

A Development of Resource/Commander Agents Used

in AgentTeamwork Grid Computing Middleware

Inter-mediate Report

Enoch Mak
Professor Munehiro Fukuda

CSS497 Faculty Research Internship
March 17, 2005

I. Introduction
The UWB Distributed Systems Laboratory has been developing the AgentTeamwork grid
computing middleware that dispatches mobile agents to coordinate an execution of a user
application over remote computers. UWAgent and UWPlace, the mobile agent execution
engine, have been implemented, so that mobile agents are able to migrate over Internet and
keep running on a different machine. There are four types of mobile agents, commander,
resource, sentinel, and bookkeeper agents. All of them are extended from the UWAgent class.
The resource agent is responsible to access a central ftp server, downloads new resource
XML files from it, maintains these files in it eXist database, returns a list of remote
computers to its commander agent, and periodically checks the status of all remote computer
nodes which are enumerated in the local database.

In this project, I will complete the first version of resource agent and enhance the commander
agent which can communicate with resource agent by exchanging messages. The
development will be performed in parallel for the resource and commander agents.

II. Progress
The project consists of seven phases. I have to finish all these phases in two quarters. The
projector schedule is shown in the table below. Under the help and supervision of Professor
Fukuda, the project has been running smoothly. I have finished the scheduled first four
phases of the project. Up to now, the resource agent and commander agent have been ported
to the medusa cluster. The resource agent is able to access the local eXist database through
the XCollection class which is eXist interfacing class. The round trip communication
between commander agent and resource agent has been successfully implemented. In the
other words, the resource agent can return a list of available computer ip name upon the
request from the commander agent. Furthermore, the resource agent is able to periodically
check and update the status of all remote computer nodes which are enumerated in the local
database.

Project Schedule Table
Qtr Week Work Items
Wi 1 Phase 0: Understand Shane’s work and port it to medusa.
Wi 2 Phase 0: Complete Phase 0 and verify the correctness.
Wi 3 Phase 1: Implement an Xcollection.java that is a general eXist-interfacing class.
Wi 4 Phase 1: Complete Phase 1 and verify the correctness.
Wi 5 Phase 2: Implement a round-trip communication from commander to resource.
Wi 6 Phase 2:
Wi 7 Phase 2: Complete Phase 2 and verify the correctness.
Wi 8 Phase 3: Add periodic-probing code to the resource agent.
Wi 9 Phase 3:
Wi 10 Phase 3: Complete Phase 3 and veriy the correctness.
Wi 11 Inter-mediate report and demonstration
Sp 1 Phase 4: Merge your code into the latest version of AgentTeamwrok.
Sp 2 Phase 4:
Sp 3 Phase 4: Complete Phase 4 and verify the correctness.
Sp 4 Phase 5: Allow multiple resource agents to share an eXist DB
Sp 5 Phase 5:
Sp 6 Phase 5:
Sp 7 Phase 5: Complete Phase 5 and verify the correctness.
Sp 8 Phase 6:
Sp 9 Phase 6:
Sp 10 Phase 6:
Sp 11 Final report and demonstration

III. Implementation Diagram
A. AgentTeamwork Startup

Local host

UWPlace

UWInject

Commander
Agent

Commander
Agent

Resource
Agent

Spawn

Inject

XCollection

eXist Step 1

Step 2

Step 3

Step 4

Initial

FTP

Server

Check for
Update

Get updated
xml files

Step 5

Step 6

Insert new
xml files Step 7

B. Round-trip communication of CommanderAgent and ResourceAgent

Local host

UWPlace

Commander
Agent

Resource
Agent

Send UWMessage

ask for resource

XCollection

eXist

Step 1

Step 3

Step 2

Do query
Available
resource

Step 4

Do query

Send UWMessage to

reply resource request

Step 5

Bookkeeper
Agent

Sentinel
Agent

Spawn Spawn
Step 6

Step 7

C. Periodic-probing of ResourceAgent

Local host

UWPlace

Resource
Agent

Spawn

Send result back by
UWMessage

Resource
Agent

Step 1

Step 2

Step 3

Step 4

hop

Perform
Tests

Step 5

Resource
Agent

eXist
Diskbase

Update XML file

Remote Host

UWPlace

IV. ResourceAgent API
The following section is the Application Programming Interface of the ResourceAgent class.

Data Members
Member: private Hashtable rscArgsTable;
Description: contain the types of ResourceAgent args for contstuctor

Member: private int numRqdArgs = 5
Description: number of required args for ResourceAgent constructor

Member: private transient XCollection localDataBase = null
Description: An instance of the XCollection database

Member: String rsc_Collection_Name = "resources"
Description: Name of Resource Collection

Member: private boolean isReadyQuery = false
Description: Status of "resources" database Collection, does it ready to perform

query

Member: private FTPClient ftp
Description: An instance of the Ftp client

Member: private boolean isConnectedToFTPServer = false
Description: True if the ftp client is connected to Ftp Server

Member: private String rscXMLDir = "ResourceXML"
Description: Name of the directory in FTP server where all resource xml files are

located

Member: private long FTPTimeOffset
Description: Time zone difference between FTP server and local machine

Member: private Timer probeTaskTimer
Description: A timer instance which can schedule the ResourceAgent periodic

probing task

Member: private boolean isPerformTest = false
Description: Determine this resourceAgent thread is for remote probing(or

so-called “perform test” mode) or not

Member: private String PerformTestHostName
Description: The ip Name of the targeting computer node.

(only if this thread is for remote probing or so-called “perform test”
mode)

Member: private Vector allRemoteNode = null
Description: All remote host name to perform periodic probing

Member: private Process ttcpServerProcess = null
Description: Sub-process for ttcp Server(for bandwidth testing)

Member: private List childAgentIds = new ArrayList()
Description: All ResourceAgent's child Ids

Member: private transient Thread receiveMessageThread = null
Description: Receive message sub-thread

Member: private transient volatile boolean receiveMessageThreadContinue
Description: Continue the receive message sub-thread or not

Member: private transient volatile boolean main_thread_cont
Description: determine main thread continue or not

Methods
Function: ResourceAgent(String[] args)
Description: ResourceAgent is launched with this constructor in general. It receives

an array of String arguments which serves in two main purposes. The
first purpose is to determine this ResourceAgent thread is a "regular"
ResourceAgent or a "Perform test" ResourceAgent which will be
migrated to remote computer node to perform tests. The second
purpose is to provide some information from the user for starting the
resourceAgent.

Arguments: args: this String array incluldes the following options and
corresponding arguments. If the args[0] is equal to "PerformTest" and
args length is 2, which mean the resourceAgent is in "Perform
test"(remote probing) mode, args[1] should contain the host name of
the targeting remote computer node. If resourceAgent is in "regular"
mode, then the args should contain all corrresponding informations
which is stated in getAllConstrArgs() method.

Calls: getAllConstrArgs()
Called by: none
Return: none

Function: getAllConstrArgs(String[] args)
Description: This function will put the resource args into a hashtable.
Arguments: args: array containing all the resource requirements for this task
Calls: getAllConstrArgs()
Called by: ResourceAgent(String[] args)
Return: none

Function: usage(String errMes)
Description: Print how to launch a resource agent.
Arguments: args: String message need to print out
Calls: none
Called by: ResourceAgent(String[] args)
Return: none

Function: init ()
Description: This is the first fuction executed after a resource agent is constructed.

In "perform testing" mode: print out my identity, migrate to the
targeting computer node to perform "performTest" method. In
"regular" mode: print out my identity, start the receive message thread,
initialize the local database, call the "mainMethod" method

Arguments: none
Calls: initDB(), mainMethod();
Called by: N/A
Return: none

Function: initDB()
Description: This fuction init the local data through the XCollection class.
Arguments: none
Calls: XCollection.initCollection()
Called by: init()
Return: none

Function: fatalError()
Description: Print an error message with the "Resource: " header and exit the

program.
Arguments: args: String error message need to print out
Calls: none
Called by: N/A
Return: none

Function: run()
Description: All new threads initially call this function, however each of them is

eventually dispatched and dedicated to a different function.
Arguments: none
Calls: awaitInstruction ()
Called by: init()
Return: none

Function: awaitInstruction()
Description: This fuction is called by the receiveMessage sub-thread to keep

checking for new message/instruction from other uwagent.
Arguments: none
Calls: respondToMessage ()
Called by: run()
Return: none

Function: respondToMessage()
Description: This fuction is called by the awaitInstruction method to respond to

different message.
Arguments: message: A UWMessage to response to
Calls: isReadyForQuery(), replyResourcesNeededRequest(),

updateRemoteNodeCurrentStatus(), killAgentMessage()
Called by: awaitInstruction ()
Return: none

Function: updateRemoteNodeCurrentStatus ()
Description: This fuction is call by the respondToMessage method after remote

probing result is returnd from child by UWMessage. The resultare
used to update the local database

Arguments: message a UWMessage contain the result from remote computer node
Calls: XCollection.query (), XCollection.update()
Called by: respondToMessage ()
Return: none

Function: xUpdateStatementGenerator ()
Description: This fuction is called by the updateRemoteNodeCurrentStatus method

to generate a xUpdate statement according to the args .
Arguments: remoteNodeName: The remote computer node ipName

xmlElement: The element in the xml file should be updated to.
Value: The xmlElement should be updated by this value.

Calls: none
Called by: updateRemoteNodeCurrentStatus ()
Return: String: a xUpdate statement

Function: replyResourcesNeededRequest()
Description: This function is called by the respondToMessage method after

received a "ResourcesNeedRequest" message from another agent
(Mostly CommandAgent). This function will call other function to do
a query in the local database and return the result by uwmessage.

Arguments: message: a message contain the resource requirement
Calls: queryForIpName ()
Called by: respondToMessage ()
Return: none

Function: queryForIpName()
Description: This function is called by the replyResourcesNeededRequest method

after received a "ResourcesNeedRequest" message from another
agent(Mostly CommandAgent). This function will query the local
database and return the results (ipName) in a vector.

Arguments: message: a message contain the resource requirement
Calls: XCollection.query(), checkIpNameTimeSlot()
Called by: replyResourcesNeededRequest ()
Return: Vector: a list of ipName which is available

Function: checkIpNameTimeSlot ()
Description: This function is called by the queryForIpName method after received

a "ResourcesNeedRequest" message from another agent (Mostly
CommandAgent). This function will query the local database to check
if the computer node(ipName) is available in the specified
time(executeTime)

Arguments: ipName: the remote computer node this function is going to check
executeTime: time to execute the program

Calls: XCollection.query ()
Called by: queryForIpName ()
Return: Boolean: if the specified executeTime is fall into any time slot or not

Function: MainMethod ()
Description: Is executed by the main thread. An return from mainMethod means a

successful termination of this commander agent.
This main thread takes care here of: update the local database from the
ftp server, start the ttcp server for bandwidth test, start the periodic
probing, Waiting for the commanderAgent to send end instruction,
Stopping all sub threads, Stopping the ttcp server

Arguments: none
Calls: updateDB (), startTtcpServer(), scheduleProbingTasks(),

stopSubThreads(), stopTtcpServer()
Called by: init ()
Return: none

Function: stopSubThreads()
Description: Is called by mainMethod() at its end. This method terminates all sub

threads.
Arguments: none
Calls: receiveMessageThreadStop()
Called by: mainMethod()
Return: none

Function: receiveMessageThreadStop ()
Description: Is called by stopSubThreads(). This method terminates the receive

message thread
Arguments: none
Calls: restartThread ()
Called by: stopSubThreads ()
Return: none

Function: updateDB ()
Description: This function is call by the mainMethod method. This function will

doing the following: Call connectToFTPServer method to connect to
ftp server, Call getResourcesListFromFTPServer method to get the
file, listing in the FTP server directory, Call
getResourcesListFromDatabase method to get the file listing of all
XML resources in the local database, Call
downLoadXMLResourcesFromFTPServer method to download new

xml file from the ftp server and update the local database, return
whether all operations are successfully performed or not

Arguments: none
Calls: connectToFTPServer (), getResourcesListFromFTPServer (),

getResourcesListFromDatabase (),
downLoadXMLResourcesFromFTPServer ()

Called by: mainMethod ()
Return: Boolean: return whether all operations are successfully performed or

not

Function: connectToFTPServer ()
Description: This function is call by the updateDB method. This function will

doing the following: Start the ftp client, connect to the ftp server, login
to the ftp server, if succeed, enable passive mode, call
getFTPServerTimeOffset method to compute the time(timezone)
difference between the ftp server and the local database, if not
succeed, discount to the ftp server

Arguments: none
Calls: FTPclient.connect(), FTPclient.login(), FTPclient.getreplycode(),

FTPclient.disconnect(), FTPclient.enterLocalPassiveMode(),
getFTPServerTimeOffset()

Called by: updateDB ()
Return: Boolean: successfully connected to ftp server or not

Function: getFTPServerTimeOffset()
Description: This function is called by the connectToFTPServer method. This

function compute the time offset between the local database and the
ftp server

Arguments: none
Calls: FTPclient.storeFile(), FTPclient.listFiles(), FTPclient.deleteFile()
Called by: connectToFTPServer ()
Return: long: the time offset between the local database and the ftp server

Function: getResourcesListFromFTPServer ()
Description: This function is called by the updateDB method. This function will get

xml file list from the ftp server
Arguments: none
Calls: FTPclient.listFile()
Called by: updateDB ()
Return: FTPFile : xml file list in the ftp server

Function: getResourcesListFromDatabase ()
Description: This fuction is called by the updateDB method. This function will get

xml file list from the local database
Arguments: none
Calls: XCollection.getResourceList()
Called by: updateDB ()
Return: Vector : xml file list from the local database

Function: downLoadXMLResourcesFromFTPServer ()
Description: This fuction is call by the updateDB method. This function will doing

the following: check the timestamp of each file in the ftp listing,
Update the local database if the file is not exist in the database or the
file in the ftp server is more update

Arguments: ftpRscXMLFilesList: xml file list in the ftp server
dbRscXMLFilesList: xml file list from the local database

Calls: XCollection.GetFileLastModDate(),
addResourceFromFtpServerToDB()

Called by: updateDB ()
Return: Boolean: successfully perform the operation or not

Function: addResourceFromFtpServerToDB ()
Description: This function is called by the

downLoadXMLResourcesFromFTPServer method. This function will
download the specified file from the ftp server and insert to the local
database.

Arguments: ftpResourceFile: file name to specify which file to download

Calls: FTPclient.retrieveFile(), XCollection.insert()
Called by: downLoadXMLResourcesFromFTPServer ()

Return: none

Function: killAgentMessage()
Description: This fuction is call by the respondToMessage method after receive the

“kill_agent" message from other agent(mostly commanderAgent).
This function will Send end message to all the child agents, Stop the
mainMethod while loop

Arguments: Message: "kill_agent" message received from other agent
Calls: AgentUtil.sendEndMessage()
Called by: respondToMessage()
Return: none

Function: scheduleProbingTasks()
Description: This fuction is call by the mainMethod method. This function will

start the schedule Probing tasks timer, and schedule the probing test by
the user specified value

Arguments: none
Calls: Timer.schedule()
Called by: mainMethod()
Return: none

Function: performTest()
Description: This fuction is called by the Init method when the resourceAgent is in

"perform test" mode and located in remote computer node. This
function will call findOsType method and put the result in the
hashtable, call findMemSize method and put the result in the
hashtable, call findCPULoad method and put the result in the
hashtable, call findDiskSize method and put the result in the
hashtable, call findBandwidth method and put the result in the
hashtable, Send the hashtable in a "remote_node_run_time_stats"
message to the Parent resourceAgent

Arguments: none
Calls: findOsType(), findMemSize(), findCPULoad(), findDiskSize(),

findBandwidth()
Called by: init()

Return: none

Function: findMemSize()
Description: This function is called by the performTest method when the

resourceAgent is in "perform test" mode and located in remote
computer node. This function will find out the memory size of the
computer node

Arguments: none
Calls: Runtime.getRuntime()
Called by: performTest()
Return: String: memory size

Function: findDiskSize()
Description: This function is called by the performTest method when the

resourceAgent is in "perform test" mode and located in remote
computer node. This function will find out the disk size of the
computer node

Arguments: none
Calls: Runtime.getRuntime()
Called by: performTest()
Return: String: disk size

Function: findOsType()
Description: This function is called by the performTest method when the

resourceAgent is in "perform test" mode and located in remote
computer node. This function will find out the OS type of the
computer node

Arguments: none
Calls: System.getProperty()
Called by: performTest()
Return: String: os type

Function: findCPULoad()
Description: This function is called by the performTest method when the

resourceAgent is in "perform test" mode and located in remote

computer node. This function will find out the CPU load of the
computer node

Arguments: none
Calls: Runtime.getRuntime()
Called by: performTest()
Return: String: CPU load

Function: findBandwidth()
Description: This function is called by the performTest method when the

resourceAgent is in "perform test" mode and located in remote
computer node. This function will find out the bandwidth of the
computer node

Arguments: none
Calls: Runtime.getRuntime()
Called by: performTest()
Return: String: bandwidth

Function: startTtcpServer()
Description: This function is called by the mainMethod method. This function will

execute the ttcp server for bandwidth test
Arguments: none
Calls: Runtime.getRuntime()
Called by: mainMethod()
Return: none

Function: stopTtcpServer()
Description: This function is called by the mainMethod method. This function will

destroy the ttcp server
Arguments: none
Calls: None
Called by: mainMethod ()
Return: none

V. XCollection API
The following section is the Application Programming Interface of the XCollection class.

Data Members
Member: private String db_Driver = "org.exist.xmldb.DatabaseImpl";
Description: The driver of the local eXist database

Member: private String root_URI = "xmldb:exist:///db/";
Description: The location of the root URI of the local database

Member: private String userName = "admin";
Description: The user name of the local database

Member: private String pswd = "";
Description: The password for the local database

Member: private Collection root_Col = null;
Description: A collection instance which is the root collection

Member: private Hashtable col_Table = null;
Description: A Hashtable instance to store all the Collections in the database. This

implementation allow the local database to have more than one
collections at the same time.

Member: private Collection current_Col = null;
Description: Store which collection is currently working on

Member: private String current_Col_Name = null;
Description: Store the collection name which is currently working on

Methods

Function: XCollection(String p_DataBase_Home_Dir)
Description: The constructor will start the exist XML:DB database if both

appropriate and necessary (If there is a exist database on the current
host machine and if the exist database has not already been started.)

Arguments: p_DataBase_Home_Dir: this String is used to set the system property
Calls: none
Called by: none
Return: none

Function: initCollection
Description: This function will create a collection specified by the String

p_Collection_Name, if a collection does not exist. It will also open a
connection to the collection specified by the String
p_Collection_Name parameter, if a connection does not already exist.
The new collection will store in the hash table, the
p_COllection_Name will become the key of this collection. The
current_Col will point to this new collection. The current_Col_Name
will store the current collection name

Arguments: p_Collection_Name: a string which store the collection name
Calls: shutdown()
Called by: N/A
Return: none

Function: switchCurrentCollection
Description: This function will check if the collection specified by the String

p_Collection_Name is initialized and existed in the hashtable. If so, it
will make the current_Col point to that collection, the
current_Col_Name will be updated to that collection name and return
true; If the collection specified in p_Collection_Name is not initialized
and not existed in the hashtable, it will return false.

Arguments: p_Collection_Name: a string which store the collection name
Calls: none
Called by: N/A

Return: Successfully switch the collection or not

Function: insert
Description: function to insert a new xml document to specified collection in the

database
Arguments: element: the path to the new document

p_Collection_Name: a string which store the collection name
Calls: none
Called by: N/A
Return: none

Function: query
Description: searching for specific data specified by "xpath" in each XML file in

the specified collection.

Arguments: xpath: this String is the xPath statement
p_Collection_Name: a string which store the collection name

Calls: none
Called by: N/A
Return: Vector: query result

Function: update
Description: Update the selected collection with the xUpdate statement provided
Arguments: xUpdate: this String is the xUpdate statement

p_Collection_Name: a string which store the collection name
Calls: none
Called by: N/A
Return: Long: the number of nodes being updated

Function: delete
Description: delete a xml file specified by the input 'element' from the specified

collection
Arguments: element: the path to the document

p_Collection_Name: a string which store the collection name
Calls: none

Called by: N/A
Return: true if remove the file from the db successfully, false otherwise

Function: retrieve
Description: function to retrieve a desired xml file from the database
Arguments: element: the path to the document

p_Collection_Name: a string which store the collection name
Calls: none
Called by: N/A
Return: String: the content of the file if found, error msg otherwise

Function: getResourceList
Description: function to retrieve a Resource list from a collection
Arguments: p_Collection_Name: a string which store the collection name
Calls: none
Called by: N/A
Return: Vector: resource file list of the specified collection

Function: GetFileLastModDate
Description: function to retrieve the last modify date of a specify file(resource) in a

collection
Arguments: element: the path to the document

p_Collection_Name: a string which store the collection name
Calls: none
Called by: N/A
Return: Date: the timestamp of the file

Function: shutDown
Description: Shutdown current collection
Arguments: none
Calls: none
Called by: initCollection()
Return: none

VI. XML Database (eXist)
This section describes how eXist, open source native XML, database is used in this project.
For further information about eXist, please refer to the Appendix section.

A. eXist as an embedded instance

Currently, the eXist database is implemented as an embedded instance in the XCollection
Class. It equips with the following features:
1. Create and remove collections
2. Retrieve, store, remove and query XML files
3. Allows multiple collections exist at the same time.

B. The eXist database can be query and update by using xPath and xUpdate language
respectively. The tutorial for xPath and xUpdate language can be found in the Appendix
section.

VII. Files Description
This section briefly describes all files which are related to this project. Since I spent a lot of
time to start this project, I think it is a good idea to document every single file that I have
been used or updated.

Files Description
File Name: ResourceAgent.java
Location: /home/uwagent/enoch/UWAgent
Description: This is the source file of the ResourceAgent

File Name: XCollection.java
Location: /home/uwagent/enoch/UWAgent
Description: This is the source file of the XCollection class

File Name: CommanderAgent.java
Location: /home/uwagent/enoch/agents
Description: This is the source file of the CommanderAgent

File Name: cr.sh
Location: /home/uwagent/enoch/UWAgent
Description: This is the shell script to compile the ResourceAgent, all the necessary

classpaths for compilation are included in this script. After the
compilation, the file ResourceAgent$RemoteRscProbeTask.class will
be copy to /home/uwagent/enoch/agents for CommanderAgent.

File Name: cx.sh
Location: /home/uwagent/enoch/UWAgent
Description: This is the shell script to compile the XCollection, all the necessary

classpaths for compilation are included in this script

File Name: cc.sh
Location: /home/uwagent/enoch/agents
Description: This is the shell script to compile the CommanderAgent, all the

necessary classpaths for compilation are included in this script

File Name: run.sh
Location: /home/uwagent/enoch/UWAgent
Description: This is the shell script to start the RMI server and UWPlace. A port

number need to be provided when running this script file. For
example, “run.sh 35353”

File Name: runittry.sh
Location: /home/uwagent/enoch/UWAgent
Description: This is the shell script to inject the CommanderAgent and start the

ResourceAgent

File Name: ResourceAgent$RemoteRscProbeTask.class
Location: /home/uwagent/enoch/agents
Description: This is the sub class of ResourceAgent. In order to start the

AgentTeamwork correctly, this file should be resided in the same
directory with CommanderAgent.

File Name: ttcp
Location: /home/uwagent/enoch/UWAgent and /home/uwagent/enoch/agents
Description: This is the ttcp program for the ResourceAgent to run the bandwidth

testing.

File Name: eXist database directory
Location: /home/uwagent/eXist/webapp/WEB-INF/data
Description: This is the directory which eXist store all the xml file.

File Name: mnode0.xml – mnode7.xml
Location: ftp://agentTeamWork:test@ftp.tripod.com/ResourceXML
Description: All the xml files are located in the ftp server

VIII. Starting AgentTeamWork
This section describes the steps to start the AgentTeamwork.

A. Two easy steps to start AgentTeamwork by using the shell scripts:

1. Starting the RMI Server and UWPlace
Use the shell script run.sh to start the RMI Server and UWPlace. Simply just type in

the shell script and the port number. For example, I want to start the RMI Server with
port 35353:

run.sh 35353

2. Injecting the CommanderAgent
Use the shell script runittry.sh to injecting the CommanderAgent. Just type in the
script name like below:

runittry.sh

B. Start AgentTeamwork manually without using the shell scripts:
1. Setting CLASSPATH

The environment variable need to be set correctly otherwise many compile time and
run time errors might be occurred. You can either update the environment variable
setting or use the –classpath option when you start the java virtual machine. Below is
a list of all necessary CLASSPATH to launch AgentTeamwork.

–classpath
/home/uwagent/mpiJava/lib/classes:/home/uwagent/MA/benchmark/MPJv1.0:/home/
uwagent/eXist/exist.jar:/home/uwagent/eXist/lib/core/xmldb.jar:/home/uwagent/eXist/
lib/core/resolver-20030708.jar:/home/uwagent/eXist/lib/core/jakarta-oro-2.0.6.jar:/h
ome/uwagent/eXist/lib/core/antlr.jar:/home/uwagent/eXist/lib/core/xmlrpc-1.2.jar:/ho
me/uwagent/eXist/lib/core/commons-pool-1.1.jar:/home/uwagent/eXist/lib/endorsed/x
erces-2.6.1.jar:/home/uwagent/eXist/lib/endorsed/xalan-2.5.2.jar:/home/uwagent/eXi
st/lib/endorsed/xml-apis.jar:/home/uwagent/eXist/lib/core/log4j.jar:/home/uwagent/e
Xist/commons-httpclient-2.0.2/commons-httpclient-2.0.2.jar:/home/uwagent/eXist/co
mmons-net-1.3.0/commons-net-1.3.0.jar:/home/uwagent/enoch/UWAgent/UWAgent.ja
r:/home/uwagent/enoch/GridTcp/GridTcp.jar:/home/uwagent/enoch/agents:/home/uw

agent/enoch/UWAgent:/home/uwagent/eXist:/home/uwagent

2. Starting the RMI Server

Start the RMI server by typing the follow command, 35353 is the port number to run
the server:

rmiregistry 35353 &

3. Starting the UWPlace
Starting the UWPlace by simply type in the command below (assume that the
environment variables have been set correctly):

java UWPlace&

4. Injecting the CommanderAgent by type in the command below (assume that the
environment variables have been set correctly):

java UWInject localhost CommanderAgent -u "/home/uwagent/enoch/agents" -p

UWPlace -n 35353 -c myClient -s ResourceAgent\$RemoteRscProbeTask -m 100
RQ_ip_10.1.0.0_ip_10.1.0.1_ip_10.1.0.2_ip_10.1.0.3_cpuspeed_456_cpucount_5
_memory_45_os_linux_disk_45_total_2_time_180100_cpuarch_i386_cpuload_8
0_bandwidth_800
RA_ftp.tripod.com_agentTeamWork_test_1_/home/uwagent/eXist
RC_ResourceAgent\$RemoteRscProbeTask U_shane_arg1_arg2_arg3
C_class1_class2_class3

Please refer to Professor Fukuda’s UWAgents User’s Manual for more detail about
the original arguments of CommanderAgent. The updated arguments are shown in the
following table.

Updated arguments of CommanderAgent
{S_ipname{[_ipname]}} A list of ip names to dispatch a sentinel agent.

If it is not given, a resource agent is responsible
to provide the commander with such a list.

{B_ipname{[_ipname]}} A list of ip names to dispatch a bookkeeper

agent. If it is not given, a resource agent is
responsible to provide the commander with
such a list.

{R_ipname}

An ip name to dispatch a resource agent. If it is
not given, a resource agent is launched at the
same computing node as the commander is
working.

{E_ipname{[_ipname]}}

A list of extra ip names to resume an agent
when one is crashed. If it is not given, a
resource agent is responsible to provide the
commander with such a list.

U_programName{[_argument]}

Expresses a user program name and its
arguments. This option is mandatory.
.

{C_classname{[_classname]}}

A list of classes accessed from and thus carried
with a user application.

{RA_argument{[_argument]}

A list of arguments passed to ResourceAgent

{RQ_option_parameter{[_option_parameter]}

A list of query option/paramter pairs.

{RC_argument{[_argument]

A list of classes passed to ResourceAgent

IX. Appendix
The following is a list of resources that are useful for the development of resource agent.

1. eXist Home Page
http://exist.sourceforge.net/

2. eXist API Specification
http://exist.sourceforge.net/api/

3. xPath tutorial
http://www.w3schools.com/xpath/default.asp

4. xUpdate tutorial

http://www.xmldatabases.org/projects/XUpdate-UseCases/
http://xmldb-org.sourceforge.net/xupdate/xupdate-wd.html

