

MPJ

Message Passing Interface
In Java for AgentTeamwork

Distributed Systems Laboratory
University of Washington, Bothell
Computing and Software Systems

Implemented By: Zhiji Huang
Debugged and Documented By: Etsuko Sano
Faculty Advisor: Munehiro Fukuda
March 17, 2006

TTaabbllee ooff CCoonntteennttss page

1. Introduction …………………………………………………… 1
2. Algorithm and Design ……………………………………....……. 2

2.1. AgentTeamwork ……………………………………………. 2
2.2. mpiJava – MPJ ……………………………………………. 3

2.2.1. mpiJava-S – Java Socket ……………………………………….. 3
2.2.2. mpiJava-A – GridTcp ………………………………………. 3

2.3. MPJ Architecture ……………………………………………. 4
2.3.1. Class Diagram ………………………………………………... 4
2.3.2. Data Type ……………………………………………. 5

2.3.2.1. Datatype ………………………………………………….. 5
2.3.2.2. Op ………………………………………………….. 5

2.4. Functions and Syntax ……….…………………………………… 6
2.4.1. MPJ ………………………………………………………... 6

2.4.1.1. Init() – Java Socket ………………………………………… 6
2.4.1.2. Init() – GridTcp ………………………………………… 7

2.4.2. Communicator [JavaComm & GridComm]……………… 7
2.4.2.1. Send() …………………………………………………. 7
2.4.2.2. Recv() …………………………………………………. 8
2.4.2.3. Pack() …………………………………………………. 8
2.4.2.4. Unpack() …………………………………………………. 8
2.4.2.5. Barrier() …………………………………………………. 9
2.4.2.6. Bcast() …………………………………………………. 9
2.4.2.7. Reduce() …………………………………………………. 9

2.4.3. Other Communication Algorithm …………………………… 10
2.4.3.1. Isend() …………………………………………………. 10
2.4.3.2. Irecv() …………………………………………………. 10
2.4.3.3. Gather() …………………………………………………. 10
2.4.3.4. Gatherv() …………………………………………………. 10
2.4.3.5. AllGather() …………………………………………………. 11
2.4.3.6. AllGatherv() …………………………………………………. 11
2.4.3.7. Scatter() …………………………………………………. 11
2.4.3.8. Scatterv() …………………………………………………. 11
2.4.3.9. AllToAll() …………………………………………………. 11
2.4.3.10. AllToAllv() …………………………………………………. 11
2.4.3.11. SetBufferSize() ………………………………………... 12

3. Initialization and Usage ……………………………………. 13
3.1. Initialization …………………………………………………... 13

3.1.1. MPJ ……………………………………………………….. 13
3.1.2. GridTcp ……………………………………………………….. 14

3.2. How to use …………………………………………………... 15
3.2.1. MPJ ……………………………………………………….. 15

3.2.1.1. Java Socket ………………………………………………… 15
3.2.1.2. mpjrun ………………………………………………… 16

3.2.2. GridTcp ………………………………………………………. 17
3.2.2.1. UserProgWrapper ………………………………………. 17

4. Performance Evaluation …………………………………… 18
4.1. PingPong Performance …………………………………………. 19

5. Summary and Known Bugs ………………………...…………. 23

 1

1. Introduction

MPI (Message Passing Interface) which is the original concepts of Message Passing Java
(MPJ) supports communications for distributed programs. It allows programmers to create
an environment with parallel programming and shared memory. MPI is able to use some
programming languages, FORTRAN, C/C++, and Java, for the implementations. The
current implementations in Java (mpiJava) are actually Java wrappers around native C code.
However, it has some disadvantages with the portability and is not suitable to the concept of
AgentTeamwork [Refer to 2.1.1.]. In other words, the original MPI has no check-pointing
feature.

Therefore, the AgentTeamwork project has developed its own version of Message Passing
Java (MPJ) as a middleware between the user program and various communications
protocols. Currently, MPJ supports GridTcp sockets as well as Java sockets. The objective
is to provide a set of communication functionalities supporting distributed computing. The
most remarkable function in MPJ is a snapshot algorithm. It will take snapshots using some
computer nodes over the Internet during the operations.

This report describes the design, implementation, and performance results of the project.

P0 P1

P2 P3

User
Program.
SPMD

MPI

Figure1: The MPI data flow as a distributed program

 2

2. Algorithm and Design

2.1. AgentTeamwork
MPJ is used on top of the AgentTeamwork system. The UWB Distributed Systems
Laboratory has been developing the AgentTeamwork grid-computing middleware.
AgentTeamwork coordinates remote grid-computing jobs using mobile agents. A
user requests AgentTeamwork for some computing nodes. AgentTeamwork manages
the resources for better performance and fault tolerance automatically.

A mobile agent is assigned to each process and moves to a low-loading machine. It
also monitors each process and takes its periodical execution snapshot supported by
user program wrapper and GridTcp. If a machine is crashed, the agent recovers the
system with the latest snapshot. Thus the system can restore broken processes
involved in the same job. The key feature in MPJ is to allow those agents to migrate
or to resume a user program to a new idle computer if their current computer are
overloaded or even powered off.

AgentTeamwork

Figure2: The basic concept of AgentTeamwork

Figure3: AgentTeamwork Snapshot Algorithm

 3

2.2. MPJ

Table1 shows the main structure of AgentTeamwork and MPJ:

AgentTeamwork’s MPJ distinguishes two different sockets. One is mpiJavaSocket
[mpiJava-S] using a regular Java Socket, and the other is mpiJavaAteam [mpiJava-A]
that uses a check-pointing error-recoverable GridTcp Socket for the message passing.

2.2.1. mpiJava-S – Java Socket

mpiJava-S uses the regular Java Socket to implement MPJ functions. For
convenience, there is a class which automatically opens SSH windows, executes
commands, and creates processes at once. The class is called mpjrun and helps
less typing for command executions.

2.2.2. mpiJava-A – GridTcp
mpiJava-A extends TCP by adding message-saving and check-pointing features.
It automatically saves messages and performs a checkpoint (or takes a snapshot)
of a program execution. It allows programs to recover from errors, if their
current computing node crashes.

User Applications in Java
mpiJava MPJ API

mpjrun User Program Wrapper
mpiJavaSocket mpiJavaAteam

GridTcp
Java Socket

Java Socket
AgentTeamwork

Java Virtual Machine
Operating Systems

Hardware
Table1: Regular MPI and the main frame of MPJ Project

 4

2.3. MPJ Architecture

2.3.1. Class Diagram
The major classes shown in Diagram1 are the implemented classes of MPJ.

MPJ is the main application. It contains a communicator of either JavaComm or
GridComm, depending on the type of socket used. It also contains various data
types supported by MPJ. In addition, MPJ provides initialization and finalization
methods for the network connections.

JavaComm and GridComm hold Java sockets and GridTcp sockets, respectively.
These two classes do not provide any major functionality other than maintaining
the input and output streams of their respective sockets.
Communicator is the class that provides the primary communications
capabilities of MPJ. As of the writing of this report, Communicator contains the
major functions like Send(), Recv(), Barrier(), Bcast(), Pack() and Unpack().

MPJMessage is a wrapper around each message received by the Recv()
functions. It holds the message’s status and the actual message itself.
The various Datatype subclasses provide serialization and deserialization of their
respective types for Communicator.
Various Operation classes are wrappers around operations that are implemented
in the Datatype subclasses.

MPJ

Datatypes

Communicator

JavaComm

GridComm

MPJMessage

Op

Other classes

2.2.2. MPJ Data Types

2.2.3. MPJ Operators

Diagram1: Class Hierarchy in MPJ

♦ UserProgWrapper

♦ mpjrun

 5

2.3.2. MPJ Data Types [Datatype]

Datatype has nine major data types and provides serialization and deserialization
services. In addition, each data type calls and implements Op functions inside
the class.

Data Type Description
MPJBool Boolean (true/false)
MPJByte Byte
MPJChar Character
MPJDouble Double
MPJFloat Float
MPJInt Integer
MPJObject Object
MPJShort Short

 Table2: Data types in MPJ

2.3.3. MPJ Operators [Op]

Op has 12 different operation types. Valid arguments for the op parameter are
the following:

Op Name Description
MPJBAND Bitwise And
MPJBOR Bitwise Or
MPJBXOR Bitwise Exclusive Or
MPJLAND Logical And
MPJLOR Logical Or
MPJLXOR Logical Exclusive Or
MPJMAXLOC Maximum and Location of Maximum
MPJMAX Maximum
MPJMINLOC Minimum and Location of Minimum
MPJMIN Minimum
MPJPROD Product
MPJSUM Sum

 Table3: Operators in MPJ

* MAX/MIN LOC operations require a DataLoc array as the root’s buffer.

 6

2.4. Functions and Syntax

2.4.1. MPJ
MPJ contains main MPI operations. Traditional Init(string[]) initializes Java
socket-based connections. Another Init(string[], IpTable, GridTcp) initializes
connections with GridTCP. It also provides Rank(), Size(), Finalize(), etc.

2.4.1.1. Init(String[] args): for Java Socket

This Init() function establishes all to all connections using Java sockets.
First, MPJ receives initialization commands such as rank, amslave,
master node, number of processes, etc. Such arguments are mainly
used to identify each process.

On the master process, Init() creates a ServerSocket and accepts
connections from slaves until the number of connections equals to the
number of processes. Following each connection, the master process
reads the connecting process’s rank and identifies each connection
with that rank, storing the rank-connection information in JavaComm.
Then, the master broadcasts the ranks and their corresponding
hostname to all slave processes. At this point, the master process’s
Init() is complete.

For the slave processes, they first connect to the master process, send
their rank, and then receive a table with other slaves’ ranks and their
hostnames. Once such information is exchanged with the master, the
slaves will connect with each other. First, all of the slaves except for
the highest ranking slave will create ServerSockets. Afterwards, the
lowest ranking slave will accept connections from higher ranking
slaves. The lowest ranking slave will then receive a rank from the
connection it received and update its rank connection table (much like
the master). When the lowest ranking slave has received all
connections, its Init() is complete. The second lowest ranking slave
then accepts connections from higher ranking slaves, and the process
repeats until the second highest ranking slave has accepted a
connection from the highest ranking slave, indicating all slaves are
connected to all other slaves. At this point, the Init() process is
complete for Java sockets.

 7

2.4.1.2. Init(String[] args, IpTableEntry[] ipTable, GridTcp):

 for GridTcp

This Init() function establishes all to all connections for GridTcp
sockets. The algorithm for this case is very similar to the Init() for Java
sockets (Section 2.4.1.1). However, the difference is that since the
UserProgWrapper of GridTcp pre-initializes an ipTable corresponding
to each of the hosts, all processes have already known each other. Thus,
the process simply utilizes the connection algorithm described in
Section 2.3.1.1 without distinguishing between the master and slaves
(and also no broadcast of rank-connection information by the master).
Each process simply connects to all lower ranking processes while
accepting connections from higher ranking processes.

2.4.2. Communicator [JavaComm & GridComm]

Communicator provides all communications functions. A basic communication
algorithm for MPJ is to receive and send messages between [or among] processes.
Point-to-point communication is one of the key mechanisms in MPJ. Blocking
communications such as Send(), IRecv() allow to . On the other hand, Isend()
and Recv() are used for NonBlocking communications. Collective
communications are able to carry out some operations over a group of processes.
Gather(), Scatter(), Reduce() are collective communication related functions.

Communicator class is extended by two classes: JavaComm and GridComm.
JavaComm is designed for communication using Java Sockets and SocketServers.
GridComm is for GridTcp Sockets and requires GridTcp object and IpTable.
Both JavaComm and GridComm allow socket communications using bytes and
need InputStreamForRank[] and OutputStreamForRank[] to accomplish the
connections. The interface between the two layers is clean and well-organized
since same communication algorithms can be used for both JavaSocket and
GridTcp Communications.

2.4.2.1. Send(Object[] buf, int offset, int count, Datatype type, int dest, int
tag) – Blocking Communication

The Send() function takes in various parameters describing the
datatype, the send count, the send buffer, the offset, the destination
rank, and the message tag. The send buffer must be an array. The
datatype is actually a Datatype object from MPJ, such as MPJ.SHORT.

 8

Before sending a message, the Send() function first creates a header
for the message, including the message’s type, size in bytes, count, and
the tag. Send() then serializes the message using the Datatype
specified in the function parameters, and writes the header along with
the serialized message to the output stream corresponding to the
destination rank.

2.4.2.2. Recv(Object[] buf, int offset, int count, Datatype type, int src, int

tag) – Blocking Communication

When a user calls the Recv() function, Recv() will perform a blocking
read operation on the input stream corresponding to the source rank.
First, Recv() reads 16 bytes of the message header and then reads the
rest of the body with respect to the size defined in the header. Then,
Recv() will deserialize the message using the correct Datatype. The
completed message is stored in an MPJMessage, which is then
checked against the parameters of Recv(). If the tag or datatype does
not match, the message is stored in a message queue, and Recv() will
read again for a new message.

If MPJ.ANY_SOURCE is specified, Recv() will poll each socket and
read from the first socket with available data, and then check the tag.

If MPJ.ANY_TAG is specified, then Recv() will return the message if
the datatype matches the parameter.

Recv() will crash if the count parameter is smaller than the actual
message’s count.

2.4.2.3. Pack(Object[] inbuf, int offset, int incount, Datatype type,
 byte[] outbuf, int position)

Pack() is similar to Send(). It uses the Datatype to serialize the
message into the provided output buffer, and then returns the updated
position. If the Datatype is an MPJ.OBJECT, each object is serialized
individually (rather than as a buffer), so they can be deserialized or
extracted individually.

2.4.2.4. Unpack(byte[] inbuf, int position, java.lang.Object outbuf, int

offset, int outcount, Datatype datatype)

Unpack() performs the opposite of the Pack() operation. It will
deserialize the input buffer into the output buffer using the
corresponding Datatype’s deserialize operation.

 9

2.4.2.5. Barrier()

Barrier() is simple. Rank 0 will receive a message from all other ranks
and broadcast another message once it has received from all other
ranks. Thus, each process is blocked until all processes have called
Barrier().

2.4.2.6. Bcast(Object[] buf, int offset, int count, Datatype type, int root)

Bcast() will broadcast the message specified in buffer from rank root
to all other processes. Bcast currently follows a tree-structured
algorithm, which reduces the number of send stages to log2(n). Such
an algorithm should be much better performance when broadcasting
large messages. Bcast() on the root process will send the buffer to all
other processes in the communicator, while the non-root processes will
receive.

2.4.2.7. Reduce()

Reduce() is a collective communication call, meaning all processes
within the communicator are involved. Reduce() will perform an
operation defined by the op parameter. Operations are done element-
wise on every send buffer, and the result is stored in the root’s buffer.

Example with MPJ.SUM as the operation:

send[0] send[1] send[2] send[3]
p0 1 2 3 4
p1 1 2 3 4
p2 1 2 3 4

recvbuf [0] = 3, [1] = 6, [2] = 9, [3] = 12

 10

2.4.3. Other Communication Functions

Other communications algorithms are compatible with the standard mpiJava.
All of these functions require an array as the input and output buffers (even
though the function prototype may just require an Object, this is type-casted into
an array of appropriate type later). Their documentation can be found at
http://www.hpjava.org/mpiJava.html. Please see online examples or the
provided example code on how to use the following functions:

2.4.3.1. Isend(Object buf, int offset, int count,
 Datatype type, int dest, int tag)

 Spawns a thread to send a message, like send()

2.4.3.2. Irecv(Object buf, int offset, int count,

 Datatype type, int src, int tag)

 Spawns a thread to recieve a message, like recv()

2.4.3.3. Gather(Object sendbuf, int sendoffset, int sendcount,
 Datatype sendtype, Object recvbuf, int recvoffset,
 int recvcount, Datatype recvtype, int root)

Gathers all data in the inbuffers at all the processes to the outbuf of the
root in rank order

2.4.3.4. Gatherv(Object sendbuf, Object sendbuf, int sendoffset,
 int sendcount, Datatype sendtype, Object recvbuf,
 int[] recvcounts, int[] displs, Datatype recvtype,
 int root)

Variation of Gather(), where different displaced input elements are
allowed

 11

2.4.3.5. AllGather(Object sendbuf, int sendoffset, int sendcount,
 Datatype sendtype, Object recvbuf, int recvoffset,
 int recvcount, Datatype recvtype)

 Like Gather(), but result of outbuf is sent to all processes

2.4.3.6. AllGatherv(Object sendbuf, int sendoffset, int sendcount,
 Datatype sendtype, Object recvbuf, int recvoffset,
 int[] recvcounts, int[] displs, Datatype recvtype)

 Like Gatherv(), but result of outbuf is sent to all processes

2.4.3.7. Scatter(Object sendbuf, int sendoffset, int sendcount,
 Datatype sendtype, Object recvbuf, int recvoffset,
 int recvcount, Datatype recvtype, int root)

Opposite of Gather(). Scatter the buffer on the root to all processes in
rank order

2.4.3.8. Scatterv(Object sendbuf, int sendoffset, int[] sendcounts,
 int[] displs, Datatype sendtype, Object recvbuf,
 int recvoffset, int recvcount, Datatype recvtype,
 int root)

Variation of Scatter() where differently displaced input elements are
allowed

2.4.3.9. AllToAll(Object sendbuf, int sendoffset, int sendcount,
 Datatype sendtype, Object recvbuf, int recvoffset,
 int recvcount, Datatype recvtype)

Sends each element of inbuf to the corresponding ranking process.
Does on all processes, and stores in rank order

2.4.3.10. AllToAllv(Object sendbuf, int sendoffset, int[] sendcount,
 int[] sdispls, Datatype sendtype, Object recvbuf,
 int recvoffset, int[] recvcount, int[] rdispls,
 Datatype recvtype)

Variation of AllToAll() where differently displaced input elements are
allowed

 12

2.4.3.11. SetBufferSize(int numbytes)

MPJ uses permanent buffers to help serialization and deserialization
performance. As such, Communicator has a SetBufferSize(int
numbytes) function.

Example:
MPJ.COMM_WORLD.SetBufferSize(655365);

 13

3. Initialization and Usage

MPJ files are currently not in any sort of package, so the users will need to either put their
program files into a folder with MPJ files or use the –classpath to point to a folder
containing MPJ files.

3.1. How to create MPJ programs

3.1.1. mpiJava-S: Java Socket
e.g.) MyApplication_S.java

This is a simple program example of mpjJava-S and will be run on Java sockets. For
mpiJava-S, the code must have a main() in the code as well as a regular Java program.
The MPJ program first invokes its MPJ instance using Init() function. The master sends
a message, which is an array, to all other slave nodes. Each slave receives the message.
At last, it finishes the MPJ operation using Finalize().

public class MyApplication_S {

 public int rank;
 public int nProcesses;

 public static void main (String[] args){

 MPJ.Init(args);
 rank = MPJ.COMM_WORLD.Rank();
 nProcesses = MPJ.COMM_WORLD.Size();
 char message[] = new char[] { 'H', 'e', 'l', 'l', 'o', '!' };
 int i, j;

 if(rank == 0){ //master

 MPJ.COMM_WORLD.Send(message, 0, message.length, MPJ.CHAR, 1, 1);
 System.out.println(“Master sending: “);

 for(i=0; i<message.length; i++)
 System.out.print(message[i]);

 …………… //more statements will be inserted

 }
 else{ //slaves

 for(j=1; j<nProcesses; j++){
 MPJ.COMM_WORLD.Recv(message, 0, message.length, MPJ.CHAR, 0, 1);
 System.out.println("Slave " + j + " Received: ");
 for(i=0; i<message.length; i++)
 System.out.println(message[i]);
 }

…………… //more statements will be inserted
 }

 MPJ.Finalize();
 }
}

 14

3.1.2. mpiJava-A: GridTcp
e.g.) MyApplication_A.java

 mpiJava-A is run on GridTcp sockets using UserProgWrapper class. UserProgWrapper

creates a byte-presented stream as an execution snapshot. To serialize a program
counter and stack which Java does not support, mpiJava-A uses a collection of methods.
Each method is named “func_n” (n is an integer starting from 0) and returns the index
of the next methods. The User Program Wrapper saves the index value and retrieves the
last index from the corresponding snapshot if a process crushes.

Program statements are partitioned into those functions (func_0 to func_n). Init() is
called to invoke mpiJava-A inside the first function, “func_0”. The last function returns
“-2” to terminate MPJ. After that, the program calls Finalize() and finishes the
mpiJava-A operations.

public class MyApplication_A {

 public GridIpEntry ipEntry[]; // used by the GridTcp socket library
 public int funcId; // used by the user program wrapper
 public GridTcp tcp; // the GridTcp error-recoverable socket
 public int nprocess; // #processors
 public int rank; // processor id (or mpi rank)

 public int func_0(String args[]) { // constructor
 MPJ.Init(args, ipEntry, tcp); // invoke mpiJava-A
 ; // more statements to be inserted
 return 1; // calls func_1()
 }

 public int func_1() { // called from func_0
 if (MPJ.COMM_WORLD.Rank()== 0)
 MPJ.COMM_WORLD.Send(...);
 else
 MPJ.COMM_WORLD.Recv(...);
 ; // more statements to be inserted
 return 2; // calls func_2()
 }

 public int func_2() { // called from func_2, the last function
 ; // more statements to be inserted
 MPJ.Finalize(); // stops mpiJava-A
 return -2; // application terminated
 }
}

 15

3.2. How to use

3.2.1. Create links to MPJ.jar and GridTcp.jar

Users may use “MPJ.jar:GridTcp.jar:.” as a class path for the following
execution [3.2.2. and 3.2.3], if they create links above in the same folder with a
MPJ program file.

3.2.2. mpiJavaS - MPJ

3.2.2.1. Java Socket
< Master >
java [–cp classPath] programName masterHostName [port#] [progArgs]
–np #ofProcessors

< Slave >
java [–cp classPath] programName masterHostName [port#] -amslave
-yourrank rank -yourname yourHostName -np #ofProcessors

e.g.) Master: machine name - medusa

e.g.) Slave: machine name – mnode0

[me@medusa mydir] $ java –cp
~uwagent/MA/MPJ.new/MPJ.jar:~uwagent/MA/GridTcp/GridTcp.jar:.
myMPJProg medusa 12345 –np 2

[me@mnode0 mydir] $ java –cp
~uwagent/MA/MPJ.new/MPJ.jar:~uwagent/MA/GridTcp/GridTcp.jar:.
myMPJProg medusa 12345 –amslave –yourrank 1 –yourname mnode0 –np
2

[me@medusa mydir] $ ln –s ~uwagent/MA/MPJ.new/MPJ.jar MPJ.jar
[me@medusa mydir] $ ln –s ~uwagent/MA/GridTcp/GridTcp.jar GridTcp.jar

 16

3.2.2.2. Java Socket with mpjrun
mpjrun performs automatic initialization of MPJ programs. The drawback to
using mpjrun is that it requires multiple threads per process to monitor stderr and
stdout.

• Create a machine file:
[me@medusa mydir]$ vi hostfile
e.g.) hostfile:

A machine file may not include a host name for a master. mpjrun will be run
from the master machine (“medusa” in this example).

• Run a program using mpjrun:
java [–classpath pathForMPJrun] mpjrun [programName] [-port port#] [-np
#ofProcessors] [-machinefile machineFileName] [-cp classPath]

 e.g)Run a MPJ program (on a master node only):

This will automatically open new SSH windows and run the program using
commands for Java sockets [Refer to 3.2.1.1]. Before executing, the system
might ask users a password for authentication per processor. The drawback to
using mpjrun is that it requires multiple threads per process to monitor stderr and
stdout. This will result in significant performance hits.

mnode0
mnode1
mnode2
mnode3
mnode4
mnode5

[me@medusa mydir]$ java –classpath ~uwagent/MA/MPJ.new/MPJ.jar:.
mpjrun myMPJProg -port 12345 -np 4 -machinefile hostfile –cp
/home/uwagent/MA/MPJ/MPJ.jar:/home/uwagent/MA/GridTcp/GridTcp.jar

 17

3.2.3. mpiJavaA - GridTcp

3.2.3.1. GridTcp Socket with UserProgWrapper
< Master >
java [–cp classPath] UserProgWrapper - #ofProcessors
masterRank masterHostName - slaveRank slaveHostName - programName
masterHostName [port#] -np #ofProcessors

< Slave >
java [–cp classPath] UserProgWrapper - #ofProcessors
slaveRank slaveHostName - masterRank masterHostName - programName
masterHostName [port#] -np #ofProcessors –yourrank slaveRank –yourname
slaveHostName

e.g.) Master: machine name - medusa

e.g.) Slave: machine name – mnode0

[me@medusa mydir] $ java -cp
~uwagent/MA/MPJ.new/MPJ.jar:~uwagent/MA/GridTcp/GridTcp.jar:.
UserProgWrapper - 2 0 medusa - 1 mnode0 - myGridProg
medusa 12345 -np 2

[me@mnode0 mydir] $ java -cp
~uwagent/MA/MPJ.new/MPJ.jar:~uwagent/MA/GridTcp/GridTcp.jar:.
UserProgWrapper - 2 1 mnode0 – 0 medusa - myGridProg
medusa 12345 -np 2 -yourrank 1 -yourname mnode0

 18

4. Performance Evaluation

Though our AgentTeamWork project including MPJ is still on-going, we have observed
GridTcp library and mpiJava-A API and compared it with original mpiJava. The
performance has been evaluated with our own test programs as well as with the Java Grande
Forum MPJ Benchmark Suite produced by the University of Edinburgh.

For Java Sockets, performance of MPJ seems very reasonable. The performance should be
considered as the optimal mpiJava performance, and no data conversion is needed. When
data conversion is required, MPJ performance with Java sockets drops to slower levels than
the original mpiJava. Unfortunately this means that when dealing with data that needs to be
serialized, mpiJava-A (GridTcp) runs even slower.

Java byte arrays/buffers are very expensive to create and discard and greatly reduce the
performance if they are created every Send() and Recv() pair, especially buffers greater than
512kb. To achieve the best performance with Java sockets, permanent send and receive
buffers are used for serialization.

Object serialization and de-serialization is done using Object IO streams. Any user objects
should overload the default serialization methods if object serialization performance is
critical as the default methods provided by java are very slow. However, object
serialization in mpiJava-S (Java socket) is still 20-30% faster than mpiJava object
serialization.

Even after some turning of primitive serializations, the performance cost to convert into
buffer is still very expensive. This is due to the high number of instructions needed to
serialize a piece of data. Look at the following Java code for example.

Like an example above, to serialize a single integer, there needs to be extra storage and
quite a few instructions including assignment, cast, and shift used multiple times. In C/C++,
this operation would be simply a pointer to the int followed by the number of bytes of the
int.

This creates a major problem with collective communications where multiple Send() and
Recv() pairs may be needed. There is a trade off between creating byte buffers and
repeatedly serializing/de-serializing into the user’s buffers. They are extremely slow.

int x; //for just 1 integer
byte[] arr[4]; //extra memory cost
arr[3] = (byte) (x);
arr[2] = (byte) (x >>> 8); //shift, cast, copy
arr[1] = (byte) (x >>> 16); //repeat
arr[0] = (byte) (x >>> 24);

 19

4.1. PingPong Performance

 << Java Sockets >>
Optimal:
loop = 25, msgSize = 512bytes, elapsedTime=8msec
transfer rate = 25.6Mbps
loop = 25, msgSize = 1024bytes, elapsedTime=8msec
transfer rate = 51.2Mbps
loop = 25, msgSize = 2048bytes, elapsedTime=9msec
transfer rate = 91.02222222222223Mbps
loop = 25, msgSize = 4096bytes, elapsedTime=9msec
transfer rate = 182.04444444444445Mbps
loop = 25, msgSize = 8192bytes, elapsedTime=11msec
transfer rate = 297.89090909090913Mbps
loop = 25, msgSize = 16384bytes, elapsedTime=10msec
transfer rate = 655.36Mbps
loop = 25, msgSize = 32768bytes, elapsedTime=18msec
transfer rate = 728.1777777777778Mbps
loop = 25, msgSize = 65536bytes, elapsedTime=38msec
transfer rate = 689.8526315789475Mbps
loop = 25, msgSize = 131072bytes, elapsedTime=58msec
transfer rate = 903.944827586207Mbps
loop = 25, msgSize = 262144bytes, elapsedTime=98msec
transfer rate = 1069.9755102040817Mbps
loop = 25, msgSize = 524288bytes, elapsedTime=174msec
transfer rate = 1205.2597701149425Mbps
loop = 25, msgSize = 1048576bytes, elapsedTime=309msec
transfer rate = 1357.3799352750812Mbps

MPJ:
loop = 25, msgSize = 512bytes, elapsedTime=26msec
transfer rate = 7.8769230769230765Mbps
loop = 25, msgSize = 1024bytes, elapsedTime=9msec
transfer rate = 45.51111111111111Mbps
loop = 25, msgSize = 2048bytes, elapsedTime=9msec
transfer rate = 91.02222222222223Mbps
loop = 25, msgSize = 4096bytes, elapsedTime=9msec
transfer rate = 182.04444444444445Mbps
loop = 25, msgSize = 8192bytes, elapsedTime=10msec
transfer rate = 327.68Mbps
loop = 25, msgSize = 16384bytes, elapsedTime=15msec
transfer rate = 436.9066666666667Mbps
loop = 25, msgSize = 32768bytes, elapsedTime=20msec
transfer rate = 655.36Mbps
loop = 25, msgSize = 65536bytes, elapsedTime=36msec
transfer rate = 728.1777777777778Mbps
loop = 25, msgSize = 131072bytes, elapsedTime=56msec
transfer rate = 936.2285714285714Mbps
loop = 25, msgSize = 262144bytes, elapsedTime=109msec
transfer rate = 961.9963302752293Mbps
loop = 25, msgSize = 524288bytes, elapsedTime=188msec
transfer rate = 1115.5063829787234Mbps
loop = 25, msgSize = 1048576bytes, elapsedTime=337msec
transfer rate = 1244.60059347181Mbps

 20

<< GridTcp >>
Optimal:
loop = 25, msgSize = 512bytes, elapsedTime=1789msec
transfer rate = 0.1144773616545556Mbps
loop = 25, msgSize = 1024bytes, elapsedTime=1749msec
transfer rate = 0.23419096626643798Mbps
loop = 25, msgSize = 2048bytes, elapsedTime=1789msec
transfer rate = 0.4579094466182224Mbps
loop = 25, msgSize = 4096bytes, elapsedTime=1743msec
transfer rate = 0.9399885255306942Mbps
loop = 25, msgSize = 8192bytes, elapsedTime=1758msec
transfer rate = 1.8639362912400457Mbps
loop = 25, msgSize = 16384bytes, elapsedTime=22msec
transfer rate = 297.89090909090913Mbps
loop = 25, msgSize = 32768bytes, elapsedTime=22msec
transfer rate = 595.7818181818183Mbps
loop = 25, msgSize = 65536bytes, elapsedTime=41msec
transfer rate = 639.3756097560976Mbps
loop = 25, msgSize = 131072bytes, elapsedTime=61msec
transfer rate = 859.4885245901639Mbps
loop = 25, msgSize = 262144bytes, elapsedTime=128msec
transfer rate = 819.2Mbps
loop = 25, msgSize = 524288bytes, elapsedTime=864msec
transfer rate = 242.7259259259259Mbps
loop = 25, msgSize = 1048576bytes, elapsedTime=1045msec
transfer rate = 401.3688038277512Mbps

MPJ:
loop = 25, msgSize = 512bytes, elapsedTime=1815msec
transfer rate = 0.1128374655647383Mbps
loop = 25, msgSize = 1024bytes, elapsedTime=1755msec
transfer rate = 0.2333903133903134Mbps
loop = 25, msgSize = 2048bytes, elapsedTime=1759msec
transfer rate = 0.46571915861284824Mbps
loop = 25, msgSize = 4096bytes, elapsedTime=1798msec
transfer rate = 0.9112347052280311Mbps
loop = 25, msgSize = 8192bytes, elapsedTime=1747msec
transfer rate = 1.875672581568403Mbps
loop = 25, msgSize = 16384bytes, elapsedTime=31msec
transfer rate = 211.40645161290325Mbps
loop = 25, msgSize = 32768bytes, elapsedTime=71msec
transfer rate = 184.60845070422536Mbps
loop = 25, msgSize = 65536bytes, elapsedTime=76msec
transfer rate = 344.92631578947373Mbps
loop = 25, msgSize = 131072bytes, elapsedTime=148msec
transfer rate = 354.2486486486486Mbps
loop = 25, msgSize = 262144bytes, elapsedTime=285msec
transfer rate = 367.9214035087719Mbps
loop = 25, msgSize = 524288bytes, elapsedTime=458msec
transfer rate = 457.8934497816594Mbps
loop = 25, msgSize = 1048576bytes, elapsedTime=793msec

 transfer rate = 528.9160151324086Mbps

 21

PingPong (send and recv) - Doubles

 Ping Pong – Objects

PingPong of Doubles

0

5

10

15

20

25

30

35

40

4 12 37 11
6

35
7

10
98

33
77

10
38

3
31

92
1

98
13

7

30
17

08

92
75

57

28
51

63
2

Number of Doubles

M
B

yt
es

/s

mpiJavaS (mpj)
mpiJava

PingPong Objects

0

20000

40000

60000

80000

100000

120000

140000

160000

4 12 37 11
6

35
7

10
98

33
77

10
38

3
31

92
1

98
13

7

30
17

08

Number of Objects

O
bj

ec
ts

/s

mpiJavaS (mpj)
mpiJava

 22

 Bcast – 8 Processes: Doubles

 Bcast – 8 Processes: Objectes

Bcast (np = 8) Doubles

0

5

10

15

20

25

30

35

4 12 37 11
6

35
7

10
98

33
77

10
38

3

31
92

1

98
13

7

30
17

08

92
75

57

28
51

63
2

Number of Doubles

M
B/

s mpiJavaS (mpj)
mpiJava

Bcast (np = 8) Objects

0

20000

40000

60000

80000

100000

120000

4 12 37 11
6

35
7

10
98

33
77

10
38

3
31

92
1

98
13

7

30
17

08

Number of Objects

O
bj

ec
ts

/s

mpiJavaS (mpj)
mpiJava

 23

5. Summary and Known Bugs

Next step is to develop a tool to automatically parse a user program into GridTcp functions
for the best performance such as automating user job distribution, management, and error
recovery using UserProgWrapper class.

Table4 shows the result of running several different test programs using mpjrun.
Unfortunately, MPJ has memory issues and causes out of memory errors when collective
communications, such as Gather(), has been used. Some of the test programs fail with the
certain array size when it is run on a certain number of processors.

In addition, mpiJava-A results in “out of memory” as well. Also, GridPP class stops and
hangs there during the middle of the execution. Further observation will be needed to
evaluate the performance of mpiJava-A using UserProgWrapper.

Future improvements include fixing the problems above and implementing an
MPJException class to handle various exceptions. We are also planning to implement
additional communications algorithms and expand the parallel operations of MPJ.

 2 4 8 16 32

PingPong ○ - - - -

JGFPingPong
×

(529010<)
- - - -

JGFReduceBench ○ ○ ○ ○ ○

JGFAlltoallBench ○
×

(288539<)

×

(288539<)

×

(154991<)

×

(83255<)

JGFGatherBench
×

(1626361<)

×

(927577<)

×

(529010<)

×

(301708<)

×

(172072<)

JGFBarrierBench ○ ○ ○ ○ ○

○ -> Passed more than 5 times

△ -> Failed a few times out of 5 times or more

× -> None succeeded(Array Size: passed)

Table4: test result of MPJ-S using mpjrun

