

Development of Resource/Commander Agents

For AgentTeamwork Grid Computing Middleware

Final Report

Enoch Mak
Professor Munehiro Fukuda

CSS497 Faculty Research Internship
June 20, 2005

Table of Content
I. Introduction... 4
II. AgentTeamwork System Overview .. 5
III. Ftp Server.. 6
IV. XML Database .. 8

A. eXist XML Database System.. 8
B. XCollection eXist-interfacing class .. 8
C. Database Server Deployment.. 8
D. Local Database Collections... 9
E. How to manually delete all XML file in the eXist DB ... 9
F. XML File Structure ... 9

V. How to start AgentTeamwork ... 12
A. A list of all necessary file.. 12
B. Make sure FTP server have the necessary XML files... 15
C. Start and Shutdown eXist Standalone Database Server.. 15
D. Setting Class Path ... 15
E. Steps to compile AgentTeamwork .. 16
F. Starting the RMI Server and UWPlace ... 17
G. Injecting the CommanderAgent with user application ... 17

VI. Round-Trip Communication ... 18
VII. Resource Agent Startup... 19

A. Two different modes ... 19
B. Startup in regular mode... 19
C. Startup in remote probing mode ... 20

VIII. Resource Distribution ... 21
IX. Arguments for Commander Agent Constructor .. 22

A. The text highlighted in red.. 22
B. The text highlighted in bright green.. 22
C. The text highlighted in blue .. 22
D. The text highlighted in pink.. 23
E. The text highlighted in orange .. 23
F. The text highlighted in sky blue.. 24
G. The text highlighted in violet.. 24
H. The text highlighted in brown... 24

X. Probing Remote Computing Node.. 25

A. Child Resource Agent ... 25
B. Bandwidth Test ... 26

XI. Appendix... 27

I. Introduction
The UWB Distributed Systems Laboratory has been developing the AgentTeamwork grid
computing middleware system that dispatches a collection of mobile agents to coordinate an
execution of a user application over remote computing nodes in a decentralized manner. The
ultimate focus is to maintain a high availability and dynamic balancing of distributed
computing resources to a parallel-computing job.

The AgentTeamwork mobile-agent execution platform has been implemented, so that mobile
agents are able to migrate over Internet and keep running on a different machine. All mobile
agents are extended from the UWAgent class, instantiated as a Java thread, and executed on
an UWPlace object which is part of the mobile-agent execution platform. The execution
platform recognizes four types of mobile agents such as commander, resource, sentinel, and
bookkeeper agents. Commander agent coordinates the work of other agents. Resource agent
dynamically allocates distributed computing resource to a parallel computing job. Sentinel
agent monitors and takes snapshot of the execution of user application at a different remote
computer. Bookkeeper agent maintains the periodical execution snapshot from sentinel agent.

In this project, I implemented the first version of resource agent and enhanced part of the
commander agent. AgentTeamwork is now able to perform a complete sequence of job
execution:

1. an application is submitted,
2. a commander is spawned and send a resource query to the resource agent,
3. the resource accesses its local eXist DB, returns a list of remote computers, and

performs periodic remote computers probing to update the local DB,
4. a commander dispatches sentinels and bookkeepers to launch and to monitor the

application,
5. The commander receives the final computation results.

II. AgentTeamwork System Overview

AgentTeamwork targets a computational community agreed by a group of remote desktop
owners and a common ftp server. The ftp server is used only to store a collection of
XML-based user resource files. Once each computing node download and run the mobile
agent execution platform in the background, each computing node is able to dispatch and to
accept user jobs. In AgentTeamwork, each user can locally submit a job with a commander
agent. This agent starts a resource agent that searches its local XML files for the computing
nodes which are best fitted to the user job’s resource requirements. The resource agent will
send a list of remote computers’ IP name to commander agent. Then, the commander agent
will spawns as many sentinel and bookkeeper agents as the number of nodes required for the
job execution. Each sentinel launches a user program wrapper that starts a user process and
records its execution snapshots. Such snapshots are sent to and maintained by the
corresponding bookkeeper agent for the purpose of retrieving a user process upon its
accidental crash. Each agent can also migrate to an idle and faster machine individually. At
the end, all results are forwarded to the commander agent that thereafter reports to the user.

III. Ftp Server
AgentTeamwork need a common ftp server to store a collection of XML-based remote
computing node resource files. Each XML file contains the resource information of a single
remote computing node. For example, mnode0.xml contains the resource information of a
remote computing node with IP name mnode0. Currently, the medusa cluster has 32 slave
nodes, mnode0- mnode31. In order to let resource agent to identify all those 32 slave nodes,
the FTP server need to maintain 32 xml files which are mnode0.xml – mnode31.xml. During
the startup of a user application, the resource agent will download any new or updated XML
files into the local database.

Currently, ftp.tripod.com is the FTP server being used to store the XML resource files. Below
is the user name and password to access to the FTP server.

Host name: ftp://ftp.tripod.com
User Name: agentTeamwork
Password: test

Below is the file listing of the FTP server.

Directory “ResourceXML” stores the XML files which will be downloaded by resource
agent. Currently, it only stores 8 XML files, mnode8.xml – mnode15.xml, instead of all 32
xml files for testing purpose. Thus, only 8 remote computing nodes are available for user
application.

A complete collection of 32 XML files can be found in directory “All_ResourceXML” as
shown in below. In order to make all 32 remote computing nodes available to user
application, one can copy all xml files from directory “All_ResourceXML” to directory
“ResourceXML”.

IV. XML Database
A. eXist XML Database System
Resource agent stores the resource information of all remote computing node in it local
database. Resource agent uses a DBMS (database management system) called eXist. eXist is
a open source native XML database. For more information about eXist, please visit
http://exist.sourceforge.net/ .

When writing Java application that accesses eXist database, it is important to understand on
how XML database are organized. The concept of drivers, collection, resources and services
are very important. Refer to the developer guide http://exist.sourceforge.net/devguide.html .
In the developer guide section 3, there are some detail sample codes on how to write a java
application with the XML:DB API to access eXist database. XML:DB API provides a
common interface to native or XML-enabled databases. The javadocs of the XML:DB API
can be found here http://exist.sourceforge.net/api/index.html , inside the org.exist.xmldb
package.

B. XCollection eXist-interfacing class
A general eXist-interfacing class, XCollection.java, was implemented. Resource agent can
access the eXist database through this interface class. XCollection.java equipped with the
following features:

1. Create and remove collections
2. Access to multiple collections
3. Retrieve, store, remove, query and update XML files

C. Database Server Deployment
eXist offers three alternatives to run the database. It may either run as a standalone server
process, embedded into an application or in connection with a servlet engine. In the
beginning of my implementation, the eXist database was embedded into our java application.
In order to make the eXist accessible by multiple resource agents concurrently, eXist
database was eventually deployed as a standalone server process. Either the eXist is run as a
standalone server or is embedded into an application, our eXist-interfacing class
(XCollection.java) is able to access the eXist through the standard XML:DB API. The
XML:DB API uses URIs to locate a collection of XML resources on the server. The URI
identifies the name of the collection and the way of the server deployment. For example, the
URI

xmldb:exist:///db/resources

references the “resources” collection on an embedded instance of the database. When the
eXist is deployed as a standalone server, the URI would change to

 xmldb:exist://localhost:8081/db/resources (This is the current URI used in XCollection.java.)

which means the “resources” collection on a standalone server which is accessible at
localhost through TCP port 8081.

D. Local Database Collections
Two database collections, “resources” and “probinginfo”, are maintained in the eXist
database for resource agent. The “resources” collection stores multiple xml files
(mnode0.xml – mnode31.xml) which contain the resource information of the corresponding
computing nodes. The “probinginfo” collection only stores one xml file (pinfo.xml) which
contains the probing frequency of the current primary resource agent. It helps the resource
agents to determine which resource agent is the primary agent. Only the primary agent needs
to probe the remote computing nodes. For more detail information, please read the Remote
probing section of this document.

E. How to manually delete all XML file in the eXist DB
User can delete the entire data set stored inside eXist database for testing purpose, it could be
done by the following steps.

1. find out the location of the eXist database, which is currently located at
“/home/uwagent/eXist”

2. go to “/webapp/WEB-INF/data” under the directory of the eXist database. In this case,
the complete path is “/home/uwagent/eXist/webapp/WEB-INF/data”.

3. delete all files inside this directory.

F. XML File Structure
1. “probinginfo” Collection

Below is the XML file structure of the pinfo.xml which is stored in “probinginfo” collection.
Note that user does not need to manually create this XML file. Resource agent will create this
file automatically if it is not exist in the “probinginfo” collection.

This XML file stores only the probing frequency of the current primary resource agent. The
<frequence> element store the probing frequency in milliseconds.

2. “resources” Collection
Below is the XML file structure of the mnode8.xml which is stored in “resources” collection.
User needs to manually create a XML file with the related information for each remote
computing node and store it in the FTP server. For more information, please see the FTP
Server section of this document.

<?xml version="1.0"?>
<probing_status>
 <frequence>0</frequence>
</probing_status>

0 <?xml version="1.0"?>
1 <resource> ___
2 <design_time>
3 <human_owner>uwb</human_owner>
4 <ip_name>mnode8</ip_name>
5 <ip_addr>216.186.73.31</ip_addr>
6 <cpu_speed>8000</cpu_speed>
7 <cpu_arch>i386</cpu_arch>
8 <cpu_count>1</cpu_count>
9 <memory>64</memory>
10 <os_type>linux</os_type>
11 <disk_space>200</disk_space>
12 <cpu_load>100</cpu_load>
13 <intra_net_band>100</intra_net_band>
14 <availability multiple="true">
15 <time>0000-0530</time>
16 <time>0600-1000</time>
17 <time>1030-1730</time>
18 <time>1800-2359</time>
19 </availability>
20 <time_zone>pacific</time_zone>
21 <inter_net_device>myrinet</inter_net_device>
22 <inter_net_band>100</inter_net_band>
23 <intra_net_device>myrinet</intra_net_device>
24 <libraries multiple="true">
25 <name>cexec</name>
26 <name>mpirun</name>
27 </libraries>
28 </design_time>
29 <run_time>
30 <cur_ip_addr>216.186.73.31</cur_ip_addr>
31 <cur_cpu_speed>8000</cur_cpu_speed>
32 <cur_cpu_arch>i386</cur_cpu_arch>
33 <cur_cpu_count>1</cur_cpu_count>
34 <cur_memory>64</cur_memory>
35 <cur_os_type>linux</cur_os_type>
36 <cur_disk_space>200</cur_disk_space>
37 <cur_cpu_load>100</cur_cpu_load>
38 <cur_intra_net_band>100</cur_intra_net_band>
39 <cpu_utilization>1</cpu_utilization>
40 <process_count>0</process_count>
41 <cur_inter_net_band>100</cur_inter_net_band>
42 </run_time>
43 </resource>

Below is the table to explain the above XML file structure line by line.
Line no. Description

0 The XML declaration
1 Root element “resource”, all elements inside this element are resource information
2 All elements inside this element are resource information at design time
3 Currently not used by Resource agent, keep for future development
4 The actual IP name of the computer node
5 The actual IP address of the computer node
6 The cpu speed of the computer node in MHZ, should be the same as line 31
7 The cpu architecture, should be the same as line 32
8 The number of cpu of the computer node, should be the same as line 33
9 The number of available memory in MB, should be the same as line 34

10 The operating system type, should be the same as line 35
11 The number of available disk space in MB, should be the same as line 36
12 The percentage of CPU idle, should be the same as line 37
13 The bandwidth of the network in MB, should be the same as line 38
14 All elements inside this element is the available time slot of the computer node
15 This is the first time slot
16 This is the second time slot
17 This is the third time slot
18 This is the fourth time slot
19 All elements inside this element is the available time slot of the computer node
20 Currently not used by Resource agent, keep for future development
21 Currently not used by Resource agent, keep for future development
22 Currently not used by Resource agent, keep for future development
23 Currently not used by Resource agent, keep for future development
24 Currently not used by Resource agent, keep for future development
25 Currently not used by Resource agent, keep for future development
26 Currently not used by Resource agent, keep for future development
27 Currently not used by Resource agent, keep for future development
28 All elements inside this element are resource information at design time
29 All elements inside this element are resource information at run time. It will be updated

by Resource agent during run time.
30 The actual IP address of the computer node
31 The cpu speed of the computer node in MHZ, should be the same as line 6
32 The cpu architecture, should be the same as line 7
33 The number of cpu of the computer node, should be the same as line 8
34 The number of available memory in MB, should be the same as line 9
35 The operating system type, should be the same as line 10
36 The number of available disk space in MB, should be the same as line 11
37 The percentage of CPU idle, should be the same as line 12
38 The percentage of CPU idle, should be the same as line 13
39 Currently not used and not be updated by Resource agent, keep for future development
40 Currently not used and not be updated by Resource agent, keep for future development
41 Currently not used and not be updated by Resource agent, keep for future development
42 All elements inside this element are resource information at run time. It will be updated

by Resource agent during run time.
43 Root element “resource”, all elements inside this element are resource information

V. How to start AgentTeamwork
This section describes the procedures needed to start the AgentTeamwork.

A. A list of all necessary file
This section briefly describes all files which are related to this project. Since I spent a lot of
time to start this project, I think it is a good idea to document every single file that I have
been used or updated.

Files Description
File Name: ResourceAgent.java
Location: /home/uwagent/enoch/UWAgent
Description: This is the source file of the ResourceAgent

File Name: XCollection.java
Location: /home/uwagent/enoch/UWAgent
Description: This is the source file of the XCollection class

File Name: CommanderAgent.java
Location: /home/uwagent/enoch/agents
Description: This is the source file of the CommanderAgent

File Name: cr.sh
Location: /home/uwagent/enoch/UWAgent
Description: This is the shell script to compile the ResourceAgent, all the necessary

classpaths for compilation are included in this script. After the
compilation, the file ResourceAgent$RemoteRscProbeTask.class will
be copy to /home/uwagent/enoch/agents for CommanderAgent.

File Name: cx.sh
Location: /home/uwagent/enoch/UWAgent
Description: This is the shell script to compile the XCollection, all the necessary

classpaths for compilation are included in this script

File Name: cc.sh

Location: /home/uwagent/enoch/agents
Description: This is the shell script to compile the CommanderAgent, all the

necessary classpaths for compilation are included in this script

File Name: compile
Location: /home/uwagent/enoch/UWAgent
Description: This is the shell script to compile the entire UWAgent directory and

create an update UWAgent.jar, all the necessary classpaths for
compilation are included in this script

File Name: compile
Location: /home/uwagent/enoch/agents
Description: This is the shell script to compile the entire agents directory, copy the

new ResourceAgent.class and sub class from UWAgent directory, and
create an update agents.jar, all the necessary classpaths for
compilation are included in this script

File Name: run.sh
Location: /home/uwagent/enoch/UWAgent
Description: This is the shell script to start the RMI server and UWPlace. A port

number need to be provided when running this script file. For
example, “run.sh 35353”

File Name: runittry.sh
Location: /home/uwagent/enoch/UWAgent
Description: This is the shell script to inject the CommanderAgent and start the

ResourceAgent without any user application. This shell script is for
testing only.

File Name: runtestnow.sh
Location: /home/uwagent/enoch/UWAgent
Description: This is the shell script to inject the CommanderAgent and start the

ResourceAgent with user application Series.

File Name: RTruntestnow.sh

Location: /home/uwagent/enoch/UWAgent
Description: This is the shell script to inject the CommanderAgent and start the

ResourceAgent with user application RayTracer.

File Name: ResourceAgent$RemoteRscProbeTask.class
Location: /home/uwagent/enoch/agents
Description: This is the sub class of ResourceAgent. In order to start the

AgentTeamwork correctly, this file should be resided in the same
directory with CommanderAgent.

File Name: ttcp
Location: /home/uwagent/enoch/UWAgent and /home/uwagent/enoch/agents
Description: This is the ttcp program for the ResourceAgent to run the bandwidth

testing.

File Name: ttcp
Location: /home/uwagent/enoch/ttcp
Description: This is the source code (C++) of the modified ttcp program.

File Name: server.sh
Location: /home/uwagent/eXist/bin
Description: This is the shell script to start the eXist database standalone server.

File Name: shutdownserver.sh
Location: /home/uwagent/eXist/bin
Description: This is the shell script to shutdown the eXist database standalone

server.

File Name: eXist database directory
Location: /home/uwagent/eXist/webapp/WEB-INF/data
Description: This is the directory which eXist store all the xml file. To clear all xml

file inside the eXist, simply just delete all file in this directory. Please
read the section IV E in this document.

File Name: mnode0.xml – mnode31.xml

B. Make sure FTP server have the necessary XML files
Check to make sure the FTP server (ftp://ftp.tripod.com/ResourceXML) has the necessary
XML files. If not, simply copy it from (ftp://ftp.tripod.com/All_ResourceXML) which
includes all XML files for mnode0 to mnode31. For more detail, please read section III of
this document.

C. Start and Shutdown eXist Standalone Database Server

1. To start the eXist Server
Go to the following directory “/home/uwagent/eXist/bin” and use the shell script
server.sh to start the standalone server. Please note that it is a good idea to start the
database server in a new terminal because the eXist server will print out a huge
amount of information and mix up with the output of the AgentTeamwork. For
example:

[uwagent@medusa bin]$ pwd
/home/uwagent/eXist/bin
[uwagent@medusa bin]$ server.sh &

2. To Shutdown the eXist Server

Go to the following directory “/home/uwagent/eXist/bin” and use the shell script
shutdownserver.sh to shutdown the standalone server. For example:

[uwagent@medusa bin]$ pwd
/home/uwagent/eXist/bin
[uwagent@medusa bin]$ shutdownserver.sh

D. Setting Class Path
This Java class path is needed to be set correctly to prevent any compile time and run-time
errors. Below is the example class path to compile and run AgentTeamwork. Please note that
this example class path only valid for a particular machine and file directory. Use it as a
guideline when switch to different machine or file directory.

Location: ftp://agentTeamWork:test@ftp.tripod.com/ResourceXML
Description: All the xml files are located in the ftp server

/home/uwagent/mpiJava/lib/classes:
/home/uwagent/MA/benchmark/MPJv1.0:
/home/uwagent/eXist/exist.jar:
/home/uwagent/eXist/lib/core/xmldb.jar:
/home/uwagent/eXist/lib/core/resolver-20030708.jar:
/home/uwagent/eXist/lib/core/jakarta-oro-2.0.6.jar:
/home/uwagent/eXist/lib/core/antlr.jar:
/home/uwagent/eXist/lib/core/xmlrpc-1.2.jar:
/home/uwagent/eXist/lib/core/commons-pool-1.1.jar:
/home/uwagent/eXist/lib/endorsed/xerces-2.6.1.jar:
/home/uwagent/eXist/lib/endorsed/xalan-2.5.2.jar:
/home/uwagent/eXist/lib/endorsed/xml-apis.jar:
/home/uwagent/eXist/lib/core/log4j.jar:
/home/uwagent/eXist/commons-httpclient-2.0.2/commons-httpclient-2.0.2.jar:
/home/uwagent/eXist/commons-net-1.3.0/commons-net-1.3.0.jar:
/home/uwagent/enoch/UWAgent/UWAgent.jar:
/home/uwagent/enoch/GridTcp/GridTcp.jar:
/home/uwagent/enoch/agents:
/home/uwagent/enoch/UWAgent:
/home/uwagent/eXist:
/home/uwagent

Please note that some JAR file names might be different for a newer distribution.

E. Steps to compile AgentTeamwork

1. compile the java files inside UWAgent directory
Go to the following directory “/home/uwagent/enoch/UWAgent” and use shell script
“compile” to compile all java files. The shell script includes all necessary class paths.
Here is the example:

[uwagent@medusa UWAgent]$ pwd
/home/uwagent/enoch/UWAgent
[uwagent@medusa UWAgent]$ compile

2. Then, compile the java files inside agents directory

Go to the following directory “/home/uwagent/enoch/agents” and use shell script

For eXist

For FTP
client

“compile” to compile all java files. The shell script includes all necessary class paths.
Here is the example:

[uwagent@medusa agents]$ pwd
/home/uwagent/enoch/agents
[uwagent@medusa agents]$ compile

F. Starting the RMI Server and UWPlace
Go to directory “/home/uwagent/enoch/UWAgent” and use the shell script “run.sh” to start
the RMI Server and UWPlace. Simply just type in the shell script and the port number. For
example, I want to start the RMI Server with port 20000:

[uwagent@medusa UWAgent]$ pwd
/home/uwagent/enoch/UWAgent
[uwagent@medusa UWAgent]$ run.sh 20000&

G. Injecting the CommanderAgent with user application

1. To run test with Series user application
Use the shell script runtestnow.sh to injecting the CommanderAgent with Series user
application. Just type in the script name like below:

[uwagent@medusa UWAgent]$ pwd
/home/uwagent/enoch/UWAgent
[uwagent@medusa UWAgent]$ runtestnow.sh

2. To run test with RayTracer user application
Use the shell script runtestnow.sh to injecting the CommanderAgent with Series user
application. Just type in the script name like below:

[uwagent@medusa UWAgent]$ pwd
/home/uwagent/enoch/UWAgent
[uwagent@medusa UWAgent]$ RTruntestnow.sh

VI. Round-Trip Communication
This section briefly describes the round-trip communication between commander agent and
resource agent.

After a job is submitted with a Commander agent, this commander agent will spawn a
Resource Agent immediately. During the startup of resource agent, it accesses to the remote
FTP server and download the new or updated XML files and then insert XML files into the
local eXist database through the XCollection interface class. At the same moment, the
commander agent will send a Resource Request Message, which consists of the resource
requirement of the user application, to the resource agent to ask for a query. Since the
resource agent is still in its startup process and is not ready to perform query, the receive
message thread of the resource agent will wait until the resource agent is ready for query.
When the resource agent is ready for query, its main thread will notify the Receive Message
Thread to wake up and query the local database by sending a XPath query. The eXist
database will generate a list of remote computers’ IP name and send back to the Resource
agent. The list will further forward to the commander agent. This is a complete round-trip
communication between commander and resource agent.

VII. Resource Agent Startup
A. Two different modes
Resource agent can run in two completely different modes which are regular mode and
remote probing mode. In the regular mode, resource agent download XML files from FTP
server, update local database, accept resource request, query local database, return list of
computer IP name and spawn child resource agent to perform remote probing. In remote
probing mode, it is a child resource agent which is spawned by another parent resource agent
in regular mode. It immediately migrates to remote computer and performs a series of testing
and sends the status result of the remote computer back to the parent resource agent.

The arguments received by the constructor of the resource agent determine which mode a
resource agent should run. If the constructor received an argument with exactly 5 pieces of
information, which are ftp server name, ftp user name, ftp user password, frequency of
periodic probing, and directory of the eXist database, then the resource agent will run in
regular mode. On the other hand, if the constructor received an argument with only two
pieces of information, which are a string “PerformTest”, and a remote computer IP name,
then the resource agent will run in remote probing mode.

B. Startup in regular mode

1. Connect to remote FTP server and calculate the time offset
Since the remote FTP sever(ftp://ftp.tripod.com) locate in east coast with a time zone
3 hours faster than the local computer and the FTP client (apache FTP client) can not
recognize the time zone different, resource agent have to calculate the time offset
between the FTP server and the local computer. With the time offset calculation
algorithm, resource agent is able to work with any FTP server located anywhere in the
world.

2. Download the FTP file listing
Get the file listing which contains the timestamp of each XML file from the FTP.

3. Get the file listing from the local database
Get the file listing which contains the timestamp of each XML file from the local
database.

4. Download new and updated XML file from the FTP
Download any new XML files from the FTP server. Compare the timestamp of each
XML file between the FTP server and the local database, download the updated file
from FTP if necessary.

5. Ready for query
Ready to perform query request from Commander agent.

C. Startup in remote probing mode

1. migrate to the remote computer node
2. Find out the OS type of the computer node
3. Find out the available memory size in MB
4. Find out the percentage of CPU idle
5. Find out the available disk space in MB
6. Find out the bandwidth between this remote computer node with the parent

resource agent
7. Send all the result back to the parent resource agent

For more detail information about the remote probing, please read section X of
this document.

VIII. Resource Distribution
This section briefly describes how the commander agent distribution the remote computing
resource to sentinel and bookkeeper agent.

When the Commander agent was started by the user, two pieces of information pass to its
constructor. Those two pieces of information are number of computer nodes required and
number of backup multiplier. If the number of nodes required is 2, which mean 2 pair of
sentinel and bookkeeper agents (totally 4 agents S0, S1, B0, B1) will be spawned to the
remote computing nodes. For example, if the backup multiplier is 1, then the resource agent
will return 2 remote computing node IP name to the commander agent. In this case, Sentinel
agent S0 share a computing node with Bookkeeper agent B1 and Sentinel agent S1 share a
computing node with Bookkeeper agent B0. For example, if the backup multiplier is 3, then
the resource agent will return 6 remote computing node IP name to the commander agent. In
this situation, each sentinel agent and bookkeeper use a single computing node. The
reminding two computing nodes are used for backup purpose in case of any computing node
suddenly offline.

Please note that the commander agent only accept 1, 1.5, 2, 3 or any integer number bigger
than 3 as backup multiplier. If the multiplier is not an acceptable number, the default value 1
will be used. Also note that all excessive computing nodes will be used as backup purpose.

IX. Arguments for Commander Agent Constructor
Below is the content of the shell script “runtestnow.sh”. This section briefly describes how to
pass the arguments for commander agent by configuring the shell script.

A. The text highlighted in red
It is the class path.

B. The text highlighted in bright green
It is the arguments for UWInject. For more information about UWInject, please read
Professor Fukuda’s UWAgent User’s Manual version 1.01
http://depts.washington.edu/dslab/AgentTeamwork/doc/uwagent.pdf .

C. The text highlighted in blue
It is the resource query requirement of the user application. It starts with RQ_ for commander
agent to identify. It will pass to resource agent to generate an xPath XML query to query the
local database to find the best fit remote computing nodes for the user application. The

java -classpath
/home/uwagent/mpiJava/lib/classes:/home/uwagent/MA/benchmark
/MPJv1.0:/home/uwagent/eXist/exist.jar:/home/uwagent/eXist/l
ib/core/xmldb.jar:/home/uwagent/eXist/lib/core/resolver-2003
0708.jar:/home/uwagent/eXist/lib/core/jakarta-oro-2.0.6.jar:
/home/uwagent/eXist/lib/core/antlr.jar:/home/uwagent/eXist/l
ib/core/xmlrpc-1.2.jar:/home/uwagent/eXist/lib/core/commons-
pool-1.1.jar:/home/uwagent/eXist/lib/endorsed/xerces-2.6.1.j
ar:/home/uwagent/eXist/lib/endorsed/xalan-2.5.2.jar:/home/uw
agent/eXist/lib/endorsed/xml-apis.jar:/home/uwagent/eXist/li
b/core/log4j.jar:/home/uwagent/eXist/commons-httpclient-2.0.
2/commons-httpclient-2.0.2.jar:/home/uwagent/eXist/commons-n
et-1.3.0/commons-net-1.3.0.jar:/home/uwagent/enoch/UWAgent/U
WAgent.jar:/home/uwagent/enoch/GridTcp/GridTcp.jar:/home/uwa
gent/enoch/agents:/home/uwagent/enoch/UWAgent:/home/uwagent/
eXist:/home/uwagent UWInject localhost CommanderAgent -u
"/home/uwagent/enoch/agents" -p UWPlace -n 20000 -c myClient -s
ResourceAgent\$RemoteRscProbeTask,SentinelAgent,BookkeeperAg
ent -m 100 -j agents.jar,Series.jar
RQ_cpuspeed_456_cpucount_1_memory_2_os_linux_disk_5_total_2_
time_110000_cpuarch_i386_cpuload_40_bandwidth_20 RN_3
RA_ftp.tripod.com_agentTeamWork_test_5_/home/uwagent/eXist
RC_ResourceAgent\$RemoteRscProbeTask U_Series_2_a_3 C_Timer

follow resource request options are permissible in the commander agent:

-ip Directly specify where a user wants to run his/her application.
-cpu_speed Specify the cpu speed in MHz.
-cpu_arch Specify the cpu architecture.
-cpu_count Specify how many cpus a user program needs.
-memory Specify how many MB a user program needs for memory.
-os Specify under which OS a user program must be executed.
-disk Specify how many MB a user program needs for temporary disk

storage.
-total Specify how many candidates the commander wants in an itinerary.
-cpuload Specify how many percentage of cpu idle a user program needs
-bandwidth Specify the MB bandwidth a user program needs
-time Specify at which time a user program will be executed. Time should be

given in the form of: 205534 (8:55pm 34second) or 0 (now).

D. The text highlighted in pink
This is the backup multiplier. It starts with RN_ for commander agent to identify.
Commander agent only accept the number of the option to be 1, 1.5, 2, 3, or any integer
number bigger than 3. Otherwise, default value 1 will be used. This option helps the
commander agent to determine how to distribute the remote computing resource to sentinel
and bookkeeper agent. And, it also helps the resource agent to determine how many remote
computing node IP name should return to commander agent. For more information, please
read section VIII of this document.

E. The text highlighted in orange
This is the argument for the resource agent constructor. It starts with RA_ for commander
agent to identify. This argument will pass to the resource agent by commander agent. Below
is the meaning of each argument.

ftp.tripod.com Specify the address of the FTP server
agentTeamWork Specify the user account of the FTP server
test Specify the password
5 Specify the probe frequency in minutes
/home/uwagent/eXist Specify the where the eXist database was installed

F. The text highlighted in sky blue
This is the list of sub class for the resource agent. It starts with RC_ for commander agent to
identify .Currently, resource agent only have one sub class
“ResourceAgent$RemoteRscProbeTask”. Please note that in Linux, “$” sign need to add a
“\” in front of it. Therefore, sub class “ResourceAgent$RemoteRscProbeTask” becomes
“ResourceAgent\$RemoteRscProbeTask”.

G. The text highlighted in violet
This is the user program’s class name and the following are the arguments for its constructor.
It starts with U_ for commander agent to identify

H. The text highlighted in brown
This is the class name which is needed by the user program. It starts with C_ for commander
agent to identify

X. Probing Remote Computing Node

A. Child Resource Agent
Above is the overview diagram of how resource agent performs periodic remote probing.
When the resource agent performs remote probing, it spawns child resource agents which
running in remote probing mode (see section VII A for more information). If the parent
resource agent needs to probe 3 remote computers, then 3 child resource agent will be
spawned. The child resource agent will migrate automatically to the corresponding remote
computing node. A series of test, including OS type, memory size, CPU idle, disk space, and
bandwidth, will perform in the remote computers. Then, the result will send back to the
parent resource agent.

B. Bandwidth Test
The bandwidth test need to specially handle because inaccurate result will be generated when
all child resource agent attempt to connect to parent resource agent to perform bandwidth test
at the same time. Thus, create a bottleneck to the network. In order to get an accurate
bandwidth test result, only one child resource agent can perform bandwidth test at the same
time. A Bandwidth Test scheduler Thread was added to the parent Resource Agent. Before
the child resource agent performs the bandwidth test, it has to send a Test Request Message
to the Parent resource agent. The parent resource agent will store all the Test Request
Messages into a queue. Then, the Bandwidth Test Scheduler Thread will dequeue the first
Request Message from the queue and send a Ready Message to the corresponding child
resource agent. The Bandwidth Test Scheduler Thread will wait and not send out any Ready
Message until the corresponding child send in the Remote Probing Results. In order to
prevent deadlock, the Bandwidth Test Scheduler Thread will send out another Ready
Message if a child cannot return the Remote Probing Result within the timeout period.

XI. Appendix
The following is a list of resources that are useful for the development of resource agent.

1. eXist Home Page
http://exist.sourceforge.net/

2. eXist API Specification
http://exist.sourceforge.net/api/

3. xPath tutorial
http://www.w3schools.com/xpath/default.asp

4. xUpdate tutorial

http://www.xmldatabases.org/projects/XUpdate-UseCases/
http://xmldb-org.sourceforge.net/xupdate/xupdate-wd.html

