AgentTeamwork’s tree structure to propagate copies of the files to the agent processes
that need them, until each agent has a copy of the file.

Java’s RandomAccessFile (RAF) can also be used according to the original API in an
ATeam program with one minor exception. RAFs have an additional method barrier
which allows processes to share file stripes with other processes but only once the
local/current process has completed any modifications to its file stripes.

File stripes passed to each process can be highly specified by through submitGUI,
allowing for greater control over the distribution of data and tasks within a given ATeam
program.

7. C/C++ Programming
User may write ATeam programs using C or C++, however, program flow and MPI in this
are slightly different from the Java counter part.

7.1 C/C++ Program Flow
An ATeam program executed in the AgentTeamwork platform requires that the user
provide an additional file “libJavaToCpp.so” which is the compiled C/C++ program in a
library format usable by the AgentTeamwork system. This file is read into the systems
local disk and stored in the temp directory because it cannot be executed dynamically as
a Java program would be.

JavaToCpp.cpp is then loaded into memory using dynamic linking. This program then
reads the C/C++ program to memory. The JavaToCpp.cpp program sets up the complex
JNI specific notations and set up allowing the user program to remain uncluttered.
Essentially this process adds another wrapper to the ATeam software layer allowing
AgentTeamwork to operate on C and C++ programs as well as Java.

To compile a C/C++ program for execution with AgentTeam work, use a version of the
following script, which was written to compile the Helloworld program in the following
section.

C/C++ compile.sh – Helloworld.cpp
#!/bin/sh

rm -f *.class
javac -classpath MPJ.jar:Ateam.jar:. *.java
jar cvf GridJNI.jar *.class
jar -cvf GridJNI.jar *.class
javah -jni JavaToCpp
g++ -rdynamic JavaToCpp.cpp -o _libJavaToCpp.so_ -shared -ldl
g++ -shared -o _libHelloWorld.so_ GridJNI_library.cpp
HelloWorld.cpp

 9

7.2 MPI
Although C and C++ programs are supported, MPI syntax for both languages is not
supported. Due to the increased simplicity of MPI implementation for C (MPIsend() and
MPIreceive() functions) as opposed to C++, AgentTeamwork only supports the use of
the C MPI API. Below is a sample C/C++ program using MPI function, see Appendix B
for list of C/C++ MPI extern functions.

C/C++ MPI sample code – Helloworld.cpp
#include <iostream>
using namespace std;
typedef int MPI_Request, MPI_Status, MPI_Comm;

extern void takeSnapshot(int argc);
extern int MPI_Init(int* argc, char*** argv);
extern void MPI_Finalize();
extern int MPI_Comm_rank(MPI_Comm comm, int *rank);
extern int MPI_Comm_size(MPI_Comm comm, int *size);

int main(int argc, char** argv) {
 cerr << "main" << endl;
 cerr << "argc = " << argc << endl;
 cerr << "argv[0] = " << argv[0] << endl;
 cerr << "argv[1] = " << argv[1] << endl;
 MPI_Init(&argc, &argv);
 cout << "MPI Init Successful!" << endl;
 cout << "[HelloWorld.cpp]Calling Rank() and Size()" << endl;
 int rank, size;
 MPI_Comm_rank(0,&rank);
 MPI_Comm_size(0,&size);
 cout << "[HelloWorld.cpp]Rank = " << rank << endl;
 cout << "[HelloWorld.cpp]Size = " << size << endl;
 cerr << "Calling MPI_Finalize()" << endl;
 MPI_Finalize();
 cerr << "finished" << endl;
}

8. Final Comments
AgentTeawork, ATeam and associated classes are copy write University of Washington
Bothell. No advanced notice of changes and revisions to AgentTeamwork and ATeam or
relate classes are required. Users may use classes and associated methods at their own
risk.

 10

Appendix A: Code
ATeam sample code – Complete
import AgentTeamwork.Ateam.*;
import MPJ.*;

public class UserProgAteam extends AteamProg {

 private int phase;

 // blank const for Ateam
 public UserProgAteam(Ateam o) { }

 public UserProgAteam() {
 }

 // real const
 public UserProgAteam(String[] args) {
 phase = 0;
 }

 // phase recovery
 private void userRecovery() {
 phase = ateam.getSnapshotId();
 }

 // application body
 private void compute() {
 for (phase = 0; phase < 10; phase++) {
 try {
 Thread.currentThread().sleep(1000);
 } catch (InterruptedException e) {
 }

 ateam.takeSnapshot(phase);
 System.out.println("UserProgAteam at rank " +
 MPJ.COMM_WORLD.Rank() +
 " : took a snapshot " +
 phase);
 }
 }

 // start from here
 public static void main(String[] args) {
 System.out.println("UserProgAteam: got started");

 MPJ.Init(args, ateam);

 UserProgAteam program = null;
 // Timer timer = new Timer();
 if (ateam.isResumed()) {

 11

 program = (UserProgAteam)
ateam.retrieveLocalVar("program");
 program.userRecovery();
 } else {
 program = new UserProgAteam(args);
 ateam.registerLocalVar("program", program);
 }
 program.compute();

 MPJ.Finalize();
 }
}

 12

Appendix B: C/C++ MPI Reference
All functions below can be used in a user’s C/C++ ATeam MPI-based program and all of
the must be prefaced with the keyword “extern”.

void takeSnapshot(int argc)

bool isResumed()

int getSnapshotId()

int MPI_Init(int* argc, char*** argv)

void MPI_Finalize()

int MPI_Send(void* buf, int count, MPI_Datatype datatype, int

 dest, int tag, MPI_Comm comm.)

int MPI_Recv(void* buf, int count, MPI_Datatype datatype, int

 dest, int tag, MPI_Comm comm, MPI_Status *status)

int MPI_Comm_rank(MPI_Comm comm, int *rank)

int MPI_Comm_size(MPI_Comm comm, int *size)

int MPI_Bcast(void* buffer, int count, MPI_Datatype datatype,
 int root, MPI_Comm comm)

int MPI_Pack(void* inbuf, int incount, MPI_Datatype datatype,

 void *outbuf, int outsize, int *position, MPI_Comm
 comm)

int MPI_Unpack(void* inbuf, int insize, int *position, void

*outbuf, int outcount, MPI_Datatype datatype,
MPI_Comm comm)

int MPI_Reduce(void* sendbuf, void* recvbuf, int count,

MPI_Datatype datatype, MPI_Op op, int root,
MPI_Comm comm)

int MPI_Barrier(MPI_Comm comm)

int MPI_Gather(void* sendbuf, int sendcount, MPI_Datatype

sendtype, void* recvbuf, int recvcount,
MPI_Datatype recvtype, int root, MPI_Comm comm)

int MPI_Scatter(void* sendbuf, int sendcount, MPI_Datatype

sendtype, void* recvbuf, int recvcount,
MPI_Datatype recvtype, int root, MPI_Comm comm)

int MPI_Allgather(void* sendbuf, int sendcount, MPI_Datatype

 13

sendtype, void* recvbuf, int recvcount,
MPI_Datatype recvtype, MPI_Comm comm)

int MPI_Alltoall(void* sendbuf, int sendcount, MPI_Datatype

sendtype, void* recvbuf, int recvcount,
MPI_Datatype recvtype, MPI_Comm comm)

int MPI_Allreduce(void* sendbuf, void* recvbuf, int count,

MPI_Datatype datatype, MPI_Op op, MPI_Comm
comm)

int MPI_Reduce_scatter(void* sendbuf, void* recvbuf, int

*recvcounts, MPI_Datatype datatype,
MPI_Op op, MPI_Comm comm)

int MPI_Isend(void* buf, int count, MPI_Datatype datatype, int

 dest, int tag, MPI_Comm comm, MPI_Request
 *request)

int MPI_Irecv(void* buf, int count, MPI_Datatype datatype, int

 source, int tag, MPI_Comm comm, MPI_Request
 *request)

int MPI_Scatterv(void* sendbuf, int *sendcounts, int *displs,

MPI_Datatype sendtype, void* recvbuf, int
recvcount, MPI_Datatype recvtype, int root,
MPI_Comm comm)

int MPI_Gatherv(void* sendbuf, int sendcount, MPI_Datatype

sendtype, void* recvbuf, int *recvcounts, int
*displs, MPI_Datatype recvtype, int root,
MPI_Comm comm)

int MPI_Allgatherv(void* sendbuf, int sendcount, MPI_Datatype

 sendtype, void* recvbuf, int *recvcounts, int
 *displs, MPI_Datatype recvtype, MPI_Comm
 Comm)

int MPI_Alltoallv(void* sendbuf, int *sendcounts, int *sdispls,

 MPI_Datatype sendtype, void* recvbuf, int
 *recvcounts, int *rdispls, MPI_Datatype
 recvtype, MPI_Comm comm)

int MPI_Gatherv(void* sendbuf, int sendcount, MPI_Datatype

 sendtype, void* recvbuf, int *recvcounts, int
 *displs, MPI_Datatype recvtype, int root,
 MPI_Comm comm)

