
 1

Implementation of XML
Database and

Enhancement of Resource
and Sensor agents of

AgentTeamWork

Final Report

Cuong Ngo
August 18, 2006
Summer 2006

 2

Introduction 4
DESCRIPTION OF CLASSES..4

RESOURCE.. 4
Description.. 4
Important Functions: .. 4

COLLECTION... 5
Description.. 5
Important Functions: .. 5

SERVICE ... 5
Description.. 5
Important Functions: .. 5

DATABASEMANAGEMENTSERVICE .. 6
Description.. 6
Important Functions: .. 6

STORESERVICE... 6
Description.. 6
Important Functions: .. 6

RETRIEVALSERVICE ... 6
Description.. 6
Important Functions: .. 6

DELETIONSERVICE ... 7
Description.. 7
Important Functions: .. 7

QUERYSERVICE.. 7
Description.. 7
Important Functions: .. 7

XPATHUTIL.. 7
Description.. 7
Important Functions: .. 8

XDBASE... 8
Description.. 8
Important Functions: .. 10

XDBASEGUI.. 11
Description.. 11
Important Functions: .. 11

XCOLLECTION.. 13
Description.. 13
Important Functions: .. 13

FUTURE SERVICES..13
Service.java... 14
RetrievalService.java .. 14
XDBase.java ... 14
XCollection ... 15

COMPILING AND RUNNING ...15
RESOURCEAGENT MODIFICATIONS ..15

INTRODUCTION... 15
DESCRIPTION OF CHANGED/ADDED FUNCTIONS .. 17

initDB.. 17
updateDB .. 17
downloadXmlsFromFtp(String ftpDir, FTPFile[] ftpList, String dbColName, Vector dbList)..... 18
addXmlFromFtpToDB(String ftpDir, String filename, String dbColName) 18
addRuntimeToDb(String fileContent) ... 18

 3

addAllChildNodes(Element root, Document document, Node currentGroupNode) 18
getRuntimePairs(Node node) .. 18
addSingleChildNode(Element root, String nodeName, String nodeValue, Document document) 18
queryForIpNames ... 19
startProbing .. 19

SENSORAGENT MODIFICATIONS ..19
INTRODUCTION... 19
DESCRIPTION OF CHANGED/ADDED FUNCTIONS .. 23

Init() .. 23
FUTURE WORK ..23

 4

Introduction
The new database comprises of the following classes: XDBase, Collection,
Resource, XCollection, Service, DatabaseManagementService,
StoreService, RetrievalService, QueryService, DeletionService, XPathUtil
and XDBaseGUI. Each class will be described to what their function is
and how to use each one. The basic idea of how the database works is
that the database (XDBase) contains Collections that contains
Resources. There are Service subclasses that allow communication with
the database for specific services. XPathUtil is a utility class that
performs all Xpath queries and the XDBaseGUI class is an applet-based
GUI that interacts with the database. The XCollection is the interface in
which the ResourceAgent communicates with the database.

XDBase acts as a native XML database, which means that the data is not
contained in tables, but rather contained in DOM objects. The DOM
objects hold the structure the XML file in tact.

To accommodate the new database, improvements were made to the
ResourceAgent and how it interacts with it. The SensorAgents were also
changed to be able to dynamically monitor resource nodes within a
cluster.

Description of Classes

Resource
Description
This is a wrapper class for the DOM object that represents the XML file
and the resource computing node. It contains the DOM object
(Document), the name of the resource, the last date of modification and
whether or not this resource computing node is available to use.
Basically, each computing node and cluster information is represented
by the Resource class.

Important Functions:
• getLastModificationDate – returns the last modification date
• setModified(Date) – sets the new last modification date
• getName – returns the name of the resource
• isAvailable – returns the availability of the resource node
• setAvailability(Boolean) – sets the availability of the resource node
• getDocument – returns the DOM object
• getDocumentAsString – returns the String representation of the

DOM object. In other words, it returns the XML file as a String.

 5

Collection
Description
This class represents a collection of resource computing nodes that share
something in common. For example, the database contains a collection
for the cluster information, cluster node runtime information and public
node information. The Resources are held in a hashtable and are
manipulated through functions of the Collection class. This class allows
Resources to be added, deleted, modified and queried. In addition there
are functions to display the number of Resources in the collection,
retrieve the collection name and retrieve a list of all resources.

Important Functions:
• changeAvailabilityTo(String, boolean) – changes the availability of

the specified Resource to the specified boolean value
• changePublicNodeAvailabilityTo(String, boolean) – changes the

availability of the Resource found by the given Xpath expression to
the specified boolean value

• retrieveResource(String) – returns the Resource specified by the
resource name

• storeResource(Resource, String) – stores the Resource with the
specified name(key in hashtable)

• query(String, boolean) – queries all the Resources in the Collection
using the Xpath expression. If boolean parameter is true, only
query available Resources

• update(String, String[], String[]) – updates the specified Resource by
using provided elements to change and their associated values to
change them to. Returns the number of the elements changed.

• update(String[], String[]) – updates all Resources in the collection by
using provided elements to change and their associated values to
change them to. Returns the number elements changed.

• deleteResource(String) – deletes the Resource specified, if it exists

Service
Description
This is base class in which service type classes subclass. It also contains
basic database communication functions such as connecting to the
database, sending a request and closing all connections.

Important Functions:
• connectToDatabase – connects to the database and creates a

socket and output/input stream

 6

• sendRequest(int, String[]) – sends a request to the database
represented by the integer value and required information by the
DB

• closeAllConnections – closes output/input stream and the socket
• connectAndSendInformationToDB(int, String) – connect to the

database, and sendRequest

DatabaseManagementService
Description
This class provides services that manage the database. Those services
include: creating a collection, synchronizing the database and shutdown
of the database.

Important Functions:
• createCollection(String) – create a Collection using the specified

collection name
• synchronize – write back database contents to local disk
• shutdown – shutdown the database

StoreService
Description
This class provides services that store items in the database. Those
services include: storing a whole Collection and storing a Resource.

Important Functions:
• storeCollection(String, Collection) –store a Collection using the

specified collection name
• storeResource(String, String, Document) – store a Resource, created

from the document, using the specified resource name. The
Resource is stored in the specified collection name.

RetrievalService
Description
This class provides services that retrieve items from the database. Those
services include: retrieving a collection, retrieving a document, retrieving
a Resource list and retrieving the last modification date of the Resource.

Important Functions:
• retrieveCollection(String) – get the Collection specified by the

collection name

 7

• retrieveResource(String, String) –get the document specified by the
resource name in the specified Collection.

• retrieveResourceList(String) – get a list of Resources in the specified
Collection

• retrieveLastModificationDate(String, String) – retrieve the last
modification date of the specifiedResource in the specified
Collection

DeletionService
Description
This class provides services that delete items in the database. Those
services include: deleting a Collection and deleting a Resource

Important Functions:
• deleteCollection(String) – delete a Collection
• deleteResource(String, String) – delete a Resource in the specified

Collection

QueryService
Description
This class provides services that query and update the database. Those
services include: update a specific Resource, update an entire Collection,
query a Collection, query for IP names and query for domain IP names.

Important Functions:
• query(String,String) – query the Collection using the Xpath string

expression. Returns the results in a vector
• update(String, String[], String[]) – update the entire Collection using

the specified elements and their new values
• update(String, String, String[], String[]) – update a single Resource in

the specified collection with the specified elements and their new
values

XPathUtil
Description
This class provides all the querying functions on the database by the
Xpath query expressions. This class acts as a wrapper around the
XPathAPI functions provided by Java. The query expressions are created
specifically in each function. This is a static class that contains only
static members.

 8

Important Functions:
• getClusterName(Node) – retrieves the cluster name
• getClusterAlias(Node) – retrieves the cluster alias name
• getClusterGateway(Node) – retrieves the cluster gateway name
• performXpathQuery(Node, String) – perform an Xpath query on the

node using given Xpath expression
• getClusterIps(Node) – get a list of cluster IPs from the group within

the cluster
• updateSingleNode(Node, String, String) – update a single node(or

Document) using the new values

XDBase
Description
This class represents the database itself. It contains a hashtable of
Collections, which in turn contains a hashtable of Resources. The
database waits for requests and then parses and processes them. The
database also writes its contents back to local disk and can read those
contents back the next time it starts up again. The database also keeps
track of connected GUI clients (applet) and informs them of any changes
in the database so that the GUI clients are up-to-date. To implement
this, an additional thread is created besides the main thread. The
second thread, guiThread, handles GUI clients by informing them of
database changes. The guiThread waits until the database contents are
changed. The main thread processes the request and if it is a successful
transaction and the database has changed its contents, it changes a flag
to indicate the database is “dirty” and wakes the guiThread. The
guiThread wakes up and informs all the GUI clients of the database
changes. The database also contains a private class called Connection.
This class represents a connection made by a client.

 9

“Clusters”

“ex_Clusters”

“Public”

“ex_Public”

“bookkeeper”

“Result”

Medusa
clusterNameHashtable

mnode0
mnode1
…..
gateway
alias

Hashtable

uw1-320-00
uw1-320-01
…
…
uw1-320-10

Vector

Vector

“Success” or
“Error Msg”

String

Myrinet
clusterName

myr_mnode0
myr_mnode1
…..
gateway
alias

Hashtable

Vector

uw1-320-11
uw1-320-12
…
…
uw1-320-20

Vector

uw1-320-21
uw1-320-22

Vector

Fig 1. Structure constructed by database in a “QUERY_FOR_IP_NAMES” request

Above is the structure constructed by the database that is return to the
CommanderAgent via the ResourceAgent when a “resource_needed”
message is received.

 10

Important Functions:
• acceptConnections – listens for clients attemping to connect with a

timeout of 500ms
• parseRequest(Connection) – receive the client request, parses and

processes it. If it was a successful transaction, wake up the
guiThread. Send a result transaction message back to the client, if
necessary.

• createCollection(String) – creates a new collection and store in the
hashtable

• synchronize – write database contents back to the local disk using
the pre-defined file name (“data.xml”)

• shutdown – shutdown the database by first synchronizing and
then closing the server socket. Also set the alive flag to false to
indicate that the database desires to be shutdown.

• storeCollection(String, Collection) – stores a Collection using if the
collection with the same key/name does not exist already exist.

• storeResource(String[], Document) - creates a Resource from the
Document and a new Date object. It then stores the Resource in
the specified collection, if it exists, and the collection does not
already contain a Resource with the same key/name

• retrieveCollection(String) – retrieve the collection specified by the
collection name/key. If the Collection does not exist, null is
returned.

• retrieveResource(String[]) – retrieve the Resource in the specified
Collection. If the Resource exist, the DOM document is returned,
otherwise null is returned.

• retrieveLastModification(String[]) – retrieve the last modification date
of the Resource in the specified Collection. If the Resource exist,
the last modification date is returned, otherwise null is returned.

• retrieveResourceList(String) – retrieves the Resource list of the
specified Collection. If the Collection does not exist, null is
returned.

• deleteResource(String[]) – deletes the Resource from the specified
Collection. The Resource is deleted if the Collection exist and it
contains the Resource.

• deleteCollection(String) – deletes the specified Collection if it exists.
• query(String[]) – queries the specified Collection using the provided

Xpath query expression. If the Collection does not exist, null is
returned.

• queryForIpNames(String[], Hashtable) – query the database for
available Resources (IP names). Construct a hashtable that
contains clusters, extra clusters, public nodes, extra public nodes
and bookkeeper nodes. If there are not enough nodes that satisfy

 11

the user requirements, an error is returned to the user via the
CommanderAgent.

• markNodesAvailabilityTo(Hashtable, boolean) – marks the
availability state of nodes in the hashtable to the specified boolean
value.

• queryForDomainIps(String) – queries for all IPs in the domain
specified by the Xpath expression.

• update(String[], String[], String[]) – updates, either one Resource or
an entire Collection, using the provided values and elements to
change. Returns the total number of elements changed.

• addGUIClient(Connection) – add this connection to the list of GUI
clients in order to send the updated database.

• updateGUI – updates all the GUI clients of changes to the
database. This thread will wait until notified by the main thread
that there changes to the database. Once the thread is awake the
database has changed, it sends the database contents to all the
GUI clients. If a GUI client does not receive the snapshot, the
database assumes that this GUI client has disconnected and
removes the Connection from the list.

XDBaseGUI
Description
This is an applet-based GUI that interacts with the database. It can view
the database contents, add and delete files. It can also connect to
remote database, though issues have occurred while doing so using
school computers because of the limited access being granted to applets.

Important Functions:
• connectToDatabase – connects to the database using the default

address of localhost or user provided address in address text box
• getData – gets the data from the database
• dataToCollectionList – gets the list of collections and display them

in the collection list Jlist
• createGUI – creates all the GUI elements. This takes a lot of time

as Java and applets are really slow. It may seem like it is hanging
but give it a few seconds depending on computer speed.

 12

Fig 2. Applet GUI

 13

XCollection
Description
This class is an interface between the ResourceAgent and the database.
It provides functions that the ResourceAgent will need to start the correct
Service to communicate and send requests to the database.

Important Functions:
• initCollection(String) – creates a collection with provided name
• shutdown – shutdows the database
• synchronize – writes database contents back to local disk
• insert(String, String, String) – inserts a Resource into a Collection
• delete(String, String) – delete a Resource from a Collection
• retrieve(String, String) – retrieve a Resource from a Collection
• query(String, String) – query a Collection using the Xpath

expression
• retrieveResourceList(String) – retrieve a list of Resources from a

Collection
• retrieveLastModification(String, String) – retrieve the last

modification date of the Resource
• update(String, String[], String[], String) – update a single Resource or

an entire Collection using Xpath expressions and new values
• retrieveLastFTPConnection(String) – retrieve the timestamp of the

last FTP connection
• queryForIpNames – query the database for IP names that fulfill the

requirements.
• queryForDomainNames(String[]) – query the database for all IPs

within a domain using the Xpath expression

Future Services
To add future services or request that the database should handle,
decide if the service fits into one of the existing service classes. If it does,
then implement the function or if it does fit into one of the existing
classes, then create another subclass and then implement the function.
For example if I wanted to create another request that retrieve the list of
Collections, the function would be in RetrievalService class. Create a
function called retrieveCollectionList. Connect to the database and send
the request. The database should add a function to process that request
as well. Below would be the changes that need to be added.

 14

Service.java
protected static final int RETRIEVE_COLLECTION_LIST = 17;

RetrievalService.java
public vector retrieveCollectionList() {
 printMsg(“Retrieving collection list: “);

 Vector result = null;

 if (connectAndSendInformation(RETRIEVE_COLLECTION_LIST, null)) {
 try {
 result = (Vector)objectIn.readObject();

 if (result != null) {

printErr(“database not initialized”);
}
else if (result.isEmpty()) {

 printErr(“database has no collections”);
 }
 } catch (Exception e) {
 printErr(“ trying to receive collection list “);
 } finally {
 closeAllConnections();
 }
 else {
 closeAllConnections();
 }

 return result;
}

XDBase.java
private static final int RETRIEVE_COLLECTION_LIST = 17;

public synchronize void parseRequest(Connection client) {
 …
 Switch(request) {
 …
 case RETRIEVE_COLLECTION_LIST:
 result = retrieveCollectionList(client);
 sendResult = false; // don’t need to send boolean result to client
 break;
 …
}

private boolean retrieveCollectionList(Connection client) {
 boolean result = true;

 Vector colList = retrieveCollectionList();

 15

 try {
 client.Out.writeObject(colList);
 client.Out.flush();
 } catch (Exception e) {
 result = false;
 }

 return result;
}

private Vector retrieveCollectionList() {
 if (collections == null)
 return null;

 Vector colList = new Vector();

 Enumeration keys = collections.keys();
 while (keys.hasMoreElements()) {
 colList.add((String)keys.nextElement);
 }
 return colList;
}

XCollection
pubic Vector retrieveCollectionList() {
 RetrievalService service = new RetrievalService();
 return service.retrieveCollectionList();
}

Compiling and Running
To compile all the agents and all the necessary files of the database, run
the shellscript compile.sh. To run the database execute the shellscript
startDB.sh and to shutdown the database, execute shutdown.sh. All
shellscript files are currently located in home/uwagent/MA/agentsNew.
As of this moment, the only argument the database needs is the port
number, which it is passed in as the command argument. At the
moment, the port of the services that connect to the database is 8000.
So at the moment, please don’t change the shell script startDB.sh
because it has the port number of 8000.

ResourceAgent Modifications

Introduction
Changes to the database made it possible to retrieve a resource itinerary
with cluster information, but the ResourceAgent needed to be modified to
handle such changes. Collections were added and deleted to
accommodate the new database. We no longer need the “Resource”

 16

collection as it does not give information about whether or not that
resource node was a private or public node. Instead, we now have a
“Cluster” collection that contains an XML file with cluster information.
Such information includes the cluster name, gateway, gateway alias,
CPU speed, memory and cluster nodes. A “ClusterRuntime” collection
contains all the cluster nodes of every cluster and their updated status.
The runtime information of each cluster node is created and stored in the
database when the cluster XML file is downloaded from the FTP server,
ftp.tripod.com. A “Public” collection contains all the public nodes. The
“ftpinfo” collection contains the timestamp of the last FTP connection.
The ResourceAgent only contacts the FTP server if the last timestamp
was over 24 hours ago. The “prbinfo” collection remains the same as it
contains the probe frequency of the SensorAgents to determine which
ResourceAgent should be the primary and launch SensorAgents to
monitor nodes.

The ResourceAgent will now contact the database to retrieve all nodes,
either in a private cluster or public, within a domain that the user as
provided. The default domain at the moment is “UWB” and that will
cause the database to return all nodes in the UWB domain to the
ResourceAgent. The information received from the database will also be
quite similar to that of when the database returns a list of available
resource node to the CommanderAgent via the ResourceAgent.

 17

“Clusters”

“Public”

“NumCNodes”

Medusa
clusterName

Hashtable
mnode0
mnode1
mnode2
mnode3
…..
…..
gateway

Hashtable

uw1-320-00
uw1-320-01
…
…
uw1-320-32

Vector

Vector

Total
Number Of

Cluster
Nodes

Int

Fig 3. Structure constructed by database from a “QUERY_FOR_DOMAIN_IPS” request

When this information is retrieve from the database, the ResourceAgent
constructs a string array argument to pass to its child SensorAgent.

Description of Changed/Added Functions
initDB
Create the “Cluster”, “ClusterRuntime”, “Public”, “ftpinfo” and “prbinfo”
colletction.

updateDB
Instead of checking the last modification of each XML file when
downloading from the FTP server to the database, there is now only one
check in the beginning. The “ftpinfo” collection contains the last time
any files were downloaded from the FTP server. If the “ftpinfo.xml” file
does not exist or the timestamp was over 24 hours ago, then proceed to

 18

connect, download files from the FTP server and update the “ftpinfo.xml”
timestamp. Download files in the “Cluster” and “Public” folder/directory
on the FTP server.

downloadXmlsFromFtp(String ftpDir, FTPFile[] ftpList, String
dbColName, Vector dbList)
This function was modified to not check the timestamp of the file in the
database. This is because if we are at this point, then it has been over
24 hours since last FTP connection so we download regardless. Now it
checks to see if the file also exists in the database and deletes it first. It
is very important to delete the file first because the database does not
allow you to just replace the file, it must be deleted first.

addXmlFromFtpToDB(String ftpDir, String filename, String
dbColName)
This function downloads the file from the FTP server and stores it in the
database. The modifications include ignoring carriage return characters
that are downloaded with the FTP file. Secondly, if the file downloaded is
a cluster file (dbColName == “Cluster”) a cluster runtime file must be
created.

addRuntimeToDb(String fileContent)
This function is new and creates a cluster runtime file for each node in
the cluster. First, create a DOM document for the cluster file
(fileContent) in order to easily get the nodes from the cluster by creating
an XPath expression to each “group” of the cluster. Iterate through all
the nodes and query the cluster file for node information. Add all the
runtime information and insert the new DOM document into the
“ClusterRuntime” collection.

addAllChildNodes(Element root, Document document, Node
currentGroupNode)
This function adds all the runtime information that the runtime file
should have.

getRuntimePairs(Node node)
This function gets all the runtime pairs. It creates a string array with the
first index containing an XML element. The next index contains the
value of that element. For example, index 0 contains cur_cpu_speed and
index 1 contains the CPU speed stated in the cluster file.

addSingleChildNode(Element root, String nodeName, String
nodeValue, Document document)
Creates an element child by inserting it into the root element by using
the nodeName as the name of the element and the nodeValue as its text
value.

 19

queryForIpNames
The structure that is returned is shown in Fig 1. The information needed
from the CommanderAgent is the number of sentinels, multiplier,
number of bookkeepers and the resource requirements. With the
provided requirement, 3 Xpath expressions are created: cluster, cluster
runtime and public Xpath expressions. Send the request to the database
and wait for response.

startProbing
This function is changed so that it is able to monitor inside private
clusters. First, a query is made to the database for all nodes within a
domain. Look at Fig 2 for the structure that is returned. A string
argument is created to spawn the root SensorAgent. The root
SensorAgent is spawned on the same node as the ResourceAgent.

SensorAgent Modifications

Introduction
The SensorAgents were modified to handle private clusters as well as
public nodes and to monitor the nodes dynamically. Previously, the
nodes to be monitored were static and a predefined finite number of
nodes. Now, nodes are monitored dynamically, defined at runtime and
can be as many as possible. To accommodate the changes, the tree
structure of the SensorAgent was modified. Look at Fig 4. for the tree
structure. The root spawns has 2 children, the first 2 gateway children
and the last 2 are the public client/server root. The rest of the tree is
pretty similar except that when you are in a gateway part of the tree, you
spawn cluster nodes and public nodes. The picture shows 5 clusters
with 5 pu The 5th cluster would reside on the left most children and
would have id of 65. The G1 client and server root would be id 66 and
67, respectively. If only 3 clusters existed, then G4 would not exist and
G3 client and server would be 68 and 69, respectively.

 20

Root
SensorAgent

ID: 4

Public
Server
Root

ID: 19

Public
Client
Root

ID: 18

G4
ID: 17

G1
ID: 16

G2
ID: 64

G1 Client
Root

ID: 66

G1 Server
Root

ID: 67

G5
ID: 68

G4 Client
Root
ID: 69

G4 Server
Root

ID: 70

G2 Server
Root

ID: 257

G2 Client
Root

ID: 256

G5 Client
Root

ID: 272

G5 Server
Root

ID: 273

G5 Client
#1

ID: 1088

G5 Client
#2

ID: 1089

G5 Server
#1

ID: 1092

G5 Server
#2

ID: 1093

Public
Client #1

ID: 72

Public
Client #2

ID: 73

Public
Server #1

ID: 76

Public
Server #2

ID: 77

G3
ID: 65

G3 Server
Root

ID: 257

G3 Client
Root

ID: 256

Fig 4. SensorAgent Tree Modification

 21

 Fig 5. SensorAgent Arguments

RootSensor child #1 child #1.1 child #1.2 child #1.3 child #1.4
0 myfunc root 0 gateway 0 gateway 0 gateway myfunc 0 Client Root 0 Server Root
1 port 8000 1 8000 1 8000 1 8000 port 1 8000 1 8000
2 probe freq 20000 2 20000 2 20000 2 20000 probe freq 2 20000 2 20000
3 total nodes 30 3 16 3 5 3 4 children 3 3 3 2
4 total local nodes 5 4 7 4 5 4 4 uneven? 4 uneven 4
5 total clusters 5 5 2 5 0 5 0 child1 5 c1 node2 5 c1 node6
6 cluster name localhost 6 c1 6 c2 6 c3 child2 6 c1 node3 6 c1 node7
7 c1 name c1 7 c2 7 c2 node1 7 c3 node1 child3 7 c1 node4
8 c2 name c2 8 c3 8 c2 node2 8 c3 node2
9 c3 name c3 9 5 9 c2 node3 9 c3 node3

10 c4 name c4 10 4 10 c2 node4 10 c3 node4
11 c5 name c5 11 c1 node1 11 c2 node5
12 c1 # 7 12 c1 node2
13 c2 # 5 13 c1 node3
14 c3 # 4 14 c1 node4
15 c4 # 3 15 c1 node5
16 c5 # 6 16 c1 node6
17 public/local p1 17 c1 node7
18 p2 18 c2 gateway
19 p3 19 c2 node1
20 p4 20 c2 node2
21 p5 21 c2 node3
22 p6 22 c2 node4
23 cluster 1 c1 gateway 23 c2 node5
24 c1 node1 24 c3 gateway
25 c1 node2 25 c3 node1
26 c1 node3 26 c3 node2
27 c1 node4 27 c3 node3
28 c1 node5 28 c3 node4
29 c1 node6
30 c1 node7
31 cluster 2 c2 gateway child #2 child #2.1 child #2.2 child #2.3
32 c2 node1 0 gateway 0 Gateway myfunc 0 Client Root 0 Server Root
33 c2 node2 1 8000 1 8000 port 1 8000 1 8000
34 c2 node3 2 20000 2 20000 probe freq 2 20000 2 20000
35 c2 node4 3 9 3 6 children 3 1 3 0
36 c2 node5 4 3 4 6 uneven? 4 uneven 4
37 cluster 3 c3 gateway 5 1 5 0 child1 5 c4 node2
38 c3 node1 6 c4 6 c5
39 c3 node2 7 c5 7 c5 node1
40 c3 node3 8 6 8 c5 node2 child #3 child #4
41 c3 node4 9 c4 node1 9 c5 node3 myfunc 0 Client Root 0 Server Root
42 cluster 4 c4 node1 10 c4 node2 10 c5 node4 port 1 8000 1 8000
43 c4 node2 11 c4 node3 11 c5 node5 probe freq 2 20000 2 20000
44 c4 node3 12 c5 gateway 12 c5 node6 children 3 2 3 1
45 cluster 5 c5 gateway 13 c5 node1 uneven? 4 4
46 c5 node1 14 c5 node2 child1 5 p2 5 p5
47 c5 node2 15 c5 node3 child2 6 p3 6 p6
48 c5 node3 16 c5 node4
49 c5 node4 17 c5 node5
50 c5 node5 18 c5 node6
51 c5 node6

 22

The above spreadsheet shows an example set of arguments for the
SensorAgent. The tree in Fig 4 is just a part of the total tree created by
these arguments. The spreadsheet shows the argument passed to each
of the SensorAgent children, from the SensorRoot to some of its
grandchildren.

Nodes stats are still sent from server to corresponding client and then to
its client root. The client root will then send to its parent, either the root
SensorAgent or a gateway. The gateway will send to its parent until the
root SensorAgent receives stats from all its children. It will then send the
information to the ResourceAgent to update the database.

Index 0 – 6 in a root or gateway SensorAgent has significant meaning. 0
is the function of the agent. 1 is the port number. 2 is the probing
frequency. 3 is the total number of nodes. 4 is the total number of local
or public nodes. 5 is the total number of clusters. 6 is the name of this
cluster this agent is at. The cluster name and amount of nodes in each
cluster are next. After that, the public/local nodes are defined. After the
public/local nodes, each cluster’s gateway and nodes are defined.

Index 0 – 4 in a client/server root or client/server has significant
meaning as well. 0 is the function of the agent. 1 is the port number. 2
is the probing frequency. 3 is the total number children to spawn. 4 is a
flag to determine whether or not this agent is responsible for migrating
while probing or one its children is responsible for. Index 5 is the start of
any children to spawn or migrate to.

If there is an uneven amount of nodes within a cluster, lets say 7, then
there won’t be a perfect client/server match-up of pairs. Thus, we want
to have 3 pairs and the 3rd pair’s client will migrate and probe. Meaning
that that client will monitor one node and measure, and migrate to
another node and measure. This will allow the client to still be able to
perform bandwidth test will the server even if it is migrating. Only the
LAST client of the cluster will be migrating. We only want the client to
migrate because the corresponding server has already setup the ttcp
server and no synchronization is needed after the client migrates. If the
server migrated, then the ttcp server will have to be started again on the
new node and client/server pair will have to re-synchronize in order to
measure bandwidth.

At the moment, gateway SensorAgent only needs to spawn the
receivingMessageThread to receive messages from its children. It does
not probe at all. All it is responsible for is forwarding messages upward
and spawning children. Later on, that may be something to do so we can
monitor bandwidth between clusters/gateways.

 23

Description of Changed/Added Functions

Much of the original code is still around, such as the synchronization
among client/server pairs. The only thing changed is setting up the
arguments for the children and the migration code. The old code
assumes that when a client migrates, then the corresponding server also
migrates and synchronization between the client and server must be
done again. Now, since only the client migrates, there is no need to re-
synchronize as the server has already set up the ttcp server and can
measure bandwidth.

Init()
This function was changed drastically to create the string arguments for
spawning children shown in figure 4. Please refer to the code and
comments for most of the explanations as it makes understanding the
code easier to see the comments and code together.

Future Work
Some ideas that I have includes monitoring the gateways so inter-cluster
bandwidth can be measured. There still needs to be communication
between CommanderAgent and ResourceAgent so that when the user job
is done, nodes allocated can be deallocated. We would need to add
another service and process that in the database. Another idea would be
have it so that we can use any port for the database. That would need
coordination from the user supplying the port number for the
CommanderAgent, changing the startDB.sh shell script, and the
ResoureAgent to change the port number on the services. That means
we will need to add a static function in Service.java to change the port
number. The applet would also have to allow for a port number input
area.

