
Resource Management and Monitoring in
AgentTeamwork Grid Computing Middleware

Munehiro Fukuda, Cuong Ngo, Enoch Mak, and Jun Morisaki
Computing and Software Systems, University of Washington, Bothell

18115 Campus Way NE, Bothell, WA 98033
Email: mfukuda@u.washington.edu

Abstract— The successful key to resource management in grid
computing would include language design for heterogeneous
resource description, database design for dynamic resource
repository, and tool design for scalable resource monitoring.
Particularly focusing on simultaneous use of multiple clusters
for grid computing, we are currently addressing these problems
by implementing an XML-based resource database and resource-
monitoring mobile agents in the AgentTeamwork grid-computing
middleware system. The system describes each cluster in an
XML file that even groups cluster nodes based on their resource
type. The database returns a collection of clusters or sub cluster
groups to a job. The system also deploys a hierarchy of mobile
agents to remote nodes for parallel resource monitoring. This
paper presents our implementation techniques and preliminary
performance of resource management and monitoring in Agent-
Teamwork.

I. I NTRODUCTION

Most challenges of resource management in grid computing
would originate from the large number, heterogeneity, and
dynamic availability of remote computing resources as well as
their network connectivity. The design issues include language
for describing heterogeneous resources, database for register-
ing and retrieving dynamic resource information, and tools for
monitoring numerous resources.

Consider a scientific-computing job that needs as many
computing nodes as possible. It is always better to allocate to
the job a cluster or even multiple cluster systems than a collec-
tion of heterogeneous desktop machines. For language design,
Globus allows the job to specify particular cluster systems in
an RSL-based description of its resource requirements [1]. For
database design, Condor describes both remote resources and
job requirements in ClassAd, registers resources in a central
matchmaker, and performs gang-matching to allocate to the job
the best fitted cluster of computing nodes simultaneously [2].
Similarly, Legion collects status of remote resources into
a central information database named Collection [3]. For
resource monitoring, NWS (Network Weather Service) facili-
tates a collection of libraries that capture dynamic resource and
network status at remote sites [4]. Condor can automatically
launch NWS at each remote site that periodically sends back
its up-to-date ClassAd to a central matchmaker.

Despite such pioneer work, some challenges still remain in
resource management particularly of multiple cluster systems.
The first problem is that a cluster is not always composed
of homogeneous nodes and/or network. This implies that we

may need to divide and to describe a cluster into multiple
logical groups. This problem also necessitates a mechanism to
allocate to a job a collection of sub cluster groups rather than
clusters themselves. The second problem is that one-by-one
status queries to all remote resources become a performance
bottleneck. This in turn means the necessity of developing a
parallel resource-monitoring/collecting mechanism.

We are currently addressing these two problems by im-
plementing an XML-based resource database and resource-
monitoring mobile agents in the AgentTeamwork grid-
computing middleware system [5]. The system describes each
cluster in an XML file that even groups cluster nodes based
on their resource type. The database returns a collection of
clusters or sub cluster groups to a job. The system also deploys
a hierarchy of mobile agents to remote nodes for parallel
resource monitoring.

This paper discusses particularly about resource manage-
ment and monitoring in AgentTeamwork rather than its job de-
ployment we previously described in [5]. The rest of the paper
is organized as follows: section 2 gives a system overview of
AgentTeamwork; section 3 focuses on resource management;
section 4 explains our resource-monitoring algorithm; section
5 previews AgentTeamwork’s monitoring performance; and
section 6 concludes our discussions.

II. SYSTEM OVERVIEW

AgentTeamwork is a grid-computing middleware system
that coordinates parallel and fault-tolerant job execution with
mobile agents [5]. A new computing node can join the system
by running a UWAgents mobile-agent execution daemon to
exchange agents with others [6]. The system distinguishes
several types of agents such as commander, resource, sen-
sor, sentinel, and bookkeeper agents, each specialized in
job submission, resource selection, resource monitoring, job
deployment, and execution bookkeeping respectively.

A user submits a new job with a commander agent that
passes the job’s resource requirements to and then receives
a collection of remote machine names from a resource agent.
Spawned by the resource agent, sensor agents keep monitoring
remote computing nodes in their hierarchy. The commander
spawns a pair of sentinel and bookkeeper agents, each hi-
erarchically deploying as many children as the number of
the remote machines. A sentinel launches a user process
at a different machine with a unique MPI rank, takes an



execution snapshot periodically, sends it to the corresponding
bookkeeper, checks the activity of its parent and child agents,
and resumes them upon a crash. A bookkeeper retrieves the
corresponding sentinel’s snapshot upon a request. User files
and the standard input are distributed from the commander to
all the sentinels along their agent hierarchy, while outputs are
forwarded directly to the commander and displayed through
the AgentTeamwork GUI.

A user program is wrapped with and check-pointed by
a user program wrapper, one of the threads running within
a sentinel agent. The wrapper internally facilitates error-
recoverable TCP and file libraries, each namedGridTcp and
GridFile respectively, which serialize and de-serialize an exe-
cution snapshot with in-transit and even inter-cluster messages
as well as buffered file contents. A user program can take
advantage of these fault-tolerant features by inheriting the
AteamProgclass that has re-implemented Java socket, file,
and even mpiJava classes [7] withGridTcp and GridFile.
An execution snapshot is taken manually at the user level
by calling AteamProg.takeSnapshot( )or automatically at the
system level upon each transition from one to another system-
framed function that contains a portion of application code.

In the following, we will focus on how a resource agent
interacts with an XML database for resource registration and
retrieval as well as collects dynamic status of remote resources
through a hierarchy of sensor agents.

III. R ESOURCEMANAGEMENT

AgentTeamwork uses XML to describe computing resources
because of not only its flexibility of content definition but
also its availability of language processing and database
management tools. Each XML file in AgentTeamwork can
describe resources either of an independent desktop machine
or a cluster system. Although such an XML resource file uses
trivial tags regarding CPU, memory, disk, and network, it
distinguishes the following three tags to handle the runtime
resource status of a cluster system that may consist of hetero-
geneous computing nodes:

1) design time describes the factory-initialized resource
specification of a desktop or a cluster.

2) run time maintains the runtime resource status that is
periodically updated by the system.

3) group may appear one or more times both in the
designtime and runtime tags to classify cluster nodes
into logical groups based on their resource specification.

Figure 1 gives an XML example to describe the resources
of the medusacluster addressed withmedusa.uwb.eduand
medusa-myrin the public and its private domain respectively.
This cluster consists of two processor groups, each charac-
terized with its different CPU speed and network bandwidth,
(i.e., 2.8GHz/2Mbps and 3.2GHz/1Mbps respectively).

AgentTeamwork is based on a two-level XML repository
where users first register their XML resource files in a shared
ftp server, (e.g.,ftp.tripod.com), and thereafter each user’s
resource agent downloads only new files into its local XML
database just once a day. The actual XML maintenance,

1 -<cluster>
2 -<design_time>
3 <domain>UWB</domain>
4 <name>medusa</name>
5 <gateway>medusa.uwb.edu</gateway>
6 <alias>medusa-myr</alias>
7 -<group> <!-- sub group #1 -->
8 -<ip_list> <!-- cluster-private ip names -->
9 <ip_name>mnode0</ip_name>
10 ...
11 <ip_name>mnode7</ip_name>
12 </ip_list>
13 <cpu_speed>2800</cpu_speed> <!-- MHz -->
14 <cpu_arch>i386</cpu_arch>
15 <cpu_count>1</cpu_count> <!-- #cpus per ip -->
16 <memory>512</memory> <!-- MB -->
17 <disk_space>60</disk_space> <!-- GB -->
18 <intra_net_band>2000</intra_net_band><!-- Mbps -->
19 </group>
20 -<group> <!-- sub group #2 -->
21 -<ip_list> <!-- cluster-private ip names -->
22 <ip_name>mnode8</ip_name>
23 ...
24 <ip_name>mnode31</ip_name>
25 </ip_list>
26 <cpu_speed>3200</cpu_speed> <!-- MHz -->
27 <cpu_arch>i386</cpu_arch>
28 <cpu_count>1</cpu_count> <!-- #cpus per ip -->
29 <memory>512</memory> <!-- MB -->
30 <disk_space>36</disk_space> <!-- GB -->
31 <intra_net_band>1000</intra_net_band><!-- Mbps -->
32 </group>
33 </design_time>
34 -<run_time>
35 ... <!-- filled at run time -->
36 </run_time>
37 </cluster>

Fig. 1. An XML-based resource description

retrieval, and update take place locally at each user’s XML
database. As planning on future customization for grid com-
puting, we have implemented our own XML database that
includes the following components:

1) XDBase.java is our database manager that maintains
two collections of XML-described resource files in a
DOM format: one maintains initial XML files down-
loaded from a shared ftp server and the other is special-
ized to XML files updated at run time for their latest
resource information. Upon a boot,XDBase.javawaits
for new service requests to arrive through a socket.

2) Service.java facilitates basic service interface toXD-
Base.javain terms of database management, query, dele-
tion, retrieval, and storage, each actually implemented
in a different sub class.Service.javareceives a specific
request from a user either through a graphics user
interface or a resource agent, and passes the request to
XDBase.javathrough a socket.

3) XDBaseGUI.java is an applet-based graphics user in-
terface that passes user requests toXDBase.javathrough
Service.java.

4) XCollection.java is a collection of sub classes derived
from Service.java, each implementing a different service
interface. A resource agent carriesXCollection.javawith
it for the purpose of accessing its localXDBase.java.

Among these components, theXDBasemanager serves as
a matchmaker between resource requirements received from
a user (thus through his/her commander and resource agents)



key
"Clusters"
"ex_Clusters"
"Public"
"ex_Public"
"bookkeeper"
"Result"

value
Hashtable

key value
"phoebe"

Hashtable

key
"medusa"

value
Hashtable

idx
[0]

[7]

element
uw1−320−16
......

Vector

uw1−320−23
[..]

[8]

"success"

idx
[0]
[1]

element
perseus
priam

Vector

" "

idx
[0]
[1]

element
uw1−320−03
uw1−320−04

Vector

idx
[0]
[1]
[2]

element
uw1−320−00
uw1−320−01
uw1−320−02

Vector

idx
[0]

[7]

element
mnode0
......

Vector

mnode07
[..]

[8] medusa−myr

Fig. 2. A response to an Xpath resource request

and XML resource files retrieved from its local collections.
Resource requirements distinguish the resource types cor-

responding to the XML tags defined in Figure 1 as well as
the following five additional parameters includingtotal: the
total number of computing nodes,multiplier: a reservation for
additional nodes to be used for future job migration,bookkeep-
ers: the number of bookkeepers to save execution snapshots,
cluster: an address of a specific cluster, andip: addresses of
specific desktop computers. They are passed from a resource
agent to its localXDBase in three Xpath statements such
as cluster, runtime, and public, each respectively requesting
a specific cluster, candidate clusters, and candidate desktops
fitted to a given job.

XML resource files are retrieved in response to thoseXpath
statements and converted byXDBase into a hash table as
illustrated in Figure 2 (named an itinerary in the following
discussions). The“Clusters” and “ex Clusters” keys point to
clusters to be allocated to a job and those to be reserved for
future job migration respectively. Similarly, the“Public” and
“ex Public” keys refer to desktops allocated for a job and
reserved for job migration. The“bookkeeper” key specifies a
collection of desktops to accept a bookkeeper.

Given this itinerary back from the localXDBase, a com-
mander agent deploys sentinel and bookkeeper agents in a
hierarchy as shown in Figure 3. In particular, sentinel agents
form two subtrees such as the left and right dedicated to
clusters and independent desktops respectively. For the left
subtree, the leftmost sentinel at each layer and its descendants
are deployed to computing nodes in the same cluster while
the other agents migrate to a different cluster gateway. This
deployment makes it easier to manage all cluster gateways
in an outer hierarchy, (i.e., a tree that trims off its leftmost
subtree at each layer) and all computing nodes in an inner
hierarchy, (i.e., the leftmost subtree), which localizes inter-
process communication within each cluster.

IV. RESOURCEMONITORING

A resource agent takes charge of not only planning on a
new itinerary for a job but also deploying sensor agents that
keep reporting remote resource status to the localXDBase. We
must first choose only one of multiple resource agents that

cmd: commander agent
bkp: bookkeeper agent

rsc: resource agent
snt: sentinel agent
i0: agent id
r0: processor rank

snt
i33

cluster 2

r0

snt
i32

i128 − i131

cluster gateways 2, 3, and 4

snt

i8
snt

Desktop computersmedusa gateway

rsc
i1

cmd
i0

bkp
i3i2

snt

medusa cluster

snt
i512 − i514

i12
bkp

r1 − r4

r5 − r7

mnode1−4

mnode5−7

mnode0 snt

snt
i9

snt
i36 i37

r8

r9 r10

priam

perseus

uw1−320−00

uw1−320−01 − 02

Fig. 3. Hierarchical job deployment

are engaged in a different job execution but working with the
sameXDBase. The selection is based on how frequently they
are instructed by their user to probe remote resources. If a new
resource agent has a higher probing frequency than the current
value registered inXDBase, it becomes the primary agent that
will deploy sensor agents in a hierarchy, whereas the previous
primary will terminate all its sensor agents simultaneously.

A pair of sensor agents, each deployed to a different node,
periodically measure the usage of CPU, memory, and disk
space specific to their node as well as their peer-to-peer
network bandwidth, (usinguptime, free, df, andttcpcommands
respectively). These two agents are distinguished as a client
and a server sensor. The client initiates and the server responds
to a bandwidth measurement. They spawn child clients and
servers respectively, each further dispatched to a different node
and forming a pair with its correspondence so as to monitor
their communication and local resources.

As shown in Figure 4, the sensor agents’ inter-cluster
deployment is similar to that of sentinel agents, while sensors
must form pairs of a client and a server. The primary resource
agent spawns two pairs of root client and server sensors, one
dedicated to desktop computers and the other deployed to
clusters. The former pair recursively creates child clients and
servers at different desktops in the public network domain.
The latter pair migrate to different cluster gateways where
they creates up to four children. Two of them migrate beyond
the gateway to cluster nodes as further creating offspring.
The other two are deployed to different cluster gateways, and
subsequently repeat dispatching offspring to their cluster nodes
and other cluster gateways. With this hierarchy, the resource
information of all cluster nodes is gathered at their gateway
and thereafter relayed up to the resource agent that eventually
reflects the latest status to the localXDBase.

V. M ONITORING PERFORMANCE

We have compared AgentTeamwork with NWS for their
monitoring accuracy, using a Giga-Ethernet cluster of 24 Dell



p_svr: server sensor at a public node
p_clt: client sensor at a public node
gtwy: sensor agent at a gateway
sns: local sensor agent
rsc: resource agent
cmd: commander agent

c_clt: client sernsor at a cluster node
c_svr: server sensor at a cluster node

cmd
i0

i0: agent id

sns

gtwy

gtwygtwy

gtwy

gtwy

cluster1 cluster4

cluster5cluster3

cluster2

rsc
i1

i4

i16 i17 i18 i19
p_clt

p_clt p_clt p_svr p_svr

p_svr

c_svrc_cltc_svrc_clt

c_clt c_clt c_svrc_svr

Fig. 4. Resource monitoring in an agent hierarchy

Fig. 5. CPU load monitored by AgentTeamwork and NWS

computing nodes, each with 3.2GHz Xeon, 512MB memory
and 36GB SCSI hard disk. During our evaluation, we have
executed an mpiJava test program that repeats wasting CPU
power, memory space, disk space, and network bandwidth at
a different node respectively for every 80-second interval.

Figure 5 shows CPU load and memory usage monitored by
AgentTeamwork and NWS when the mpiJava program has
repeatedly executed Tower of Hanoi and allocated a 20M-
byte array respectively. For CPU load, AgentTeamwork was
slow to react to variable load due to its use of uptime.
In contrast, NWS performed better by choosing the most
accurate value from uptime, vmstat, and its own estimation
algorithm. For memory usage, both systems demonstrated the
same accuracy. Note that they have estimated only 10M-byte
memory deallocation due to JVM’s delayed garbage collection.

For network bandwidth and disk space, (although there is
no space to show the results in a graph), our evaluation has
revealed that NWS can measure 4M-byte network transfers
better than AgentTeamwork, whereas both systems have ac-
curately reacted to repetitive 50M-byte disk allocation. The
main reason is that NWS uses an neural-network algorithm
named Network Bandwidth Predictor.

No. Monitoring tasks Maximum time (seconds)

A CPU, memory, and disk 0.001∼ 0.02
B Network bandwidth ∼ 2.0
C A report from a server to a client agent ∼ 3.0
D A report from a client to a parent agent 0.01∼ 3.0

Maximum total of local tasks: A + B + C 5.02

TABLE I

TIME REQUIRED FOR ONE MONITORING CYCLE

We have also measured the time required for one cycle of
resource monitoring at each computing node. As summarized
in Table I, each pair of client and server sensor agents take
5.02 seconds to complete their local monitoring task. Each
client sensor needs maximum 3.0 seconds to report results
to its parent. While the monitoring task can be carried out in
parallel among all pairs, each reporting task must be serialized
at the same parent. Since two pairs of agents report to the same
parent, one monitoring cycle takes at most5.02 + 3.0 × 2 =
11.02 seconds. GivenN computing nodes, we haveN/2 pairs
of server and client agents whose entire monitoring latency is
estimated as11.02log2N/2 = 11.02(log2N − 1) seconds.

VI. CONCLUSION

Focusing on job deployment over multiple clusters, we
have presented AgentTeamwork’s resource management and
monitoring, each implemented in an XML-based database
manager and in a hierarchy of mobile agents. We are planning
on two tasks: (1) to have the database prioritize resources in
their current availability and previous usage, and (2) to include
NWS in sensor agents for more accurate resource monitoring.

ACKNOWLEDGMENT

This work is fully funded by National Science Foundation’s
Middleware Initiative (No.0438193).

REFERENCES

[1] K. Czajkowski, I. Foster, and C. Kesselman, “Resource co-allocation
in computational grids,” inProc. of the 8th IEEE Symposium on High
Performance Distributed Computing – HPDC8, Redondo Beach, CA,
August 1999, pp. 219–228.

[2] R. Raman, M. Livny, and M. Solomon, “Policy driven heterogeneous
resource co-allocation with gangmatching,” inProc. of the 12th IEEE
Int’l Symp. on High Performance Distributed Computing – HPDC-12,
Seattle, WA, June 2003, pp. 80–89.

[3] S. J. Chapin, D. Katramatos, J. Karpovich, and A. Grimshaw, “The Legion
resource management system,” inProc. of the 5th Workshop on Job
Scheduling Strategies for Parallel Processing – JSPP’99. San Juan,
Puerto Rico: Springer Verlag, April 1999, pp. 162–178.

[4] R. Wolski, “Experiences with predicting resource performance on-line in
computational grid settings,”ACM SIGMETRICS Performance Evaluation
Review, vol. Vol.30, no. No.4, pp. 41–49, March 2003.

[5] M. Fukuda, K. Kashiwagi, and S. Kobayashi, “AgentTeamwork: Coordi-
nating grid-computing jobs with mobile agents,”International Journal of
Applied Intelligence, vol. Vol.25, no. No.2, pp. 181–198, October 2006.

[6] M. Fukuda and D. Smith, “UWAgents: A mobile agent system optimized
for grid computing,” inProc. of the 2006 International Conference on
Grid Computing and Applicaitons – CGA’06. Las Vegas, NV: CSREA,
June 2006, pp. 107–113.

[7] mpiJava Home Page, “http://www.hpjava.org/mpijava.html.”


