
1

Redesigning and Enhancing the
UWAgent Execution Engine

Duncan Smith
Dr. Munehiro Fukuda

CSS 497 Autumn Colloquium
Friday, December 9th, 2005

10-15 minutes

Thanks for coming, everyone. I’m Duncan Smith, and for the past 5 months I have
been working with Professor Fukuda on the UWAgent system.

2

What is UWAgent

• Java-based mobile agent execution platform

• UW Bothell Distributed Systems Laboratory

• Supports the AgentTeamwork grid computing
middleware system

Some of you may have heard of UWAgent, but for those who haven’t, here is a
quick overview. UWAgent is a Java-based mobile agent execution platform. A
mobile agent is a program that can move from one computer to another
autonomously. For example, if you wanted to buy an airline ticket, you might use a
mobile agent that would visit a number of different travel sites to compare prices. In
a mobile agent environment, you wouldn’t need to pull itinerary data over the
Internet to your local machine for processing. Instead, your agent could do all of its
processing at the remote site, and return with only the results.

UWAgent has been developed over the years by students and faculty working at the
UW Bothell Distributed Systems laboratory. Currently, UWAgent is being used to
support the AgentTeamwork grid computing middleware system. However, it is
written so that it could be used by any system needing mobile agent support. One of
the tasks from my work these past two quarters has been to remove
AgentTeamwork-specific code from the UWAgent code base.

3

AgentTeamwork People

These are the people who have worked on UWAgent and AgentTeamwork over the
years.

4

Project Accomplishments

• Replaced Java RMI with Java sockets
• Implemented three new features

– Navigation over gateways
– Monitor commands
– Secure Communication

• Tested for class name collision
• Refactored existing code

Here are the things we did during this part of the UWAgent project. I’ll talk about
each of these individually during this presentation. We replaced Java RMI with Java
sockets. We implemented three new features. We verified that UWAgent isn’t
affected by a potential problem common to mobile agent systems. And we did some
code cleanup.

5

Why Use Mobile Agents

1. Reduce network load
2. Overcome network latency
3. Encapsulate protocols
4. Execute asynchronously and

autonomously
5. Adapt dynamically
6. Naturally heterogeneous
7. Robust and fault-tolerant

Danny B. Lange and Mitsuru Oshima

Before I talk more about UWAgent specifically, here is a list of seven reasons to use
mobile agents. The list comes from Danny Lange and Mitsuru Oshima, two
researchers who developed another Java-based mobile agent system called Aglets.
They say that mobile agents reduce network load, because they process data
locally rather than pulling it over the network. They overcome network latency, for
the same reason. They encapsulate protocols, meaning that agents rather than
hosts can take responsibility for implementing protocols, which may be obscure and
only applicable to the task the agent is doing. They execute asynchronously and
autonomously. They adapt dynamically to changing conditions on the host (such as
increasing load from other processes). They are naturally heterogeneous because
they only depend on their execution environment, not the underlying host. And they
are robust and fault-tolerant, as a result of the previous six reasons.

6

This diagram shows how UWAgents move and communicate when their hosts are
on a single network. The bar at the top represents the network, the houses are the
two hosts that the agents execute on, and the drum at the bottom is the disk
storage that all of the hosts on the network share. That is a useful feature in a
mobile agent system, because it reduces the amount of information that agents
need to carry with them. At the top, we have a UWPlace on each node. This is the
execution environment that must be running on each node that a UWAgent uses.
Next we inject an agent to one of the nodes, meaning we start its execution there.
The agent then spawns a child agent, meaning that it creates an autonomous copy
of itself. The child agent then moves, or “hops” to another node. Finally, the parent
agent sends its child a message. The UWAgent system facilitates this message
delivery by keeping track of where each agent is located.

7

This diagram shows a similar process to the previous one, except now we have two
networks that are connected by a gateway. Again, an agent is injected to one of the
nodes, and it spawns a child on the same node. However, the child now wants to
hop to a machine on a different network. In order to do this, it needs to take a detour
through the gateway machine, which is also running the UWAgent system. It then
hops out to the public network, and finally to another machine on the same network.
The parent then sends a message. The UWAgent system has kept track of the
location of the child agent through all of its hops, so it knows which machine the
child is on. Because the destination machine is not visible from the private network,
the message also needs to detour through the gateway machine before it can reach
its destination agent.

8

This diagram shows some lower-level mechanics about how messages are sent
between nodes using our custom socket interface. This applies to all remote
method calls in the UWAgent system. These remote method calls were handled by
RMI in the previous version of the system. In this example, I’ll use the receiveAgent
method, which is part of the agent navigation process. On the left side, we have a
UWPlace with one UWAgent. The agent wants to hop to this other UWPlace on the
right hand side. The first step is to serialize the agent. This puts it in a form where it
can be transferred over the network. Meanwhile, the recipient (along with every
UWPlace) has created a ServerSocket to receive incoming requests. It has also
started a separate thread to listen for requests and a socket to be used when a
request comes in. The sender also creates a socket, and connects to the recipient,
which accepts the connection. The sender writes a fixed-length header to the
socket. The header contains the method name (receiveAgent, in this case), and the
amount of data to be sent. This second piece of information will be crucial at the
destination, because of the way Java sockets work. In fact, it was probably the
trickiest part of the enhancement work. The recipient reads and parses the header,
and the sender writes the serialized agent to the socket. The recipient reads the
correct number of bytes to get the agent. It then calls the specified method,
receiveAgent, passing in a byte array. receiveAgent instantiates the agent using its
serialized form, and adds it to the list of local agents, where it will receive its share
of the local resources.

9

Why not RMI?

• rmiregistry process must be started
and stopped manually

• The RMI communication layer must be
configured properly

• Client on a gateway may send its public IP
address to its server on a private network

• More control

After learning about the socket process, you may be wondering why we didn’t just
stick with RMI rather than inventing our own process. Here are a few reasons. First,
there is a program called rmiregistry that must be running on each node. It must be
started and stopped manually with the correct port number. RMI introduces a
communication layer that must be configured properly. A potential problem exists
when a client is on a gateway machine and it establishes a connection to a server
on the private network side of the gateway. In some cases, the client sends the
gateway’s public IP address rather than the private one. Finally, a custom socket
interface gives us more control, which can be useful in a research environment.

10

Secure Communication

• Turned on or off from UWPlace command
line

• Secure Socket classes are derived from
Socket classes

• Use a certificate generated by keytool

One of the ways we used this enhanced control over the remote method call
process is to provide secure communication between UWPlaces. This security
support is optional, so the user can turn it on and off at the UWPlace command line.
Of course, the settings must match between UWPlaces. It was implemented using
Java’s SSLSocket and SSLServerSocket, as we’ll see in a minute. And it uses a
certificate generated by the keytool command, which is part of the Java SDK.

11

Secure Communication

// Create a ServerSocket or an SSLServerSocket
ServerSocket srvr = null;
if (uwplace.getIsSSL()) {

SSLServerSocketFactory sslserversocketfactory =
(SSLServerSocketFactory)

SSLServerSocketFactory.getDefault();
srvr = sslserversocketfactory.createServerSocket(portNum);

} else {
srvr = new ServerSocket(portNum);

}

Here’s some code showing how a secure or a regular ServerSocket are created. I
was pleased to learn that Java’s SSLServerSocket is derived from the base
ServerSocket class. Because of this, I could use a base class variable to hold either
socket type. Therefore, the code that checks the security option can be isolated to
this part of the program, and the rest of the code can simply use this ServerSocket
variable.

12

Secure Communication

// Create a Socket or an SSLSocket
InputStream in = null;
Socket skt = null;
if (uwP.getIsSSL()) {

skt = (SSLSocket) srvr.accept();
} else {

skt = srvr.accept();
}
in = skt.getInputStream();

Here’s the equivalent code for the client socket. The InputStream is used to retrieve
the data coming over the socket. Again, we can use an instance of the base class to
store either a regular or a secure socket.

13

Secure Communication
$ keytool -genkey -keystore UWAgentKeystore -keyalg RSA
Enter keystore password:
What is your first and last name?

[Unknown]: Duncan Smith
What is the name of your organizational unit?

[Unknown]: CSS
What is the name of your organization?

[Unknown]: UW Bothell
What is the name of your City or Locality?

[Unknown]: Bothell
What is the name of your State or Province?

[Unknown]: WA
What is the two-letter country code for this unit?

[Unknown]: US
Is CN=Duncan Smith, OU=CSS, O=UW Bothell, L=Bothell, ST=WA, C=US correct?

[no]: y

Enter key password for <mykey>
(RETURN if same as keystore password):

And here’s the certificate generation process.

14

Monitor Commands

• as (Agent Status)

• kill

• suspend

• resume

-- Agent status --
Number of agents: 3
ID Name Status
-- ---- ------
23 MonitorTest Ready
25 MonitorTest Running
0 UWMonitorAgent Ready

I’ll conclude with one more feature, as well as one feature that I didn’t have to
implement. The feature that did get implemented is a set of four monitor commands,
to provide better control over agents during experiments. Here’s an example of the
output from that command.

15

Class Name Collision

• Agents can carry additional classes

• Two agents may carry a class with the
same name

• Testing UWAgent for this scenario

And the last feature is something we thought might be necessary, but turned out not
to be. UWAgent allows agents to carry supporting classes with them when they hop
from place to place. It is possible that two agents may each carry their own copy of
a class, and that those classes may have the same name and same interface, but
different behavior. One example is two students who may be running their
distributed computing assignments on the same node. In systems that implement
caching, such as IBM Aglets, there is a risk that the wrong method may be called.
Aglets solves this problem by using separate class loaders that isolate the
identically-named classes from each other. In the case of UWAgent, it turns out that
Java protects against this problem automatically. We did a number of tests to
confirm this.

16

Questions?

http://depts.washington.edu/dslab/
AgentTeamwork

Thanks again for coming, everyone. Are there any questions?

