
UWAgents: A Mobile Agent System Optimized for Grid Computing

Munehiro Fukuda Duncan Smith

Computing & Software Systems
University of Washington, Bothell,

18115 NE Campus Way, Bothell, WA 98011
{mfukuda, duncans}@u.washington.edu

Phone: 1-425-352-3459 Fax: 1-425-352-5216

Abstract

UWAgents is a Java-based mobile agent system opti-
mized for implementing grid computing infrastructure. Un-
like most mobile agent systems, which are used only for job
deployment and result collection in grid computing, UWA-
gents addresses specific requirements for coordinating the
entire execution of a parallel and distributed computing ap-
plication. These includes allocation of process identifiers
(or MPI ranks), inter-cluster process allocation, job re-
sumption, and (re-)establishment of inter-process commu-
nication.

This paper explains how UWAgents addresses these re-
quirements with its two main features: management of an
agent hierarchy and agent migration over multiple clusters.
The paper also compares UWAgents with other agent sys-
tems in terms of parallel job coordination and job deploy-
ment performance.

Keywords: Mobile agents, grid computing, grid middle-
ware

1 Introduction

It has been over a decade since mobile agents first
received attention as a potential infrastructure for dis-
tributed applications such as electronic commerce, infor-
mation retrieval, distributed simulation, and network man-
agement [13]. Despite their inherent applicability to these
domains, mobile agents have struggled to establish a killer
application that takes full advantage of code/data mobility
and navigational autonomy [10].

In the face of such stagnant conditions, consider grid
computing as a potential application for mobile agents. Grid
computing applications benefit from the following advan-
tages of mobile agents: their navigational autonomy as-
sists the search for computing resources; their state captur-

ing eases job deployment and migration; their migration re-
duces communication overhead incurred between client and
server machines; and their inherent parallelism makes use
of idle computers. Several systems have been proposed to
apply mobile agents to grid computing [9, 16, 3]. Their mo-
bile agents, however, take charge of only job deployment to
and result collection from remote sites. But this is already
possible with conventional programming schemes such as
rsh and RPC.

Departing from simple job deployment, mobile or multi
agent usage has recently focused on other issues in grid
computing such as resource discovery and job scheduling.
The former works by dispatching agents to a series of dis-
tributed resource databases in order to query and screen for
the computing resources best suited to their user applica-
tions [11]. The latter implements job scheduling as a form
of agent negotiation [2], or has each agent learn the best
computing node using job execution trials at different sites
[6].

Despite the issues mentioned above, the use of mobile
agents is still limited to single or parameter-sweeping jobs,
each executed independently. While involved in inter-agent
negotiation, each agent takes care only of its own job and
does not consider the others. To extensively use mobile
agents for grid computing, we focus on coordinating the ex-
ecution of communicating processes such as an MPI appli-
cation in teamwork among multiple agents, which includes
assigning a different MPI rank to each processor; establish-
ing inter-process communication links even over different
clusters; moving a process to another site; and resuming
a crashed process, thereby reconnecting broken communi-
cation links. However, all of those requirements cannot
be fulfilled with existing mobile agents. For this reason,
we have developed a new agent execution platform named
UWAgentsand applied it to the infrastructure of ourAgent-
Teamworkgrid-computing middleware system [5]. In this
paper, we will demonstrate effective job coordination with
UWAgents.

The rest of paper is organized as follows: Section 2 is an
overview of the UWAgents system; Section 3 discusses its
application to grid computing; Section 4 analyzes its effec-
tive job coordination from both performance and functional
viewpoints; and Section 5 concludes our discussions.

2 Implementation

UWAgents is an execution platform for Java-based mo-
bile agents, each of which is auwagent. This section pro-
vides an overview of the UWAgents implementation, fo-
cusing on its grid computing-oriented features: hierarchical
agent creation, a distributed naming algorithm, cascading
termination, and over-cluster agent navigation and commu-
nication.

2.1 Programming Model

To run UWAgents, each computing node launches aUW-
Placedaemon that exchanges uwagents with other nodes.
Figure 1 shows an example of a uwagent program. Each
agent extends theUWAgentabstract class (line 1), is in-
jected by aUWInjectcommand from the Unix shell, is in-
stantiated as an independent Java thread, starts withinit()
(line 6), and migrates withhop()to a different site (line 11).
Thehop()method is based on weak migration that resumes
a calling uwagent from the top of a given function (line 14)
rather than right after where it was captured (line 12).

Currently, UWAgents has two restrictions: (1) local I/O
is not forwarded to migrating agents and thus must be
closed before agent migration or termination, and (2) if an
agent has instantiated subthreads internally, it is responsible
for restarting these threads withstart().

1 public class MyAgent extends UWAgent {
2 private MyClass myObject; // carried together
3 public MyAgent(String args[]) { // created locally
4 myObject = new MyObject();
5 }
6 public void init() { // executed upon an injection
7 proc();
8 }
9 public int proc() {

10 String args[] = new String[3];
11 hop("n1.uwb.edu", "func", args); // goes to n1
12 return 1; // can’t reach here.
13 }
14 public void func(String args[]) { // runs at n1
15 ...; // more computation
16 } // end of agent
17 }

Figure 1. UWAgents’ programming frame-
work

User

id 4 5 6 7

id 1

id 8 9 10 11

id 2

id 12

id 3

−m 4 −m 3

UWInject: submits a new agent from shell.

Agent Domain (time = 3:30pm 2/20/06
ip = medusa.uwb.edu
name = mfukuda)

Agent Domain (
time = 3:31pm 2/20/06

ip = perseus.uwb.edu
name = mfukuda)

id 1 id 2

A User Job

UWPlace

id 3 54

id 0 id 0

Figure 2. Agent domain

2.2 Agent Management in a Hierarchy

Figure 2 sketches uwagent creation, management, and
termination in a hierarchy. Submitted byUWInject, a uwa-
gent forms a new agent domain identified by a triplet that
consists of an IP address, a timestamp, and a user name. It
then becomes the domain root withid 0 and can hierarchi-
cally spawn descendants using thespawnChild()method.
The root agent is also allotted and passes to its descendants
the maximum number of children each agent can spawn,
(denoted bym). By restricting the root agent to creating up
to (m − 1) children, each agenti can identify its children
usingid = i∗m+ seq, whereseqis an integer starting from
0 if i 6= 0, (i.e, it is not a root) or from 1 ifi = 0, (i.e., it
is a root). As exemplified in Figure 2, agent 1 can create
agents4 ∼ 7 with m = 4, while spawning agents3 ∼ 5
with m = 3. This naming scheme requires no global name
servers, thus allowing a large number of agents to identify
one another easily, for example when coordinating a mas-
sively parallel application.

Inter-agent communication is implemented in thetalk()
andretrieveNextMessage()methods. Together, these meth-
ods compose a message as a hash table, transfer it to a desti-
nation agent in the same domain by traversing the domain’s
tree structure, and receive the message at the destination
agent using a blocking read. The current UWAgent im-
plementation does not permit inter-domain communication.
This is because we do not find strong justification for allow-
ing direct communication between agents that are serving
different user applications (i.e., applications submitted sep-
arately from the Unix shell) except in two circumstances:
resource search and job scheduling. Although some inter-
agent negotiation is necessary to acquire the resources and
CPU time that agents compete for, this can be handled us-

ing indirect communication to resource databases and CPU
schedulers.

UWAgents permits an agent to wait until all of its chil-
dren terminate or, alternatively, to kill them using theset-
TerminationRequest()method. The justification for this
has to do with how agents communicate with each other.
As described above, messages are forwarded along an agent
tree where a parent agent and its children share information
about their migration. Therefore, a parent must implicitly
postpone its termination until all of its descendants have fin-
ished their communication and have terminated themselves.
This feature helps a parallel application with detecting or
enforcing distributed termination.

UWPlace accepts a user job passed from an agent and
schedules it as an independent Java thread. Contrary to most
mobile agent systems, which launch jobs as Unix processes,
UWPlace strictly schedules user jobs using thesuspend()
andresume()methods provided by Java threads. Schedul-
ing is based on agent runtime attributes such as number of
migrations, total execution time, and execution priority.

2.3 Inter-Cluster Migration

UWAgents allows agents to travel between two separate
networks or clusters if those networks are linked by one or
more gateway machines running UWPlace. Agents on one
network can then send messages to those on the other net-
work. In addition to running UWPlace on the gateway ma-
chines, the user must specify the IP names of the machines
in one of two ways: (1) on the UWPlace command line with
the -g switch, in which case only one gateway machine may
be specified, or (2) as a parameter to the hop() method,
which accepts a string array of machine names.

For example, consider agent navigation over a gateway
as illustrated in Figure 3. In the command-line option, the
following pair of commands indicate that a gateway called
medusais available to allow agentTestAgentto travel from
herato mnode0.

[user@hera]$ java UWPlace -g medusa &
[user@hera]$ java UWInject hera TestAgent mnode0

The same navigation is carried out with the gateway ver-
sion of the hop method. The following code segment al-
lows an agent to hop from its current location, (i.e.,hera) to
mnode0, using one gateway calledmedusa. When it arrives
at mnode0, it will call a method calledArrivalMethod, with
no arguments.

String[] gateway = new String[1];
gateway[0] = "medusa";
hop("mnode8", gateway, "ArrivalMethod", null);

As shown in Figure 3, a parent agent can deliver a mes-
sage viamedusato its child, even though the child has

Parent agent Child agent

Public Network

Private Network

hop()

hop()

spawnChild()

talk()

id 0

id 1 id 1

id 1

mnoee0 mnode1 mnode31

(222.111.33.55)
medusa gateway

(10.0.0.34)(10.0.0.3)(10.0.0.2)

(222.111.33.44)

hera talk()

Figure 3. Over-gateway navigation

moved frommnode0to mnode1. The underlying imple-
mentation technique is to have each agent maintain gateway
information in its member variables. As an agent hops from
the source to the destination node, this gateway information
travels along with it. When migrating to a new destination,
the agent notifies its parent and children of its new position
and gateway information, so that all agents update their own
directory of the gateways required to reach their parent and
children.

3 Applications

This section demonstrates how UWAgents is not only ap-
plicable to grid computing, but also benefits other applica-
tions such as information retrieval, news delivery, and net-
work monitoring.

3.1 Grid Computing

AgentTeamwork is a distributed job-coordinating system
for grid-computing applications that we are developing with
UWAgents [5].

Figure 4 gives an overview of the AgentTeamwork sys-
tem. Each member of a group of computer users up-
loads his/her computing resource information to a shared ftp
server, and downloads the AgentTeamwork software, which
runs locally. When a user wants to run a new job through
AgentTeamwork, it is first preprocessed and enabled for

Snapshot
Methods

GridTcp

User program wrapper

Snapshot
Methods

GridTcp

User program wrapper

Internet group
ftp/http
Server

snapshot snapshotsnapshot

snapshotsnapshot

Sentinel Agent Sentinel Agent

Resource
AgentAgent

Commander

Sentinel Agent

Resource
Agent Agent

Commander

Bookkeeper Agent Bookkeeper Agent

User A User B

User program wrapper

Methods
SnapshotGridTcp

TCP
Communication

User A’s
Process

User A’s
Process

User B’s
Process

Figure 4. An overview of AgentTeamwork

process check-pointing and migration. Several of Agent-
Teamwork’s specialized agents now become involved. A
commander agent starts up, and spawns a resource agent.
The resource agent checks a local resource database, and
calculates a node itinerary based on resource requirements.
The commander also hierarchically spawns as many sen-
tinel agents as there are user processes in the job, and as
many bookkeeper agents as required by the job.

While the user’s job runs, the specialized AgentTeam-
work agents work as follows. A sentinel runs the user
process at each node, assigns a different MPI rank to the
process, monitors it, collects its results, and sends process
snapshots to the corresponding bookkeeper, which reroutes
them to the other two bookkeepers. The purpose of this
snapshot forwarding scheme is to maximize the chance that
a current snapshot will be available to resume a crashed
agent. Bookkeepers attempt to protect themselves by choos-
ing different destination nodes from their corresponding
sentinels, so that both the sentinel and bookkeeper are not
killed simultaneously if their node crashes.

Each agent monitors and resumes its parent and children
at a different node if they crash. It also migrates to another
node in its itinerary if the agent detects that its current loca-
tion does not satisfy its resource requirements. When the
user job generates output, the output is forwarded to the
commander, which displays it on the local console.

A modification is currently being made to AgentTeam-
work so that it will be able to dispatch a parallel application
over multiple clusters using UWAgents’ over-gateway nav-
igation. To implement this job distribution, sentinel agents
form two subtrees as illustrated in Figure 5: the left subtree
is dedicated to clusters, and the right is assigned to single

i3
r0

bkp

Descendant
bookkeepers

cmd: commander agent
bkp: bookkeeper agent

rsc: resource agent
snt: sentinel agent
i0: agent id
r0: processor rank

snt
i36 − i39

r(X+1) − r(X+4)

cmd

snt snt

sntsntsnt

snt
i2

i0

i8 i9

i33 i34 i35

cluster gateway 1

cluster 2
cluster 3

cluster 4

rX

snt
r1 − r5

r0

snt
i32

cluster gateways 2, 3, and 4

i128 − i131

cluster 1

rsc
i1

Desktop computers

Ranks keep assigned to clusters 2, 3, 4,
and thereafter to desktops (i9, i36 − 39)

Figure 5. Inter-cluster job distribution in
AgentTeamwork

desktop machines. For the left subtree, the leftmost agent
at each layer and its descendants are deployed to comput-
ing nodes in the same cluster (thus in the same private ad-
dress domain) while the other agents migrate to a different
cluster gateway. This agent-deployment scheme allows sen-
tinels to monitor each other and decide their own MPI rank
per cluster. Furthermore, all cluster gateways are managed
in the left subtree, which trims off its leftmost subtree at
each layer. That makes it easier for each cluster gateway to
monitor its own computing nodes in the leftmost subtree as
well as the other cluster systems in the other tree branches.
Another advantage is that a sentinel stays at each gateway,
which allows it to monitor a user application’s inter-cluster
communication.

3.2 Other Applications

Mobile agents’ applicability to and performance in in-
formation retrieval were precisely analyzed in [8]. In this
application domain, mobile agents can significantly reduce
network traffic as well as yield more processing intelli-
gence to servers by transferring the client’s programs and
executing them at server sites. However, in order to re-
spond to their client, who may move around, mobile agents
must know his/her current location. For this reason, the
client must obtain a mobile IP; agents must query Yellow
Pages servers for the client’s IP; or the client program it-
self must be written to continually inform all its agents of

its current location. UWAgents requires none of these addi-
tional services or modification, because it has implemented
a location-tracking feature at the system level.

Information delivery is the inverse of information re-
trieval. For example, consider the hyper news delivery
system introduced in [4], in which a news provider dis-
patches to each subscriber a proxy agent that is responsi-
ble for downloading this provider’s new articles. Unlike
an information retrieval system, this application must fre-
quently deliver information to a large number of dispatched
agents. Unless an efficient inter-agent multicast mechanism
is used, a provider will repeatedly send the same informa-
tion to many different proxy agents. The same problem
would occur in a data-intensive parallel application that re-
quires an NFS server to deliver files to each process. Since
UWAgents forms an agent domain in a tree structure, it can
mitigate such delivery overhead by multicasting data along
tree branches to all agents.

Network monitoring is another convenient domain for
mobile agents [17]. By roaming over a network, mo-
bile agents can detect network events happening at remote
routers, gateways, firewalls, and other servers. An obvi-
ous problem is that they cannot explore network devices
beyond a gateway. This problem is addressed with UWA-
gents’ over-gateway navigation and communication.

In summary, UWAgents benefits network-centric appli-
cations and middleware designs with its location-tracking
mechanism, tree-based agent domain, and over-cluster
agent navigation.

4 Analysis

To differentiate UWAgents from other mobile agent plat-
forms, we have conducted the performance and functional
analysis shown below.

4.1 Performance Analysis

For our performance analysis, we used two cluster sys-
tems connected to our 100Mbps campus backbone. One is a
Myrinet-2000 cluster of eight 2.8GHz Xeons, and the other
is a Giga Ethernet cluster of twenty-four 3.2GHz Xeons.

Figure 6 compares migration performance between
UWAgents and IBM Aglets [12]. The elapsed time was
measured for ten repetitions of agent migration, in which
a master agent deploys to a different cluster node 1 to 32
slave agents, each sending back a notification to the mas-
ter upon its arrival at the destination. While the UWAgents
deployment overhead linearly increases as the number of
slave agents grows, IBM Aglets has successfully alleviated
its overhead increase when deploying 32 agents. This per-
formance gap resulted from a difference in agent-spawning
mechanisms: UWAgents has each agent take responsibility

 500
 1000

 2000

 4000

 8000

 14000

 1 2 4 8 16 32

el
ap

se
d

tim
e

(m
se

c)

#nodes

IBM Aglets
UWAgents (broadcast deployment)
UWAgents (hierarchial deployment)

Figure 6. Performance of agent deployment.

for instantiating all of its children in its base class, whereas
IBM Aglets performs its child instantiation in a working
space namedAgletContext. This means the server itself de-
ploys new agents concurrently using multi-threading.

For UWAgents, we have also modified our test program
to deploy slave agents in a hierarchy. The modification is
simple: each agent repeatedly creates a child until its iden-
tifier reaches the total number of slaves. Figure 6 shows
that, due to the nature of hierarchical deployment, UWA-
gents slowed down the growth rate of migration overhead
logarithmically. Needless to say, UWAgents shows that the
more parallelism a job requires, the more important it is to
mitigate migration overhead.

4.2 Functional Analysis

Other mobile agent platforms intended for use in a grid
computing environment include IBM Aglets [12], Voy-
ager [15], D’Agents [8], and Ara [14]. In the following
section, we compare their functionality in terms of agent
naming and communication, synchronization, security, and
job scheduling.

The first area is agent naming and communication. Con-
sider the AgentTeamwork scenario in which a sentinel agent
transfers a snapshot to its corresponding bookkeeper. In or-
der to execute this transfer, the sentinel must first be able
to find the correct bookkeeper. D’Agents and Ara give each
new agent a server-dependent and unpredictable agent iden-
tifier, because of which we cannot systematically correlate
the bookkeeper with a given identifier. IBM Aglets uses
the AgletFinder agent that registers all agent identifiers.

This requires all agents to report to AgletFinder upon every
migration. Voyager identifies an agent through a conven-
tional RPC-naming scheme that must however distinguish
all agent names uniquely regardless of their client users.
Therefore, each user must carefully choose a unique agent
name. The UWAgents naming scheme facilitates this pro-
cess as follows. Since both the sentinel and the bookkeeper
are spawned by the same commander, they are siblings.
Their agent identifiers can be calculated by a simple formula
based on their position in the agent tree rooted at the com-
mander that is created when the user first injects a job [5].
Sibling agents communicate with each other through their
parent, and parent agents automatically delay their termina-
tion until all of their siblings have terminated. Combined
with the agent ID calculation, this guarantees that the sen-
tinel will be able to find the bookkeeper that it wants to send
the snapshot to.

The second area of interest is synchronization. Consider
the scenario in which a commander agent wants to wait until
all of the sentinel and bookkeeper agents involved in its job
have terminated. In IBM Aglets, a parent agent can use
the retract function to take all of its children back to itself,
though the parent still must terminate them one by one. Ara
allows all agents to be terminated at once with itsara kill
command. Needless to say, the calling agent itself will be
terminated as well. In D’Agents and Voyager, we have to
implement cascading termination or synchronization at the
user level. In UWAgent, because of the way the agent tree
is constructed, all of these agents are the descendants of
the commander. Therefore, the commander can determine
that a job has completed simply by checking the state of its
descendants. To implement this check, the commander (or
any parent agent) attempts to send a notification message
to each of its children, and counts the number of successes.
When this number reaches zero, the commander knows that
the job has completed. Because of the delayed termination
rule described above, each parent only needs to check one
level below itself, since it knows that its children will check
their children before terminating.

The third area of interest is security. Consider the sce-
nario in which a sentinel agent accidentally or maliciously
attempts to communicate with another user’s application,
such as the bookkeeper agent associated with another sen-
tinel. Although the other mobile agent platforms men-
tioned above use various security features such as Java byte-
code verification, the allowance model, the currency-based
model, and the CORBA security service, they have not fo-
cused on agent-to-agent communication in a group. SWAT
is a mobile agent platform [1] that distributes a crypto-
graphic key to a group of agents using a tree to secure their
intra-group communication. This is similar to UWAgents’
tree-based distribution of domain information (considered
as a cryptographic key). The difference is that SWAT leaves

the user to explicitly specify which agents may join a group,
whereas UWAgents automatically admits a new agent to its
parent’s group.

The final area of interest is job scheduling. Since multi-
ple agents are allowed to migrate to the same node, it would
be useful to be able to make decisions about when to run
processes based on conditions at the current node. As de-
scribed in Section 2, UWAgents implements a scheduler at
each UWPlace. The other mobile agent platforms were re-
leased without a native scheduling mechanism, though IBM
Aglets now has an add-on called Baglets to address this
problem [7].

5 Conclusions

We have focused on distributed job coordination in
grid computing as the most promising application domain
that uses the code/data mobility and navigational auton-
omy of mobile agents. Such distributed job coordina-
tion requires allocation of sequential process identifiers,
(re-)establishment of inter-process communication, inter-
cluster process allocation, and job resumption. To fulfill
these requirements, we have developed the UWAgents mo-
bile agent execution platform, which forms a hierarchical
agent domain (thus easing agent naming, communication,
and synchronization), implements over-gateway migration,
and schedules jobs at an agent level. From a different per-
spective, UWAgents could be viewed as a platform to fa-
cilitate a self-remapping tree of communicating processes
over a processor pool, which is a specialty of mobile agents.
Throughout the paper, we have demonstrated UWAgents’
preeminence over other agents in such areas of specializa-
tion as applicability to grid computing and job-deployment
performance.

As mentioned in Section 4.2, UWAgents secures agent-
to-agent communication through its agent domain. Using
SSL, it can also protect migrating agents and transferred
messages from eavesdropping by malicious users. For a fur-
ther enhancement of UWAgents’ security features, we are
planning to implement agent-versus-server authentication.

Acknowledgments
This research is being conducted with full support from

the National Science Foundation’s Middleware Initiative
(No.0438193). We are very grateful to Eric Nelson and
Koichi Kashiwagi of Ehime University, Japan for their pro-
gramming contribution to UWAgents at its early stage of
development.

References

[1] G. et al. Anderson. A secure wireless agent-based
testbed. InProc. of the Second IEEE International In-

formation Assurance Workshop – IWIA’04, pages 19–
32. IEEE-CS, April 2004.

[2] Alain Andrieux, Dave Berry, Jon Garibaldi, Stephen
Jarvis, Jon MacLaren, Djamila Ouelhadj, and Dave
Snelling. Open issues in grid scheduling. Technical
paper UKeS-2004-03, National e-Science Centre and
the Inter-disciplinary Scheduling Network, Manch-
ester, UK, October 2004.

[3] W. Binder, G. Scrugendo, and J. Hulaas. Towards a
secure and efficient model for grid computing using
mobile code. InProc. of 8th ECOOP Workshop on
Mobile Object Systems: Agent Application and New
Frontiers, Malaga, Spain, June 2002.

[4] Ciarán Bryce and Jan Vitek. The JavaSeal mobile
agent kernel. Autonomous Agents and Multi-Agent
Systems, Vol.4:359–384, 2001.

[5] Munehiro Fukuda, Koichi Kashiwagi, and Shinya
Kobayashi. AgentTeamwork: Coordinating grid-
computing jobs with mobile agents.International
Journal of Applied Intelligence, to appear in Special
Issue on Agent-Based Grid Computing, 2006.

[6] Aram Galystyan, Karl Czajkowski, and Kristina Ler-
man. Resource allocation in the grid using reinforce-
ment learning. InProc. of the 3rd Intenational Joint
Conference on Autonomous Agents and Multiagent
Systems - Volume 3 (AAMAS’04), pages 1314–1315,
New York, July 2004. IEEE-CS.

[7] A. Gopalan, S. Saleem, M. Martin, and D. Andresen.
Baglets: Adding hierarchical scheduling to aglets. In
Proc. of the Eighth IEEE International Symposium on
High Performance Distributed Computing (HPDC8),
pages 229–235, Los Angeles, CA, August 1999.

[8] Robert S. Gray, George Cybenko, David Kotz,
Ronald A. Peterson, and Daniela Rus. D’Agents:
applications and performance of a mobile-agent
system. Software – Practice and Experience,
Vol.32(No.6):543–573, May 2002.

[9] S. Hariri, M. Djunaedi, Y. Kim, R. P. Nellipudi,
A. K. Rajagopalan, P. Vdlamani, and Y. Zhang.
CATALINA: A smart application control and manage-
ment environment. InProc. of the 2nd International
Workshop on Active Middleware Services – AMS2000,
August 2000.

[10] David Kotz and Bob Gray. Mobile agents and the fu-
ture of the internet.ACM Operating Systems Review,
Vol.33(No.3):7–13, August 1999.

[11] Klaus Krauter, Rajkumar Buyya, and Muthucumaru
Maheswaran. A taxonomy and survey of grid resource
management systems.Software Practice and Experi-
ance, Vol.32(No.2):135–164, February 2002.

[12] Danny B. Lange and Mitsuru Oshima.Programming
and Deploying Java Mobile Agents with Aglets. Addi-
son Wesley Professional, 1998.

[13] Milojicic, D. et al. Mobility Processes, Computers,
and Agents. Addison-Wesley, Reading, MA, 1999.

[14] Holger Peine. Application and programming experi-
ence with the Ara mobile agent system.Software –
Practice and Experience, Vol.32(No.6):515–541, May
2002.

[15] Recursion Software Inc.Voyager ORB Developer’s
Guide. Frisco, TX, 2003.

[16] O. Tomarchio, L. Vita, and A. Puliafito. Active mon-
itoring in grid environments using mobile agent tech-
nology. In Proc. of the 2nd International Workshop
on Active Middleware Services – AMS2000, August
2000.

[17] Anand Tripathi, Tanvir Ahmed, Sumedh Pathak, Ab-
hijt Pathak, Megan Carey, Murlidhar Koka, and Paul
Dokas. Active monitoring of network systems using
mobile agents. InProc. of Networks 2002, a joing con-
ference of ICWLHN 2002 and ICN 2002, pages 269–
280, Atlanta, GA, August 2002. World Scientific.

