

AgentTeamwork User Manual

Munehiro Fukuda∗
Miriam Wallace∗

Jumpei Miyauchi∧

∗ Computing and Software Systems, University of Washington, Bothell
∧ Department of Computer Science, Ehime University

 2

Table of Contents
AgentTeamwork User Manual.. 1 
Table of Contents... 2 
1. System Installation ... 3 

1.1 Availability ..3 
1.2 Downloading and Extraction ...3 

2. System Invocation.. 4 
2.1 Intra-Domain UWPlace Invocation and Shutdown ...4 
2.2 Inter-Domain UWPlace Invocation and Shutdown ...5 

3. Job Injection ... 6 
3.1 Compilation of Applications ...6 
3.2 Job Injection from submitGUI...8 
3.3 File Transfer with SubmitGUI...14 

4. Job Monitoring and Termination... 14 
4.1 Job monitoring and Standard In/Output ..14 

(1) Agent selection window...14 
(2) Standard output display..16 
(3) Standard input field..16 
(4) Remote node information display..16 
(4) Automatic Job Abortion...16 

4.3 Job Termination...18 
4.4 Monitoring and Terminating UWPlace ...18 

5. XML Resource Database... 20 
5.1 XML resource definition ...20 
5.2 Database Set-up ...22 

6. Command Line Operations .. 22 
6.1 Job Injection from Command line ...22 
6.2 Job Termination from Command line ...27 
6.3 File Transfer with Command Line ..27 

7. Trouble Shooting.. 28 
Errors with Serializable ...28 
MPJ Error ..28 

8. Final Comments ... 28 
Appendix. System Directory... 29 

 3

1. System Installation

1.1 Availability
The system currently supports bash on Linux, bash on Mac OS X, and DOS command prompt on
Windows XP. All the class files have been generated with Java version 1.5. They can be also
compiled and executed with Java version 1.6.

1.2 Downloading and Extraction
AgentTeamwork does not require root accesses at all. You can simply install it onto your home
directory with an ordinary user account. To download the latest version of the AgentTeamwork
system, go through the following steps:

1. Create a tripod account. If you belong to Distributed Systems Laboratory at UW Bothell
or Multimedia Database Laboratory at Keio SFC, use the agentteamwork or the mdbl.sfc
account, and skip to step 3.

2. Email us at dslab@u.washington.edu. Your email should include your name, affiliation,
and tripod account. Wait for our response stating that you have been authorized to
download the system.

3. Visit http://agentteamwork.tripod.com/release/ateam.tar.gz You will be asked to type
your tripod account and password in order to download this zipped file.

To install the system, follow the instructions given below:
Linux/Mac OS X users:

Mac users need to start bash.
1. Move ateam.tar.gz to your home directory if it is not stored there: mv ateam.tar.gz ~
2. Unzip the file: gzip –d ateam.tar.gz
3. Extract all files: tar –xvf - < ateam.tar
4. Set up your “.bashrc” file:

ATeam=$HOME/agentteamwork
export ATeam
PATH=$PATH:$ATeam/scripts

5. Reinitialize “.bashrc”: source .bashrc
6. Recompile the source if you want to revise AgentTeamwork to Java 1.6:

$ATeam/scripts/compileAndPackAll.sh
Windows XP users:

1. Unzip and extract all files through 7-Zip, Explzh, or any available windows-based file
archiving tool.

2. Move the ateam folder to C:\Documents and Setting\%USERNAME%.
3. Set up the ATeam and PATH environment variables by clicking “Environment Variables”

in My Computer’s Profile menu or using Rapid Environment Editor:
set ATeam=”C:\Documents and Setting\%USERNAME%”
set path=%path%;%ATeam%\bat

4. Recompile the source if you want to revise AgentTeamwork to Java 1.6:
%ATeam%\bat\compileAndPackAll.bat

Linux users at UW1-320, UW Bothell
No need to download and to recompile the system.

1. Simply set up your “~/.bashrc” as follows:
ATeam = /home/uwagent/agentteamwork
export ATeam

 4

PATH=$PATH:$ATeam/scripts
2. Reinitialize “.bashrc”: source ~/.bashrc

Mac24 users at Keio SFC
No need to download and to recompile the system. Note that Mac users need to run bash.

1. Simply set up your “~/.bashrc” as follows:
ATeam = /home/mfukuda/CNSiMac/agentteamwork
export ATeam
PATH=$PATH:$ATeam/scripts

2. Reinitialize “.bashrc”: source ~/.bashrc

Note that this installation should be done only once as far as all the computers you will use are
connected to the same NFS. Otherwise, repeat the above installation work at each non-NFS-
connected computer accordingly.

2. System Invocation
AgentTeamwork runs on top of a network of UWAgent mobile-agent execution daemons. You
need to start up this daemon (named UWPlace) at each of all computing nodes that you will use
for your job execution.

Once a computing node has the UWPlace daemon running, it becomes an available location for
agents to migrate and perform tasks.

2.1 Intra-Domain UWPlace Invocation and Shutdown
This invocation assumes that IP ports above 5000 are open to all computing nodes within the
same IP domain (such as uw1-320-00 ~ uw1-320-31.uwb.edu, mnode0 ~ mnode31.uwb.edu or
zmac000 ~ zmac159.sfc.keio.ac.jp). Two shell scripts are available to launch UWPlace:
sshUWPlace.sh and runUWPlace.sh.

Use sshUWPlace.sh for all computing nodes that run bash and identify the ATeam environment
variable with the same path, (e.g., Linux/Mac machines connected to the same NFS). Log in
one of those computers and type as follows:

sshUWPlace.sh:
sshUWPlace.sh <port#> <-f filename | ipName {ipName}>

There, filename includes all remote IP names. Or you can enumerate them as arguments.

Example
sshUWPlace.sh 12345 uw1-320-00 uw1-320-01 uw1-320-02 uw1-320-03

sshUWPlace.sh 12345 zmac100 zmac101 zmac102 zmac103

sshUWPlace.sh –f nodes

where the nodes file includes uw1-320-00 uw1-320-01 uw1-320-02 uw1-320-03 in a
separate line.

Use runUWPlace.sh for computing nodes that do not run bash or do not see ATeam as the
same path, (e.g., Windows clients or Linux/Mac not connected to the same NFS). Log in each of
those computers and type as follows:

runUWPlace.sh for bash:
runUWPlace.sh <port#>

 5

runUWPlace.bat for DOS prompt:
runUWPlace.bat <port#>

Example
runUWPlace.sh 12345

UWPlace daemons can be shut down with one of the following two actions. If you have invoked
the daemons with sshUWPlace.sh at once, use sshKill.sh:

sshKill.sh:
sshKill.sh <-f filename | ipName {ipName}>

There, filename includes all remote IP names. Or you can enumerate them as arguments.

Example
sshKill.sh 12345 zmac100 zmac101 zmac102 zmac103

sshKill.sh –f nodes

where the nodes file includes zmac100 zmac101 zmac102 zmac103 in a separate line.

If you have started up each daemon with runUWPlace.sh, visit each terminal window where
UWPlace is running, and type control-c to terminate the current runUWPlace.sh or
runUWPlace.bat.

2.2 Inter-Domain UWPlace Invocation and Shutdown
This invocation assumes that only ssh port 22 is available to establish a socket across IP
domains. In that case, your local and remote computers may need to use an SSH tunnel to
establish inter-UWPlace communication.

Establish an SSH tunnel from your current system to the target remote computer using the
following command:

SSH Tunnel Command:
ssh –l <accountName> -L <localOutPort#>:localhost:<targetInPort#> -R
 <targetOutPort#>:localhost:<localInPort#> <targetHostIP>

Example, SSH Tunnel Command:
ssh –l mickey -L 1000:localhost:12345 -R 2500:localhost:12345
 uw1-320-00.uwb.edu

This allows the local computer to establish a socket to mickey’s at
uw1-320-00.uwb.edu so that a local process can write and read data to
port 1000 and from port 123455, whereas a remote process at uw1-320-20
can read and write data from port 12345 and to 2500.

Once an SSH tunnel is established, run the UWPlace command via the SHH tunnel on the
remote computer (repeat this process as necessary for multiple remote systems):

 6

UWPlace Command for bash:
java –cp $ATeam/jars/UWAgent.jar:. UWAgent.UWPlace –p <localInPort#>
 -<localOutPort#> <targetHostIP>

UWPlace Command for DOS prompt:
java –cp %ATeam%\jars\UWAgent.jar;. UWAgent.UWPlace –p <localInPort#>
 -<localOutPort#> <targetHostIP>

Example:
java –cp $ATeam/jars/UWAgent.jar:. UWAgent.UWPlace –p 12345 -1000 uw1-
320-00.uwb.edu

To shutdown daemons, visit each terminal window where UWPlace is running, and type control-
c to terminate the current runUWPlace.sh or runUWPlace.bat

2.3 UWPlace Execution Test
To check if a UWPlace daemon is running at remote nodes as well as your local site, inject a
sample agent as follows:

HopSkipJump.java
cd $ATeam/SampleAgents
java –cp $ATeam/jars/UWAgent.jar UWAgent.UWPlace –p port# -m 4
localhost HopSkipJump ipAddr0 ipAddr1 ipAddr2 ipAddr3 … ipAddrN

This agent visits each IP address in the same order as specified and prints out a greeting
message from one to another place. Make sure that the your local computer is running UWPlae
and that SampleAgent’s last argument, (i.e., ipAddrN) is your local IP address. Do not use
localhost for ipAddrN.

3. Job Injection

3.1 Compilation of Applications
You need to compile your Java application before submitting it to AgentTeamwork. Unless you
have recompiled the AgentTeamwork system with Java1.6, make sure that you are going to
compile your programs with Java1.5.

Compile your Java programs with two AgentTeamwork’s jar files such as MPJ.jar and
Ateam.jar:

Compile your program on bash:
javac –cp $ATeam/jars/MPJ.jar:$Ateam/jars/Ateam.jar:. *.java

Compile your program on DOS prompt:
javac –cp %ATeam%\jars\MPJ.jar;%Ateam%jars%Ateam.jar:. *.java

Thereafter, create .jar files for the user applications in the working directory by running the
following command.

 7

Create .jar files on both bash and DOS prompt:
jar cvf <name>.jar *.class

When program files are modified or to add new class files to the existing .jar file, run the
following command to append the necessary changes to the existing .jar.

Create .jar files
jar uvf <name>.jar *.class

A sample java application was made available at $ATeam/applications/Sample/ for your
convenience. This program repeats writing a greeting message 10 times to each remote node’s
terminal or /tmp log file as well as to AgentTeamwork’s GUI window.

Sample.java
mport AgentTeamwork.Ateam.*; // AgentTeamwork
import MPJ.*; // mpijava
import java.net.*; // for InetAddress

public class Sample extends AteamProg {
 private int cycle = 0;

 // blank const for Ateam
 public Sample(Ateam o) { }

 public Sample() { }

 public void compute() {
 for (int i = 0; i < 10; i++) {
 try {
 // write to each node-local terminal or /tmp's log file
 System.out.println("Rank[" + MPJ.COMM_WORLD.Rank() +
 "]: Hello! @ " +
 InetAddress.getLocalHost().
 getHostName());
 // write to SubmitGUI
 AteamProg.ateam.gridfile.
 writeStdout("Rank[" + MPJ.COMM_WORLD.Rank() +
 "]: Hello! @ " +
 InetAddress.getLocalHost().
 getHostName() + "\n");
 Thread.currentThread().sleep(1000);
 ateam.takeSnapshot(cycle);
 } catch(Exception e) {
 e.printStackTrace();
 }
 }
 }

 /**
 * Sample.java is a simple program in that each rank prints out its own
 * greeting message 10 times.
 */
 public static void main(String[] args) throws Exception
 {

 8

 // Start the MPI library.
 MPJ.Init(args, ateam);

 // program instantiation or retrieval
 Sample program = null;
 if (ateam.isResumed()) {
 System.out.println("isResumed");
 program = (Sample)ateam.retrieveLocalVar("program");
 program.cycle++;
 }
 else { // !ateam.isResumed()
 System.out.println("!isResumed");

 // Compute a Sample object in both master and slaves.
 program = new Sample();
 ateam.registerLocalVar("program", program);

 System.out.println("takeSnapshot main");
 ateam.takeSnapshot(0);
 }

 // start the computation
 program.compute();

 // Terminate the MPI library.
 MPJ.Finalize();
 }
}

Its compilation should be done with the following scripts:

Compile Sample.java and create its jar on bash:
cd $ATeam/applications/Sample
javac –cp $ATeam/jars/MPJ.jar:$ATeam/jars/Ateam.jar:. Sample.java
jar cvf Sample.jar Sample.class

Compile Sample.java and create its jar on DOS prompt:
Cd %ATeam%\applications\Sample
javac –cp %ATeam%\jars\MPJ.jar:$ATeam\jars\Ateam.jar:. Sample.java
jar cvf Sample.jar Sample.class

3.2 Job Injection from submitGUI
If it is your very first time to submit a job to AgentTeamwork through its GUI, you have to set up
your “.java.policy” file so as to run the GUI as an applet correctly. Cut and past the following
policy example, and save it as the “.java.policy” file under your home directory, (i.e.,
~/.java.policy on bash and C:\Documents and Settings\%USERNAME%\.java.policy on
Windows).

Example, .java.policy on Mac OS X:
/* Replace file:///Volumes/Users/Users/mickey with your home directory */
/* For example on Windows: file:/C:/Documents and Settings/mickey */
/* For example on Linux: file:///home/mickey */

grant codeBase "file:///Volumes/Users/Users/mickey/agentteamwork/GUI/-" {

 9

 permission java.io.FilePermission "<<ALL FILES>>", "read, write, delete,
execute";
 permission java.util.PropertyPermission "user.home", "read";
 permission java.util.PropertyPermission "user.dir", "read";
 permission java.util.PropertyPermission "file.encoding", "read";
 permission java.lang.RuntimePermission "modifyThread";
 permission java.lang.RuntimePermission "modifyThreadGroup";
 permission java.net.SocketPermission "*", "accept";
};
grant codeBase "file:///Volumes/Users/Users/mickey/agentteamwork/jars/-" {
 permission java.io.FilePermission "<<ALL FILES>>", "read, write, delete,
execute";
 permission java.util.PropertyPermission "user.home", "read";
 permission java.util.PropertyPermission "user.dir", "read";
 permission java.util.PropertyPermission "file.encoding", "read";
 permission java.lang.RuntimePermission "modifyThread";
 permission java.lang.RuntimePermission "modifyThreadGroup";
};
grant codeBase "file:///Volumes/Users/Users/mickey/agentteamwork/jars/-" {
 permission java.net.SocketPermission "127.0.0.1", "connect";
};
grant codeBase "file:///Volumes/Users/Users/mickey/files/-" {
 permission java.io.FilePermission "<<ALL FILES>>", "read, write, delete,
execute";
};
grant codeBase "file:///Volumes/Users/Users/mickey/-" {
 permission java.io.FilePermission "<<ALL FILES>>", "read";
};

Now, run launchGUI.sh that internally starts AgentTeamwork’s job-submission GUI:

Start launchGUI.sh
launchGUI.sh

Follows the GUI’s menus as shown below:

(1) Page 1: enable/disable the resource agent.

 Figure 0. Resource agent selection window

 10

If you have invoked AgentTeamwork’s XML resource database and use a resource
agent, check the “use a resource agent” check box and specify the IP address where the
XML database is running. If you don’t use the resource database, don’t check the box to
skip to page 4.

(2) Page 2: decide resource requirements such as OS, CPU, disk, memory, etc.

If you have checked the “use a resource agent” check box on page 1, decide OS type,
CPU architecture, disk space, memory space, #CPU cores per each node, percentage
of CPU idle, a choice of cluster computers or individual public computers, CPU speed,
total #computing nodes, when to run the user job, (e.g., 855pm34sec=205534, now=0)
and extra nodes for resumption purposes (RN). If necessary, you may specify IP
addresses of computing node you would like to use.

The minimum requirement is total #computing nodes (denoted as “total”).

Recommendations:
- Fill only this “total” field if you would like to maximize the opportunity of finding the

best computing resources from an XML resource database.

- Choose “public” in the “choice” field if you use computing nodes within the same IP
domain as you are working.

(3) Page 3: specify an FTP server.

If you have filled out resource requirements on page 2, you will come to this page to
specify an FTP server that your resource agent will contact.

Users at UW Bothell:

FTP server ftp.tripod.com

Account agentteamwork

Figure 0. Specification selection window

 11

Users at Keio SFC:

FTP server ftp.tripod.com

Account mdbl.sfc

Ask the corresponding password to us at dslab@u.washington.edu.

 For time being, fill out -1 in the “Monitoring Period”.

(4) Page 4: describe your application.

Specify your application program, arguments passed to it, the absolute path to its “jar”
file, a directory to input/output files, the GUI port, and Ateam port. Note that arguments

Figure 0. User program selection window

Figure 0. FTP Server selection window

 12

must be delimited with “_” rather than a space “ “. For Sample.java, fill out only the user
program name: Sample

(5) Page 5: specify if a commander agent should be submitted remotely or locally.

If you click the “remote submission” box, specify where a commander agent should be
submitted. You must also tell the GUI of your computer’s IP address in the canonical
form (rather than localhost).

(6) Page 6: describe about your bookkeeper agents.

If you use an XML resource database, you may specify the number of bookkeeper
agents, (each of which will be dispatched to a different computing node automatically). If
you do not use the database (thus skipping pages 2 and 3), specify computing nodes to
accept a bookkeeper agent. Such a list of bookkeeper agents must be delimited with “_”
rather than a comma or a space.

Click “finish” if you use the database, otherwise click “next”.

(7) Page 7: specify the number of cluster systems to allocate to your job.

The user can input the number of clusters used for job execution. Optionally, the user
may also specify the number of extra clusters for cluster resumption.

If you use computing nodes in the same domain as you are working, fill these fields with
0 and skip to page 9.

Figure 0. Bookkeeper agent selection window

 13

(8) Page 8: specify clusters to allocate to your job.

The cluster options include: cluster name, gateway IP name, and each computing node’s
IP name. If the user would like to provide additional nodes of a given cluster to assist
with job resumption in case of node crashes, the cluster name and gateway IP with the
additional nodes much match the cluster name and gateway IP of the given cluster.

(9) Page 9: specify all individual computing nodes to allocate to sentinels, thus to your job.

The sentinel agent options include: root sentinel agent IP name, desktop computing
node IP names, and optionally extra desktop computing node IP names for resumption
purposes. At least two sentinel agent IP names are required. (The first is for the root
sentinel and the second for the rank-0 sentinel.) Use ‘_’ to delaminate between IP
names.

After filling out those fields, click the “finish” button.

Figure 0. Number of clusters selection window

Figure 0. Cluster Selection Window

 14

3.3 File Transfer with SubmitGUI
SubmitGUI has file transfer function by which input files are transferred automatically to the
Commander agent after job submission. Similarly, output files that are created by each
computing agent are received by the Commander agent and then written to the user-specified
input/output directory.

4. Job Monitoring and Termination

4.1 Job monitoring and Standard In/Output
After selecting resources, the user inputs the port number for UWPlace as follows:

Figure 1. Port input window

Then, a job monitoring display is shown (10).

As shown Figure 10, SubmitGUI’s job monitoring display is constructed from (1) agent selection
window, (2) standard output display, (3) standard input field, and (4) remote node information
display.

(1) Agent selection window
The agent selection window allows the user to see the standard output from an agent, send
standard input to an agent, and monitor the status of all agents. All gateway agents, public
computing nodes, and extra public computing nodes can be found under the root Sentinel agent.

Figure 0. Root Sentinel agent and desktop
computing node selection window

 15

Figure 11. Standard output display

Figure 10. Job monitoring display

 16

(2) Standard output display
Since standard output is sent only from computing nodes, the output display of the Commander
agent and gateway agents show no output.

 (3) Standard input field
Standard input is sent to a corresponding agent immediately when the user types data to a
standard input field.

(4) Remote node information display
Remote node information display shows the dispatched agent id, agent rank, type of agent, and
current status. The type of agent that is shown in remote node information display is
“Commander agent”, “Root Sentinel agent”, “Gateway agent”, “Computing agent on cluster
network”, and “Computing agent on public network”. If these agents are extra agents intended
for resumption, “extra” is added to the type information as a prefix.

Current status varies with an agent status. When each agent has not been dispatched to remote
node, the status is “not dispatched yet” as shown in Figure . Agent id and rank are calculated
prior to dispatch unless the agent type includes the prefix “extra”, in which case agent id, rank
and status information is shown as in Figure . When an agent does crash the “extra” agent will
take over the id, rank (and ultimately status) of the crashed agent.

Figure 12. Remote node information in computing agent (public network)

Figure 13. Remote node information in extra computing agent (public network)

If a certain agent crashed, its agent’s job monitoring display is shown (as in Figure 14) and the
crashed agent hops to extra computing node. The user can discover where the agent moved by
checking job monitoring display of extra computing nodes. The status of resumed agent is
shown in Figure 15.

(4) Automatic Job Abortion
A job may be aborted automatically when AgentTeamwork can no longer continue to run it
because of the following reasons:

(a) You have specified wrong computing nodes for a job injection. In most case, nodes
specified for you're a job may not have yet started UWPlace. Make sure that UWPlace is
running at each of the nodes specified.

(b) Your application caused an exception. Debug your program.

 17

(c) When detecting a node crash, AgentTeamwork was not able to find the latest snapshot
corresponding to this node. Your application did not include checkpoints at all or a node
was crashed before your application took the very first snapshot.

(d) When detecting a node crash, AgentTeamwork was not able to find another node to
resume the application. Check the following cases: you didn’t use a resource database
and didn’t specify extra nodes for resumption purposes; all extra nodes you specified
were used up; the resource database couldn’t available computing nodes; and the
database itself was crashed.

Figure 14. Job monitoring display of crashed agent

Figure 15. Resumed agent information

 18

4.3 Job Termination
You may terminate the current job anytime after submitting it. Click the “Abort User Job” button,
located at the bottom-left corner of the submitGUI window, (see Figure 16.)

Figure 16. Aborting the current user job

4.4 Monitoring and Terminating UWPlace
Although you should use SubmitGUI to control your agents engaged in your current job, you
may also want to manage remote UWPlace daemons, (i.e., the underlying agent-execution
platforms) so as to monitor their status, to terminate if they got stuck, and to restart them. The
following shell scripts and batch files are available for these purposes.

UWMonitor.sh / UWMonitor.bat:
sshUWPlace.sh <port#> <as | kill agentId | suspend agentId | resume
agentId | help>

This script/batch file shows the status of agents or controls a given agent on the local UWPlace
daemon:

Options Remarks

as Shows the status of all local agents

kill agentId Terminates a given agent. An agent Id is obtained with “as”

 19

suspend agentId Suspends the thread that is executing a given agent.

resume agentId Resumes the thread that is executing a given agent.

help Lists all the available options of the UWMonitor.sh script.

sshUWMonitorAs.sh / sshUWMonitorAs.bat:
sshUWPlace.sh <port#> <-f filename | ipName {ipName}>

This script/batch file shows the status of all agents running on each of remote computers that
are listed in filename or in forms of IP names. More specifically, it runs “UWMonitor port# as” at
each of these remote computers.

sshTail.sh / sshTail.bat:
sshUWPlace.sh <port#> <-f filename | ipName {ipName}>

If a UWPlace daemon is launched remotely from sshUWPlace.sh, its log messages are all
saved in the /tmp/yourAccount_uwplace.log file. The script/batch file displays the last 10 lines of
this log file. If a UWPlace daemon stays idle, the log shows:

 #agentList.size = 0

If the list size is larger than 0, the daemon has some agents regardless of their active or inactive
status.

sshTrunc.sh / sshTrunc.bat:
sshUWPlace.sh <port#> <-f filename | ipName {ipName}>

As explained in sshTail.sh/sshTail.bat, a remote UWPlace daemon keeps saving its log
messages in the /tmp/yourAccount_uwplace.log file. To prevent the file from growing
unacceptably, it is recommended that you should sometimes run the sshTrunc.sh/sshTrunc.bat
script to truncate the log file.

kill.sh:
sshUWPlace.sh <port#> <-f filename | ipName {ipName}>

This shell script shuts down the local UWPlace daemon running at a given IP port#. No
corresponding DOS batch file.

sshKill.sh / sshKill.bat:
sshUWPlace.sh <port#> <-f filename | ipName {ipName}>

This script/batch file shuts down all the remote UWPlace daemons that are running at a given IP
port# and listed in filename or in the form of IP names.

As described in Section 2, you can use the following two shell scripts or DOS batch files to
restart a UWPlace daemon.

runUWPlace.sh / runUWPlace.bat:
runUWPlace.sh <port#>

This script/batch file starts a UWPlace daemon locally at a given IP port#.

sshUWPlace.sh / sshUWPlace.bat:
sshUWPlace.sh <port#> <-f filename | ipName {ipName}>

This script/batch file starts a UWPlace daemon at a given IP port# on all computing nodes that
have been listed in filename or in form of IP names.

 20

5. XML Resource Database

5.1 XML resource definition
To use AgentTeamwork’s resource database, an XML Resource definition should be written for
every computing node and uploaded to an FTP server accessible by all AgentTeamwork
daemons.

There are two types of XML resource definitions, one for public nodes and one for clusters. An
example of each appears below. The name of the resource definition files must be
<cur_ip_name>.xml for public nodes and the name of definition files for clusters must be <cl-
cluster_name>.xml

Public node XML resource definition: uw1-320-10.xml
<?xml version="1.0" ?>
<resource>
 <design_time>
 <domain>UWB</domain>
 <ip_name>uw1-320-10</ip_name>
 <ip_addr>69.91.198.161</ip_addr>
 <human_owner>uwb</human_owner>
 <cpu_speed>2100</cpu_speed>
 <cpu_arch>intel</cpu_arch>
 <cpu_count>2</cpu_count>
 <memory>1024</memory>
 <os_type>linux</os_type>
 <disk_space>40</disk_space>
 <cpu_load>100</cpu_load>
 <availability multiple="true">
 <time>0000-1159</time>
 <time>1200-2359</time>
 </availability>
 <time_zone>pacific</time_zone>
 <inter_net_device>ethernet</inter_net_device>
 <intra_net_device>ehternet</intra_net_device>
 <libraries multiple="true">
 <name>cexec</name>
 <name>mpirun</name>
 </libraries>
 <inter_net_band>100</inter_net_band>
 <intra_net_band>100</intra_net_band>
 </design_time>
</resource>

Cluster XML resource definition: cl-medusa-8-15.xml
<?xml version="1.0" ?>
<cluster>
 <design_time>
 <domain>UWB</domain>
 <name>cl-medusa-8-15</name>
 <gateway>medusa.uwb.edu</gateway>
 <alias>medusa</alias>
 <group>
 <ip_list>
 <ip_name>mnode8</ip_name>

 21

 <ip_name>mnode9</ip_name>
 <ip_name>mnode10</ip_name>
 <ip_name>mnode11</ip_name>
 <ip_name>mnode12</ip_name>
 <ip_name>mnode13</ip_name>
 <ip_name>mnode14</ip_name>
 <ip_name>mnode15</ip_name>
 </ip_list>
 <human_owner>uwb</human_owner>
 <cpu_speed>3200</cpu_speed>
 <cpu_arch>intel</cpu_arch>
 <cpu_count>1</cpu_count>
 <memory>512</memory>
 <os_type>linux</os_type>
 <disk_space>30</disk_space>
 <cpu_load>100</cpu_load>
 <availability multiple="true">
 <time>0000-1159</time>
 <time>1200-2359</time>
 </availability>
 <time_zone>pacific</time_zone>
 <inter_net_device>ethernet</inter_net_device>
 <intra_net_device>gigaether</intra_net_device>
 <libraries multiple="true">
 <lib_name>java</lib_name>
 <lib_name>prunjava</lib_name>
 </libraries>
 <inter_net_band>100</inter_net_band>
 <intra_net_band>1000</intra_net_band>
 </group>
 </design_time>
</cluster>

For running AgentTeamwork in the UWB domain, connect to ftp.tripod.com, username:
agentTeamwork, and email dslab@u.washington.edu for the password. At present, the FTP
server registers the following xmls for use within UW Bothell, and thus you have no need to
upload or modify xml files:

Public/ directory:

mnode0.xml, mnode1.xml, mnode2.xml, mnode3.xml, mnode4.xml,
mnode5.xml, mnode6.xml, mnode7.xml

uw1-320-00.xml, uw1-320-01.xml, uw1-320-02.xml, uw1-320-03.xml,
uw1-320-04.xml, uw1-320-05.xml, uw1-320-06.xml, uw1-320-07.xml

perseus.xml, tarvos.xml

Cluster/ directory:

cl-medusa-8-15.xml, cl-uw1-320-08-15.xml

For outside domains, establish a public FTP which AgentTeamwork can access so as to
maintain its XML database in that FTP. The FTP account must have two directories named
“Cluster” and “Public”.

Upload all public node XML resource definitions to the “Public directory” and all cluster
definitions to the “Cluster” directory.

 22

5.2 Database Set-up
Before starting up the Database, ensure that port 8000 is free. AgentTeamwork is hard-coded to
this port for this purpose, so port 8000 must be free for the database before you can use
AgentTeamwork properly.

To start up the database properly run startDB.sh or startDB.bat, reproduced below.

startDB.sh or startDB.bat
#!/bin/sh

cd ../xmls/
java -cp ../jars/Agents.jar AgentTeamwork.Agents.XDBase 8000

Shut down the database by running shutdownDB.sh or shutdownDB.bat reproduced below.
Before a shutdown, the database saves any resource changes in the “$Ateam/xmls/” directory,
which will be reused upon a next invocation. You can also kill the database process with
CTRL+C, however no changes will be recorded into the xmls directory.

shutdownDB.sh or startDB.bat
#!/bin/sh

echo "shutdownDB: shutdown the database"

java -cp ../jars/Agents.jar AgentTeamwork.Agents.ShutdownDB

Ensure that these scripts run where the resource agent is dispatched, which is specified with the
commander agent’s R option.

6. Command Line Operations

6.1 Job Injection from Command line
Log in a computer that has installed AgentTeamwork. From the command line, you must run
FileThread.sh that takes care of file transfer between the front end and a user application:

runFileThread.sh or runFileThread.bat
runFileThread.sh port# directory

There port# must be the same as the GP option given to a commander agent, (see table 3), and
directory is where your input/output files are stored. If you intend to inject a job from the same
terminal window where runFileThread.sh was invoked, you must run runFileThread.sh with the
“&” delimiter.

Thereafter, you can inject a commander agent to dispatch your application, using UWInject. The
command format is:

Inject a job
java –Xmx512M –cp linkToUWAgent.jar:linkToAgents.jar:linkToGUIUtil.jar
UWAgent.UWInject optionsforUWInject destination
AgentTeamwork.Agents.CommanderAgent optionsforCommander

 23

Table 1: Parameters for Command Line Input

Parameters of the
command line input

Remarks Example values

linkToUWAgent.jar A symbolic link or a pass to
UWAgent.jar

jars/UWAgent.jar

(assuming that the current
working directory is
agentteamwork.)

linkToAgents.jar A symbolic link or a pass to Agent.jar jars/Agents.jar

(assuming that the current
working directory is
agentteamwork.)

linkToGUIUtil.jar A symbolic link or a pass to GUIUtil.jar jars/GUIUtil.jar

(assuming that the current
working directory is
agentteamwork.)

optionsforUWInject

Options required/recommended for
UWInject

See table 2

destination The IP where a commander agent is
injected

localhost

(Injected locally)

optionsforCommander Options required/recommended for a
commander agent

See table 3

Table 2: Options for UWInject

Options Remarks Values required

-p The IP port through which you would like
to inject a commander agent

-p 12345

(should be between 5001 and 65535.)

-m The maximum number of children each
agent can spawn. Mandatory.

-m 4

(The value must be always 4.)

-u The directory where agents’ code is
located. Mandatory.

-u
/home/uwagent/agentteamwork/AgentTe
amwork/Agents

(This option is always fixed.)

-j Jar files an agent should carry with it.
Must be delimited with a comma.
Mandatory.

-j
jars/GUIUtil.jar,jars/Agents.jar,jars/Ateam
.jar,jars/MPJ.jar,jars/commons-net-
1.4.1.jar,jars/jakarta-oro-
2.0.8.jar,applications/applications.jar

(This option is always fixed.)

 24

Table 3: Options for Commander Agent

Options Remarks Example values

AP An IP port number used for the underling
GridTcp communication. Mandatory.

AP_11112

(Any number between 5001 and 65535)

GP An IP port number with which the
commander agent contacts SubmitGUI
or FileThread. Mandatory.

GP_11111

(Any number between 5001 and 65535,
but different from AP)

GI An IP address with which the
commander agent contacts SubmitGUI
or FileThread. If omitted, GI is set to
“localhost”.

GI_medusa

(Any IP name or address)

S A list of ip names to dispatch a sentinel
agent. If it is not given, a resource agent
is responsible to provide the commander
with such a list. The 1st IP name is
dedicated to the root sentinel with id 2
that does not participate in actual
computation.

S_priam_uw1-320-00_uw1-320-01_uw1-
320-02_uw1-320-03

(The root sentinel reins all others at
priam. The other nodes including uw1-
320-00, uw1-320-01, uw1-320-02, and
uw1-320-03 will participate in
computation.)

CL A remote cluster to use as well. The
cluster gateway name comes first,
followed by the cluster gateway node
alias, followed by a list of machine nodes
within that cluster. If it is not given with
the S option, a resource agent is
responsible to provide the commander
with such a list. NOTE: To specify extra-
compute-nodes within this cluster, supply
an ECL parameter (see below) using the
same cluster name as this CL parameter.

CL_medusa.uwb.edu_medusa_mnode0_
mnode1_mndoe2_mnode3

(medusa.uwb.edu is a cluster gateway
whose cluster-internal alias is medusa. It
reins four cluster-internal nodes including
mnode0, mnode1, mnode2, and
mnode3.)

E A list of extra IP names to resume an
agent when one is crashed. If a resource
agent is invoked due to missing of the S
and/or B option(s), it will provide the
commander with the E option.

E_uw1-320-04_uw1-320-05

(If a sentinel agent is crashed, it is
resumed at uw1-320-04. If one more
crash occurs, the next choice will be
uw1-320-05.)

ECL An extra remote cluster to use. The
cluster gateway name comes first,
followed by the cluster gateway node
alias, followed by a list of machine nodes
within that cluster. If the same cluster
gateway is specified in the CL option,
this ECL means a list of additional
computing nodes in the same cluster for
recovery purposes.

ECL_medusa.uwb.edu_medusa_mnode
4_mnode5

(When the medusa.wub.edu cluster
detects any node crash, it will resume
computation on mnode4 and thereafter
mnode5.)

 25

B A list of IP names to dispatch a
bookkeeper agent. If it is not given, a
resource agent is responsible to provide
the commander with such a list.

B_tarvos_phoebe

(Two bookkeeper agents are dispatched
to tarvos and phoebe respectively.)

U A user program name and its arguments.
This is a mandatory option.

U_Mandelbrot_-
2.0_1.0_0.0_200000_GRAD-BLUE

(Mandelbrot is a Java user program and
the rest are its arguments.)

R An IP name to dispatch a resource agent
to. If it is not given, a resource agent is
launched at the same computing node as
the commander is working. No more than
one resource agent should be invoked.

R_dione

(A resource agent is dispatched to
dione.)

RA A list of arguments passed to a resource
agent. It is mandatory if a resource agent
is invoked, (due to missing of the S and
B options.)

1st argument: a shared ftp name

2nd argument: the ftp account

3rd argument: the ftp password

4th argument: the resource probing
frequency in minutes. (default: 5)

5th argument: the resource domain

Note: To keep a resource agent from
spawning sensor agents, the 4th
argument must be -1.

RA_ftp.tripod.com_agentteamwork_******
**_-1_UWB

(A resource agent will contact
ftp.tripod.com with the account:
agentteamwork and the password
******** and choose resources in the
UWB domain. It won’t spawn sensor
agents due to -1 as the 4th argument.)

RB If the B option is not specified, the
number of bookkeeper agents to spawn
must be given with RB.

RB_2

(2 agents dispatched to a different node)

RQ A list of query option/parameter pairs.

ip: directly specify where to run an
application. This corresponds to the S
option.

cpuspeed: the CPU speed in MHz

cpuarch: the CPU architecture such as
intel, 68K, PowerPC, and SPARC

cpucount: # cpus in each computing
node

memory: per-node memory size in
Mbytes

disk: per-node disk size in Gbytes

RQ_cpuarch_linux_total_2

Two computing nodes under the Linux
control are required for an application.

 26

total: # computing nodes required for a
given user application (mandatory if RQ
is specified.)
time: when to run an applicatioin
855pm34se = 205534 or now = 0

os: operating system type such as linux,
windows, and solaris

cpuload: percentage of cpu idle state (in
general 100%)

bandwidth: the network bandwidth
required in Mbps

choice: choice of public, cluster, or a
specific lcuster

RN A multiplier to determine how many
backup computers should be requested
from a resource agent. Value should be
1.0, 1.5, 2.0 or 3.0. Otherwise, 1.0 will be
used as multiplier.

RN_2.0

The twice large number of computing
nodes will be allocated to a user
program.

RC A list of classes that a resource agent will
use.

XCollection_SensorAgent_DatabaseMan
agementService_Service_DeletionServic
e_RetrievalService_QueryService_XPath
Util_StoreService_SensorAgent\$1_Sens
orAgent\$RemoteRscProbeTask_Ttcp_T
tcp\$Connect_Option_StopWatch

(This option is always fixed.)

For running a job with AgentTeamwork repeatedly, it is highly recommended to create and run a
shell script that includes the above parameters.

An example shell script
#!/bin/sh

cd $HOME/agentteamwork-dev/

java -Xmx512M -cp jars/UWAgent.jar:jars/Agents.jar:jars/GUIUtil.jar \
UWAgent.UWInject localhost AgentTeamwork.Agents.CommanderAgent \
-p 12345 \
-m 4 \
-u AgentTeamwork/Agents \
-j \
jars/GUIUtil.jar,jars/Agents.jar,jars/Ateam.jar,jars/MPJ.jar,jars/commons-
net-1.4.1.jar,jars/jakarta-oro-
2.0.8.jar,jars/xalan.jar,xercesImple.jar,applications/applications.jar \
U_Wave2DAteam_448_3000_200_show \
AP_11112 \
GP_11111 \
R_dione \

 27

RQ_total_2 \
B_tarvos \
RA_ftp.tripod.com_agentteamwork_********_-1_UWB
RC_XCollection_SensorAgent_DatabaseManagementService_Service_DeletionServic
e_RetrievalService_QueryService_XPathUtil_StoreService_SensorAgent\$1_Senso
rAgent\$RemoteRscProbeTask_Ttcp_Ttcp\$Connect_Option_StopWatch

This example shell script injects a commander agent through IP port 12345, local to where a
user currently logs in. The application is Wave2Ateam that takes 448, 3000, 200, and show as
its arguments. The commander agent spawns a resource agent at dione, requesting two
computing nodes for the application. It also spawns a bookkeeper agent at tarvos. The resource
agent accesses ftp.tripod.com through the agentteamwork account and its password ********. No
sensors will be generated.

6.2 Job Termination from Command line
After dispatching a job with a commander agent, runFileThread.sh/runFIleThread.bat shows the
status of the job execution. If you want to terminate a job, simply type:

abort

Upon receiving a completion signal from the commander agent,
runFileThread.sh/runFileThread.bat will return its control back to a new command line.

6.3 File Transfer with Command Line
If the user submits the job from a command line utility, input files are not transferred
automatically. In this case, the user can transfer them by using FileThread which has similar
functions to SubmitGUI. FileThread allows the user to transfer input files, receive standard
outputs, and receive output files. FileThread options are specified when it is run, such as –p
[port#], -d [directory name], -i, and –w.

-p: is port number to communicate with Commander agent.
-d: is directory input/output directory name to transfer and receive.
-i: is specified if input files are in user side. Thus, files are transfer if this option is

specified. If this option is not specified, directory information is sent to
Commander, and then Commander agent itself reads the files.

-w: is specified if input files are stored in remote computing node’s /tmp directory

These options can only be used in the following combinations.

Accepted FileThread option combinations

Specified option Behavior

-p [prot#] –d [directory name] (-w) –i Transfer input files to commander agent

-p [port#] –d [directory name] (-w)
Input files are not transferred. The files are read by
commander agent, and then they are passed by
commander agent.

-p [port#] Just receives standard output

 28

7. Trouble Shooting

Errors with Serializable
When using the snapshot feature of AgentTeamwork to save the state of execution of a user
program ensure that all objects in the program to be saved are serializable. If they are not, the
snapshot cannot be transmitted to a Bookkeeper and the checkpoint will fail.

Error java.lang.outofmemory

This error can occur if the user is running both the Commander and the Bookkeeper Agents on
the same computer. In order to avoid or fix this error give the Commander and Bookkeeper
Agents different nodes to execute on.

Constructor Error

User applications must have a constructor that accepts an ATeam object. This constructor must
exist in addition to any other user-defined constructors.

Sample constructor accepting ATeam object argument
public UserProgram(Ateam o) { }

MPJ Error
If ATeam complains about MPI initialization, the user may not have passed the correct
arguments to ATeams MPI implementation of the Init function. Be sure to invoke
MPJ.Init(args, ateam). Any other invocation (i.e. MPJ.init(args)) will result in
execution errors.

Bookkeeper Bottleneck/Crashes

In order to avoid performance issues stemming from bottleneck at the Bookkeeper accepting
and retrieving snapshots, ensure that there are multiple Bookkeeper Agents running. If one
crashes the others can handle the load and if there are a lot of snapshots coming in from other
agents having multiple Bookkeepers allow these messages to be processed more quickly.

Hanging while “… mainThread waiting for all_locations”
This message means that all the agents specified by the user have not been started. Review
the application code ensuring that all agents specified by the program are instantiated.

Error java.net.ConnectException: Connection refused
Check that all locations specified to run the application are also running UWPlace. This error
occurs most often when UWPlace is not running on a target machine.

8. Final Comments
AgentTeawork, ATeam and associated classes are copy write University of Washington Bothell.
No advanced notice of changes and revisions to AgentTeamwork and ATeam or relate classes
are required. Users may use classes and associated methods at their own risk.

 29

Appendix. System Directory
The following table summarizes AgentTeamwork’s directory structure. All scripts necessary for
job set-up and execution are located at the “agentteamwrok/scripts” directory.

Directory Structure
agentteamwork/ the root of the AgentTeamwork system
 AgentTeamwork/
 Agents/ includes all agents
 Ateam/ includes AgentTeamwork APIs
 GridFile/ fault-tolerant file I/O
 GridJNI/ interface to C++ applications
 GridRuby/ interface to Ruby applications
 GridTcp/ fault-tolerant TCP
 applications/
 applications.jar all applications so far
 compile.sh a script to compile applications
 runAteam.sh a script to inject an application
 DistributedGrep/a distributed-grep Java program
 Mandelbrot/ a Mandelbrot Java program
 MatrixMult/ a matrix-multiplication Java program
 Wave2D/ a Schroedinger’s wave Java simulator
 Samepl/ a sample Java program
 benchmark/
 runAteam.sh a script to inject a benchmark program
 runAteamClusters.sh a script to use multi-clusters
 runRsc.sh a script to use a resource XML database
 doc/ ...JavaDoc files
 GUI/ AgentTeamwork’s GUI including SubmitGUI
 jars/ all AgentTeamwork’s jar files
 MPJ/ MPI Java implementation
 scripts/
 runUWPlace.sh ..a script to launch a UWAgent daemon locally
 bgUWPlace.sh to launch a UWAgent daemon in background
 sshUWPlace.sh to start bgUWPlace.sh at remote machines
 kill.sh to kill a local UWAgent daemon, (i.e. UWPlace)
 fileTrunc.sh a script internally used by sshTrunc.sh
 sshKill.sh a script to kill remote UWAgent daemons
 sshTail.sh to view the tail of remote daemons’ log
 sshDelete.sh a script to delete remote daemons’ log
 sshTrunc.sh a script to truncate remote daemon’s log
 sshUWMonitorAs.sh a script to monitor remote agents
 compileAndPackUWAgent.sh a script to compile UWAgent
 compileAndPackAgents.sh a script to compile all agents
 compileAndPackAteam.sh a script to compile APIs
 compileAndPackMPJ.sh a script to compile MPI Java
 compileAndPackGUI.sh a script to compile GUI
 compileAndPackBenchmark.sh ...to compile benchmark programs
 compileAndPackApplications.sh ..to compile all applications
 compileAndPackAll.sh to compile all files
 genJavaDoc.sh a script to generate Java documents
 cleanClassFiles.sh a script to delete all class files
 runFileThread.sh to launch a file-transfer process
 launchGUI.sh a script to launch a SubmitGUI process
 runDBNotify.sh to inform XDBase of node recovery
 shutdownDB.sh a script to shutdown an XML database
 startDB.sh a script to start up an XML database
 UWMonitor.sh a script to monitor/kill a local agent
 XDBaseGUI.sh a script to monitor a local XML database
 bat/DOS batch files that basically correspond to scripts
 UWAgent/ UWAgent mobile-agent execution engine
 SampleAgents/ sample mobile-agent programs

 30

 xmls/ XML descriptions of computing resources

