
A Java Implementation of MPI-I/O-Oriented
Random Access File Class in AgentTeamwork Grid

Computing Middleware
Joshua Phillips, Munehiro Fukuda†, and Jumpei Miyauchi

Computing and Software Systems, University of Washington, Bothell
18115 Campus Way NE, Bothell, WA 98033

†Primary Contact: mfukuda@u.washington.edu

Abstract— MPI-I/O defines a high-level file interface that
enables multiple ranks to share a random access file. It would
be highly attractive to grid-computing users that files are auto-
matically partitioned and transfered to remote sites where their
jobs can access the files through MPI-I/O. We are currently
implementing in the AgentTeamwork grid-computing middle-
ware system a series of these file-handling features including:
file partitioning into strides, stride distribution to multiple
processes, stride access through our MPI-I/O-oriented random
access file class, stride exchange among processes, and barrier
synchronization support. Particularly focusing on a design of our
random access file class, this paper presents an implementation
and performance results of AgentTeamwork’s file-partitioning
and stride-maintenance schemes.

I. I NTRODUCTION

Needless to say, efficient file transfer to and handling at
remote sites is one of the key features to be facilitated in
grid computing when we particularly focus on parallel job
execution at remote computing nodes. As part of the MPI-2
specification, MPI-I/O defines a high-level file interface not
only to support file partitions and access patterns adapted to
parallel computing but also used to interact with grid I/O
systems [1], [2]. By allowing multiple processes to share a
file pointer, MPI-I/O can ease file-based inter-process com-
munication that actually provides us with a programming
model different from conventional message passing but rather
resembling to distributed shared memory or objects. Therefore,
it is highly attractive to grid-computing users that all remote
file operations can be achieved through MPI-I/O.

Such remote file operations can be efficiently carried out
through a series of following four sub tasks: (1) file par-
titioning, (2) file transfer, (3) file consistency maintenance,
and (4) file collection. In other words, instead of duplicating
and delivering an entire file to multiple processes, middleware
systems should be able to partition a file into strides, each
then automatically transfered to the corresponding process,
exchanged with the other processes in a consistent order, and
collected back to a user.

We are currently implementing these four file-handing
features in the AgentTeamwork grid-computing middleware
system [3]. Our GUI allows a user to instruct his/her file
partitioning scheme to the system that then partitions a given
file into strides, aggregates them based on the same destina-

tion, uses mobile agents to distribute the aggregated strides to
remote sites, permits a remote process to access strides through
our MPI-I/O-oriented random access file class (namedRan-
domAccessFile), exchanges strides among different processes
in support with barrier synchronization, and charges mobile
agents with returning file outputs back to the user.

Among all these features, this paper brings its focus on
file partitioning and stride maintenance through our Java
implementation ofRandomAccessFile. The rest of the paper
is organized as follows: section 2 gives a system overview
of AgentTeamwork; section 3 focuses on file partitioning;
section 4 explains our file-stride maintenance; section 5 shows
RandomAccessFile’s preliminary performance; and section 6
presents our conclusion.

II. A GENTTEAMWORK

A. System Overview

AgentTeamwork is a grid-computing middleware system
that coordinates parallel and fault-tolerant job execution with
mobile agents [3]. A new computing node can join the system
by running a UWAgents mobile-agent execution platform to
exchange agents with others [4]. The system distinguishes
several types of agents such as commander, resource, sentinel,
and bookkeeper agents, each specialized in job submission,
resource selection, job deployment and monitoring, and job-
execution bookkeeping respectively.

A user submits a new job with a commander agent that
receives from a resource agent a collection of remote machines
fitted to the job execution. The commander agent thereafter
spawns a pair of sentinel and bookkeeper agents, each hier-
archically deploying as many children as the number of the
remote machines. Each sentinel launches a user process at
a different machine with a unique MPI rank, takes a new
execution snapshot periodically, sends it to the corresponding
bookkeeper, monitors its parent and child agents, and resumes
them upon a crash. A bookkeeper maintains and retrieves the
corresponding sentinel’s snapshot upon a request. Input files
and the standard input are packetized in inter-agent messages
and delivered from the commander agent to each user process
through a hierarchy of sentinel agents, whereas output files and
the standard output are directly returned from each sentinel to
the commander agent.

B. Programming Model

A user program is wrapped with and check-pointed by a
user program wrapper, one of the threads running within a
sentinel agent. The wrapper facilitates three libraries such
as GridTcp, mpiJava[5], and GridFile. GridTcp implements
error-recoverable TCP communication over multiple clus-
ters. All mpiJava functions have been re-implemented with
GridTcp to realize multi-cluster communication as in MPICH-
G2 and to even tolerate cluster crashes [6]. GridFile provides
the same interface as Java files including RandomAccessFile
and buffers file contents as serializable data in the wrapper.
A user program can take advantage of these fault-tolerant
features by inheriting theAteamProgclass.

Figure 1 shows a Java application executed on and check-
pointed by AgentTeamwork. Besides all its serializable data
members (lines 3-4), the application can register local vari-
ables to save in execution snapshots (lines 33-34) as well as
retrieve their contents from the latest snapshot (lines 28-29).
At any point of time in its computation (lines 12-24), the
application can take an on-going execution snapshot that is
serialized and sent to a bookkeeper agent automatically (line
22). As mentioned above, it can also use Java-supported files
and mpiJava classes whose objects are captured in snapshots
as well (lines 13 and 16).

Focusing onRandomAccessFile, a file can be shared among
all processes, while each stride is actually allocated to and
thus owned by a different process. Figure 1 assumes that each
process owns and thus writes itsrank to a one-byte stride
(lines 17-18) that is read by another process withrank − 1
upon a barrier synchronization (lines 19-20).

III. F ILE PARTITION

MPI-I/O defines a set of file contents accessible to each rank
as a fileviewthat is tiled with a repetitive sequence of identical
filetypes from an absolute bytedisplacementrelative to the
beginning of a given file. Eachfiletypeconsists ofetypes and
holes, the former specifying data types accessible to the rank,
whereas the latter presenting inaccessible locations. Figure 2
gives an example of four different views, each defined for
ranks 0 to 3. For instance, ranks 0 and 1 start two-bytefiletypes
with displacement 0, each consisting of a one-byteetypeand
hole whose order is opposite to each other. Similarly, ranks
2 and 3 tile their file with four-bytefiletypes, each consisting
of a one-character/one-short etype1 and a two-byte hole that
appear as complementing each other’s hole.

AgentTeamwork maintains each rank’s file view using a data
structure namedRAFPartitionInfo. Figure 3 illustrates four
RAFPartitionInfo structures, each respectively corresponding
to ranks 0 through to 3’s file view given in Figure 2. Assuming
that a file view can include multipleetypes, RAFPartitionInfo
includes a table ofetypeentries. Pointed to by a 0-based index,
each entry describes a differentetypethat starts from a given
displacementwithin its filetype, consists of a specific primary

1Our implementation is based on Java that allocates two bytes to a character
data type.

1 import AgentTeamwork.Ateam.*;
2 public class MyApplication extends AteamProg {
3 private int phase;
4 private RandomAccessFile raf; // RandomAccessFile
5 public MyApplication(Object o){} // system reserved
6 public MyApplication() { // user-own constructor
7 phase = 0;
8 }
9 private boolean userRecovery() {
10 phase = ateam.getSnapshotId(); // version check
11 }
12 private void compute() { // user computation
13 raf = new RandomAccessFile(// create a file
14 new File(‘‘infile’’), // input file
15 ‘‘rw’’); // mode
16 int rank = MPI.COMM_WORLD.Rank();
17 raf.seek(rank); // go to my stride
18 raf.write(rank); // write my rank
19 raf.barrier(); // sync with others
20 int data = raf.read(); // read my rank + 1
21 raf.close(); // close
22 ateam.takeSnapshot(phase); // check-pointing
23 ...;
24 }
25 public static void main(String[] args) {
26 MyApplication program = null;
27 if (ateam.isResumed()) { // program resumption
28 program = (MyApplication)
29 ateam.retrieveLocalVar(‘‘program’’);
30 program.userRecovery();
31 } else { // program initialization
32 MPI.Init(args); // javaMPI invoked
33 program = new MyApplication();
34 ateam.registerLocalVar(‘‘program’’, program);
35 }
36 program.compute(); //now go to computation
37 MPI.Finalize(args);
38 } }

Fig. 1. File operations in AgentTeamwork’s application

datatype, and occupies a givensizeof bytes. In addition to an
etypetable,RAFPartitionInfoalso maintains its corresponding
rank, its filetype’s initial displacementfrom the beginning of
the file, itsfiletypesize as (upperbound−lowerbound), theto-
tal bytesof all its etypes as well as additional synchronization
variables such asbarrier statusand collectiveaction. (Note
that the last two variables are detailed below in Section IV.)

When AgentTeamwork’s GUI (namedSubmitGUI) accepts
a user’s inputs regardingfiletypes for all ranks, it automatically
generates all per-rankRAFPartitionInfoinstances and includes
them in each rank’s very first file stride as a header. Thereafter,
SubmitGUIstarts its file-partitioning work. A naive partition-
ing algorithm is to iterate a file scan for each rank where
SubmitGUIextracts necessaryetypes from the file upon every
occurrence of thefiletypethat has been described in this rank’s
RAFPartitionInfo. Its obvious drawback is the more ranks the
more repetitive scans of the same file.

To limit this scanning work to only once for each file,
SubmitGUIderives a collection ofFiletypeToRanksstructures
from RAFPartitionInfoinstances. EachFiletypeToRanksentry
maintains a differentfiletype, its initial displacementfrom the
top of a file, and an array of elements, each presenting a
distinct byte position in thisfiletypeand recording all ranks
that access this byte. Figure 4 gives an example to be generated
from the four RAFPartitionInfos defined in Figure 3. For
instance, the firstFiletypeToRanksentry maintains thefiletype
that starts its repetitive occurrence from the 10th byte position

Node 0

Node 1

Node 2

Node 3

filetype

filetype

bytechar

short

Fig. 2. An example of RandomAccessFile’s partitioning scheme

Rank: 3
Initial Displacement: 42
Collective Action: CLOSE
Barrier Status: WAITING
Total Bytes: 2
Message: null
LowerBound: 0
UpperBound: 4

index displacement etype size

short 2

RAFPartitionInfo

20

Rank: 0
Initial Displacement: 10
Collective Action: CLOSE
Barrier Status: WAITING
Total Bytes: 1
Message: null
LowerBound: 0
UpperBound: 2

index displacement etype size

byte 1

RAFPartitionInfo

00

Rank: 1
Initial Displacement: 10
Collective Action: CLOSE
Barrier Status: WAITING
Total Bytes: 1
Message: null
LowerBound: 0
UpperBound: 2

index displacement etype size

byte 1

RAFPartitionInfo

10

Rank: 2
Initial Displacement: 42
Collective Action: CLOSE
Barrier Status: WAITING
Total Bytes: 2
Message: null
LowerBound: 0
UpperBound: 4

index displacement etype size

char 2

RAFPartitionInfo

00

Fig. 3. RAFPartitionInfo structure entries

in a file and allocates two bytes, the first accessible to rank 0
and the second accessible to rank 1. The second entry starts
from the 42nd byte position and occupies four bytes, the
first two bytes accessed by rank 2 and the last two accessed
by rank 3. The actual file scan is performed byte by byte
as examining allFiletypeToRanksentries and their array of
ranks, through which each byte is copied to appropriate rank-
based file strides. Although this scanning complexity is yet
proportional to the number ofFiletypeToRanks, it is highly
expected that a user program would define at most only a
few differentfiletypes, (i.e., a fewFiletypeToRanks, which thus
restricts the overhead growth).

Upon generating file strides,SubmitGUI launches a com-
mander agent that reads those strides, deploys a user job
to remote sites through a hierarchy of sentinel agents, and
thereafter keeps delivering each file stride through this hi-
erarchy. Figure 5 illustrates this stride distribution. Given a

Initial Displacement: 42

Ranks:

0 1
0 1

Initial Displacement: 10

Ranks:

Filetype/Displacement
Combo

2 2 3 3
0 1 2 3

Fig. 4. FiletypeToRanks structure entries

GUI
cdr

snt

snt

snt

snt

snt snt snt

rsc bkr

id = 0

id = 1 id = 2 id = 3

id =8 id = 9

id = 36 id =37 id = 38 id =39

id =144

rank 1 rank 2 rank 3 rank 4

rank 5

rank 0

rsc
cdr

snt

snt
bkr

Commander
Resource
Sentinel
Bookkeeper

File strides

Fig. 5. Stride transfer through an agent hierarchy

hierarchy-unique identifier (abbreviated as anid), each sentinel
determines an MPI rank for its user process, discovers allids of
its descendant agents, and similarly calculates their MPI ranks.
With this knowledge, a sentinel agent can pass a file stride
from its parent to the child agent whose descendant subtree
includes this stride’s final destination. To reduce inter-agent
communication overhead, a sentinel aggregates and passes
multiple strides at once to the same child agent.

IV. F ILE CONSISTENCY

Using GridTcp and GridFile, we implemented AgentTeam-
work’s MPI-I/O-oriented random access file class. Our imple-
mentation was based on the following four strategies:

1) Class interface: We allow a user to handle AgentTeam-
work’s random access file as if s/he instantiated and used
Java’sRandomAccessFileclass. We distinguish it from
Java’s asRandomAccessFile-A.

2) Data allocation: For each user process, the correspond-
ing sentinel reconstructs a random access file locally by
tiling the actual strides received from the commander
and zero-initialized those owned by the other processes.

3) Non-caching and write-through remote accesses: Ev-
ery read from a non-owned (and thus remote) stride
uses a peer-to-peer GridTcp socket to transfer the stride
directly to the requesting process. Similarly every write
to a remote stride is immediately forwarded to the owner
process. Needless to say, each access to the same stride
is carried out exclusively.

4) Barrier synchronization : RandomAccessFile-Aauto-
matically makes all user processes synchronized together
so as to make a consensus on resizing or closing a shared
file. It also facilitates this barrier synchronization at a
user level asRandomAccessFile.barrier().

RandomAccessFile.read()andwrite() are implemented in
a consistent manner as follows. Theread() function starts
with scanning a collection ofRAFPartitionInfos to identify
all ranks that share ownership in the range to be read (task
1). Thereafter, forRAFPartitionInfo of each rank identified,
read() must retrieve alletypes that cover the range to be

read (task 2), and read the file range overlapped with each
etyperetrieved (task 3). If an identified rank is local to the
read() call, tasks 2-3 are completed instantly. Otherwise, a
read request is sent to a remote rank through a GridTcp socket.
Each rank spawns aRandomAccessFilecommunication thread
that exchanges a request and a response. Although a pair of
threads perform tasks 2-3 respectively at a local and a remote
side, a remote thread reads the data from its partition into a
socket output stream while the local thread reads the data from
a socket input stream into the user buffer. Thewrite() function
works in the exact same sequence of those tasks except that
the data flow is reversed.

Despite non-caching and write-through stride accesses, it is
still anticipated that two or more user processes can read dif-
ferent file contents from the same remote stride, depending on
various conditions that may interleave their read requests with
a write request. The purpose ofRandomAccessFile.barrier()
is to finish all on-going stride accesses and to allow all user
processes to obtain identical stride contents in the conventional
weak consistency model. Its implementation is straightforward
in that each rank broadcasts a synchronization message to
and receives one from all the others upon encountering a
barrier. In addition to user-driven barrier synchronization,
RandomAccessFile-Adistinguishes three barrier types such
close, set length, andlength inc, each used to reach a consen-
sus among all ranks in terms of closing the current file, resizing
the file length, and increasing the file size.RAFPartitionInfo
maintains the current barrier type and its progress in its
collectiveaction andbarrier statusvariables respectively.

V. PERFORMANCEVERIFICATION

We are currently conducting functional and performance
verification of RandomAccessFile-Ausing a Giga-Ethernet
cluster of 24 Dell computing nodes, each with 3.2GHz Xeon,
512MB memory and 36GB SCSI hard disk. We have prepared
two test programs namedheartbeatand master-workers. N
processes are given the samefiletype that includesN etypes,
each composed of four doubles and owned by a different
rank. Heartbeat engages each rank in modifying its ownetypes
and thereafter reading its neighboring rank’setypes, whereas
master-workers makes rank 0 collect alletypes that the other
ranks have modified. These access patterns represent typical
spatial simulations and bag-of-task applications.

Figure 6 shows time elapsed to run these test programs as
increasing the file size to 10MB and the number of processors
to 16. While the time elapsed was proportional to the file size
in terms of a two-processor execution, its growth rate gradually
slowed down as the number of processors gets increased.
Obviously this has been resulted from processor parallelism.
However, the speed-up was quite small. For a 10MB file, 16
processors completed heartbeat and master-slaves only 2.3 and
1.7 times faster than two processors did. Furthermore, the
absolute performance was inevitably slow. It took more than
270 seconds to have 16 processors exchange 10MB file strides
in both tests. There are three reasons: (1) GridTcp redundantly
copies in-transit messages into its rollback queue for recovery

 16

 8

 4

 2

 10000

 1000

 100

 10

 650

 100

 10

 1

 0.1

elapsed time (sec)

heartbeat
master-workers

#processors

file size (KB)

elapsed time (sec)

Fig. 6. Performance of remote stride accesses

purposes; (2) eachfiletypeis transferred independently, which
triggers thread context switches between RandomAccessFile
and GridTcp; and (3) no remote stride is cached. Possible
solutions include elimination of duplicated messages, stride
transfer in a bulk, and stride caching.

VI. CONCLUSION

Based on the MPI-I/O concept, AgentTeamwork has en-
abled Java’sRandomAccessFileto be partitioned into smaller
strides, each delivered to the corresponding remote process
and exchanged with the other processes in a consistent man-
ner. Our next step is two-fold: (1) verifying job resumption
accompanied with file strides at a different processor/cluster
and (2) implementing fast bulk transfer and file stride caching.

ACKNOWLEDGMENT

This work is fully funded by National Science Foundation’s
Middleware Initiative (No.0438193).

REFERENCES

[1] Message Passing Interface Forum,MPI-2: Extention to the Message-
Passing Interface. University of Tenessee, 1997, ch. 9, I/O.

[2] A. Ching, K. Coloma, and A. Coudhary,Challenges for Parallel I/O in
GRID Computing. Publisher’s address: American Scientific Publisher,
2006, ch. 6, Grid I/O.

[3] M. Fukuda, K. Kashiwagi, and S. Kobayashi, “AgentTeamwork: Coordi-
nating grid-computing jobs with mobile agents,”International Journal of
Applied Intelligence, vol. Vol.25, no. No.2, pp. 181–198, October 2006.

[4] M. Fukuda and D. Smith, “UWAgents: A mobile agent system optimized
for grid computing,” inProc. of the 2006 International Conference on
Grid Computing and Applicaitons – CGA’06. Las Vegas, NV: CSREA,
June 2006, pp. 107–113.

[5] mpiJava Home Page, “http://www.hpjava.org/mpijava.html.”
[6] M. Fukuda and Z. Huang, “The check-pointed and error-recoverable MPI

Java library of AgentTeamwork gird computing middleware,” inProc.
IEEE Pacific Rim Conf. on Communications, Computers, and Signal
Processing - PacRim’05. Victoria, BC: IEEE, August 2005, pp. 259–262.

