

UWAgents User’s Manual
(version 2.0)

Munehiro Fukuda∗
Miriam Wallace∗

∗ Computing and Software Systems, University of Washington, Bothell

 2

UWAgents User’s Manual

Table of Contents
Table of Contents.. 2
Table of Figures .. 2
About UWAgent .. 3
About UWAgent .. 3
System Invocation and Agent Injection... 3
Agent Programming.. 5
Agent Communication with UWMessage.. 8
UWMonitor ...11
UWPlace Internal Design...11
Final Comments ...11
Glossary ..12

Table of Figures
Figure 1: An SSH Tunnel .. 4
Figure 2: Agent Injection via SSH tunnel .. 5
Figure 3: UWAgent MyAgentHello Sample 2 execution illustration.................................. 8
Figure 4: Talk is used to pass a message from a child agent to a parent..........................10

 3

UWAgents User’s Manual

About UWAgent
UWAgent is a java-based execution platform optimized for grid computing which uses
antonymous mobile agents to perform necessary work. Agents can coordinate the completion
of distributed computation independently of each other, over a network of host computers. In
order to host an agent, each computer in the grid is initialized as a UWPlace, a potential
location agents can migrate (hop) to and perform tasks.

Injecting a UWAgent into the grid of host computers initiates the process of spawning child
agents, dynamically distributing tasks across the network of host computers. Each UWAgent
adapts in parallel as the network or number of available hosts changes.

UWAgents and the UWPlace daemon it runs on form a robust distributed computing platform
made for networks which already serve other purposes. This allows UWAgents to move
autonomously through the network of UWPlace nodes where computing power may be found,
allowing individual host machines to be used for purposes other than running an agent.

This movement, or migration, is accomplished through the UWAgent hop function which
triggers an agent to pack up and move to another place in the network. The transition from one
place to another is made possible by serialization which allows a UWAgent to save its current
state, transmit that data to a new UWPlace location and then be re-instantiated to perform its
tasks at the new location.

Agents can also talk to one another as necessary in order to communicate information or trigger
tasks as necessary for the current agent’s task.

Please note that words in bold are defined in the Glossary section for future reference.

System Invocation and Agent Injection
To set up a mobile agent network to run distributed programs on, first run UWPlace on all
potential host machines. The UWPlace daemon runs in the background on host computers
flagging them as sites where UWAgents can migrate and perform tasks.

Run UWPlace locally, from the machines the host machines with the following command:

UWPlace Command:
java –cp UWAgent.jar:. UWAgent.UWPlace –p <port#>

Example, UWPlace Command:
java –cp UWAgent.jar:. UWAgent.UWPlace –p <port#>

An SSH tunnel establishes a port-to-port connection between two computers, channeling the
information from one computer to another, and back. Information from one port on the first
computer is funneled to the second computer at another port. Similarly, information can go from
the second computer to the first via another sets of ports, as illustrated in Figure 1: An SSH
Tunnel.

 4

Figure 1: An SSH Tunnel. Data flows through the tunnel from one computer’s out-port to the other

computer’s in-port: from Computer A to B and vice versa.

Connect your current computer to the target remote system (host) and run the following
command, to connect the two computers through an SSH tunnel:

SSH Tunnel Command:
shh –l <accountName> -L <localOutPort#>:localhost:<targetInPort#> -R
 <targetOutPort#>:localhost:<localInPort#> <targetHostIP>

Example, SSH Tunnel Command:
shh –l myaccount -L 1000:localhost:2000 -R 2500:localhost:1500
 remoteHost

The phrase “localhost” in the command indicates the current, local computer; changing that
keyword allows you set up SSH tunnels between two remote systems.

Once an SSH tunnel is established, run the UWPlace command via the SHH tunnel on the
remote computer (repeat this process as necessary for multiple remote systems):

UWPlace Command for Remote Systems:
java –cp UWAgent.jar:. UWAgent.UWPlace –p <localInPort#>
 -<localOutPort#> <targetHostIP>

Example, UWPlace Command for Remote Systems:
java –cp UWAgent.jar:. UWAgent.UWPlace –p 1500 -1000 remoteHost

Once a system has the UWPlace daemon running it is available for use as a place for
UWAgents to migrate and perform tasks.

To introduce an agent into your network of host computers (or nodes) inject the agent into the
network via the inject command. This command sends an instance of the agent into the
UWPlace network where the agent can then run and potentially roam across the network of

 5

nodes independently. Inject can be run locally from a computer in the network or remotely via an
SSH tunnel.

To inject an agent into local machine, run the following command:

UWInject Command:
java –cp UWAgent.jar:. UWAgent.UWInject –p <port#> <hostIP>
 <AgentClassName> <@argumentList>

Example, UWInject Command:
java –cp UWAgent.jar:. UWAgent.UWInject –p 1234 localhost MyAgent
 uw1-320-21 uw1-320-22

To inject an agent into a remote system connect to the remote place via an SSH tunnel and run
the UWPlace command on the target remote place. Then inject the agent into the system using
the following command:

UWInject Command for Remote Systems:
java –cp UWAgent.jar:. UWAgent.UWInject –p <localOutPort#> <hostIP>
 <AgentClassName> <@argumentList>

Example, UWInject Command for Remote Systems:
java –cp UWAgent.jar:. UWAgent.UWInject –p 1234 localhost MyAgent
 uw1-320-21 uw1-320-22

Figure 2: Agent Injection via SSH tunnel. When an agent is injected into a remote system via an

SSH tunnel, the agent is first constructed on the local machine and then transmitted to the remote
machine for execution.

Injection instantiates and initializes the agent, introducing it into the network of potential hosts
running UWPlace daemons. The –p option allows you to specify the port as above.

Another option, -m, allows you to specify the maximum number of child agents a given agent
can spawn. This allows the parent agent to use a simple formula to calculate the agent IDs of its
children. Agents calculate the IDs of their children by multiplying their ID with the max and then
adding 0 thru max minus 1 (]1..0[* −+= mmParentIDChidID). Note that when –m is not used
the default max is 10.

 6

The first agent created is given the ID 0 and is a special case and can only spawn max minus 1
children. For example, if you inject with the –m option and specify and maximum of 4, agent 0
will spawn a maximum of 3 children with IDs 1 thru 3 while those children can spawn a total of 4
children, as seen in Figure 3: Parent and Child IDs below.

Figure 3: Parent and child IDs with a max of 4 children

To use the –m option, inject the agent using the following variation on the existing command:

UWInject Command with –m option:
java –cp UWAgent.jar:. UWAgent.UWInject –m <max> –p <port#> <hostIP>
 <AgentClassName> <@argumentList>

Example, UWInject Command with –m option:
java –cp UWAgent.jar:. UWAgent.UWInject –m 4 –p 1234 localhost MyAgent
 uw1-320-21 uw1-320-22

Agent Programming
Programming UWAgent allows control over how the agent class should perform across the
network and what it should be used for. Agents can be tailored to specific purposes and
problems.

When creating a custom UWAgent class, ensure the UWAgent class is accessible from the
current agent class project and then inherit from the UWAgent class using the keyword
“extends”.

All UWAgent extensions must also implement the Serializable interface which allows an agent
to travel from one UWPlace to another. The current state of a Serializable class can be saved to
a stream from which they can be restored later. UWAgents are transmitted from one place in the
network to another using this method. Add the keywords “implements Serializable” to the class
declaration as illustrated in the UWAgent Code Sample 0 below.

UWAgent Code Sample 0: class declaration
import java.io.Serializable;

public class MyAgentSample extends UWAgent implements Serializable {
 …
}

 7

After the UWAgent class declaration the agent’s constructor, init method, and a function to
execute when it moves from one location to another should be implemented. Sample agent
implementations with and without hops are provided below in UWAgent MyAgentHello Sample 1.

When injected into a remote host the UWAgent MyAgentHello Sample 1 code would be
executed in the following order: the constructor would be called on the local machine, creating
an instance of the MyAgentHello class. This instance would then be transmitted to the remote
host named in your inject command, where the init method would be executed. Init would call
the helloWorld method which would print “Hello World” to be printed to the console of the
remote host. See Figure 2 for a generalized example.

UWAgent MyAgentHello Sample 2: with hop()
import java.io.Serializable;

public class MyAgentHello extends UWAgent implements Serializable {
 public MyAgentHello() { }

 public void init() {
 // Go to host1 and execute “helloWorld” function
 hop(host1, “helloWorld”);
 }

 // An agent function that performs a task or series of tasks and
 // may be called by other UWAgent functions such as hop
 public void helloWorld() {
 System.out.println("Hello World");
 }
}

UWAgent MyAgentHello Sample 1: without hop():
import java.io.Serializable;

public class MyAgentHello extends UWAgent implements Serializable {
 public MyAgentHello() { }

 public void init() {
 // Execute function helloWorld
 helloWorld();
 }

 // An agent function that performs a task or series of tasks and
 // may be called by other UWAgent functions such as hop
 public void helloWorld() {
 System.out.println("Hello World");
 }
}

 8

Figure 4: UWAgent MyAgentHello Sample 2 execution illustration.

UWAgent MyAgentHello Sample 3: with Spawn and Hop
import java.io.Serializable;

public class MyAgentHello extends UWAgent implements Serializable {
 public MyAgentHello() { }

 public void init() {
 // When the current agent is the parent spawn a child
 if (getMyAgentId() == 0) {
 // Create a child agent at the target host node
 // This acts like an inject command to the host
 UWAgent agentRef = spawnChild(host1, MyAgentHello);
 }
 // When the current agent is not the parent
 else {
 // Go to another host and execute “helloWorld” function
 // at the new location
 hop(host2, “helloWorld”);
 }
 }

 // An agent function that performs a task or series of tasks and
 // may be called by other UWAgent functions such as hop
 public void helloWorld() {
 System.out.println("Hello World");
 }
}

As indicated in the code sample above, spawnChild(…)returns a UWAgent reference. This
UWAgent instance is the child created by the spawn command. This reference, however, should
not be used to call methods from the child agent because the child may already be in transit to
another place. The one method that may be called with this reference is the getAgentId()
method which allows the parent agent to to retrieve the child’s ID.

 9

Agent Communication with UWMessage
In programming agents to distribute work across a network they may need to communicate with
each other to allow greater coordination. The UWAgent talk method provides this ability.

The UWAgent talk method takes two arguments, the ID of the agent to communicate with and
the message to be sent. Invoking talk with these arguments will cause an agent to send a
message to the recipient agent specified. Talk’s Boolean return value indicates when messages
are successfully received.

The agent ID of the recipient allows the sending (or talking) agent to locate the corresponding
agent’s IP address and gateways en route to the recipient. Once the agent ID, IP address and
gateways have been identified, the message is then sent to the target agent even if that agent is
currently in transit from one node to another.

The message is sent as an instance of the UWMessage class. The UWMessage class is a
robust container which holds a message header and body but also tracks sending and receiving
information. All of these components of the UWMessage class are accessible via get and set
methods after UWMessage construction.

When one agent talks to another, the message is sent to the recipient agent’s mailbox, an
instance of UWAgentMailbox. This works remarkably like a real mailbox except that agents read
from their mailbox as from a FIFO queue, the first message in is the first message read.

Messages can be sent and received successfully even when the receiving agent is in transit
from one place to another. When an agent hops to a new node, a stub for the agent is created
at the old location and the new location is broadcast to other agents. This assures messages
already in transit to the hopping agent are received by the agent stub at the old location and
forwarded to the recipient at its new location and that new messages are sent to the new
location.

If the sender agent does not know its receivers IP address, the message can be sent to a parent
or child of the recipient which then relays the message, allowing the message to ultimately
arrive at the correct recipient.

UWMessage Sample
import java.io.Serializable;

public class MyAgentHello extends UWAgent implements Serializable {
 public MyAgentHello() { }

 public void init() {
 // Activate mailbox for all agents when they are initialized
 activateMailbox();

 // When the current agent is the parent spawn a child
 if (getMyAgentId() == 0) {
 // Create a child agent at the target host node
 // This acts like an inject command to the host
 spawnChild(host1, MyAgentHello);
 // Msg receiving code
 UWMessage msg = retrieveNextMessage();
 int senderId = msg.getSendingAgentId();
 String[] msgHeader = msg.getMessageHeader();
 // Do something with the msg
 System.out.println(senderId + “: “ + msgHeader);

 10

 }
 // When the current agent is not the parent
 else {
 // Go to another host and execute “helloWorld” function
 // at the new location
 hop(host2, “helloWorld”);

 // Send the an empty message to the this agent’s parent
 // (Get the parent agent’s id for the current agent)
 talk(getParentId(getAgentId()),
 new UWMessage(this,”hello”));
 }
 }

 // An agent function that performs a task or series of tasks and
 // may be called by other UWAgent functions such as hop
 public void helloWorld() {
 System.out.println("Hello World");
 }

Figure 5: Talk is used to pass a message from a child agent to a parent.

Messages are funneled to an agent by the UWPlace daemon running on the host machine.
When a message is received, after a connection has been established, the message is
processed in an independent thread allowing the host machine to continue accepting incoming
communications while a message is processed. When a message for an agent is received by
the daemon, it is added to the agent’s mailbox: a queue of received messages which are read
on a first-in-first-out basis.

 11

UWMonitor
UWMonitor is a specialized UWPlace class created to provide status information about agents
running at a UWPlace and provides utilities for controlling them. UWMonitor uses a specialized
UWAgent class to carry out utility commands. Once an instance of the UWMonitor class is
injected at a place you can view the status of agents running at that place as well as suspend,
resume and kill those agent processes.

To invoke a specific command after the monitor has been injected use the following command:

UWMonitor Command:
java -cp UWAgent.jar UWAgent.UWMonitor <port#> <commands>

Example, UWMonitor Command:
java -cp UWAgent.jar UWAgent.UWMonitor 12345 kill <agentID>

UWPlace Internal Design
UWPlace internal design takes advantage of multi-processor systems by strategically
separating processes to run on independent threads.

The main function of the UWPlace class creates a server socket to listen for client requests and
then spawns a child accept thread.

The accept thread continually triggers the server accept function allowing UWPlace to accept
incoming communication from clients. When a client-server connection is established the accept
thread spawns a new thread to handle the communication and continues listening for new
communication requests. Once this communication thread is established, messages such as
UWAgents in transit from another UWPlace can be sent to the server and added to the queue of
agents to run at the current UWPlace.

While the accept thread handles accepting and establishing client-server communications, the
UWAgent main function calls the engine function in an infinite loop. The engine function pops
incoming agents off the agent queue creating a thread for the new agent and adding it the ready
queue to be run at the current UWPlace.

Final Comments
UWAgent and associated classes are copywrite University of Washington Bothell. No advanced
notice of changes and revisions to UWAgent and relate classes are required. Users may use
classes and associated methods at their own risk.

 12

Glossary

agent – an active instance of the UWAgent class

inject – to pass a program into the UWAgent/UWPlace system to be executed on the nodes in
a network

hop – when an agent moves from one host location to another, or the method which causes the
agent to move

hop
public final void hop(java.lang.String hostname,
 java.lang.String funcName)

Provides mobility for the UWAgent to move to another UWPlace.
Parameters:
hostname - a new destination host IP name
funcName - a function to be called at the destination

hop
public final void hop(java.lang.String hostName,
 java.lang.String funcName,
 java.lang.String[] funcArgs)
Provides mobility for the UWAgent to move to another UWPlace.
Parameters:

hostName - a new destination host IP name
funcName - a function to be called at the destination
funcArgs - arguments passed to the function

hop
public final void hop(java.lang.String hostName,
 java.lang.String[] gateway,
 java.lang.String funcName)
Hops through gateway list to destination host as accepting no arguments.
Parameters:

hostName - a new destination host IP name
gateway - an array of gateways all the way to the hostName
funcName - a function to be called at the destination

hop
public final void hop(java.lang.String hostName,
 java.lang.String[] gateway,
 java.lang.String funcName,
 java.lang.String[] funcArgs)
Hops through gateway list to destination host as accepting string[].

 13

Parameters:
hostName - a new destination host IP name
gateway - an array of gateways all the way to the hostName
funcName - a function to be called at the destination
funcArgs - arguments passed to the function

host – see node

location – see node

migrate – see hop

node – a computer in the network which has been initialized as a UWPlace and can therefore
run an agent

place – see node

talk – the method which passes a message from one agent to another

talk
public final boolean talk(int recipId,
 UWMessage message)
Provides communication for the UWAgent to send a UWMessage to another UWAgent though its
"personal" AgentMailbox.
Parameters:

recipId - the ID of the intended recipient
message - the message to be sent

Returns:
true if the message has been sent or forwarded successfully.

