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1. Introduction 
 

MPI (Message Passing Interface) which is the original concepts of Message Passing Java 
(MPJ) supports communications for distributed programs.  It allows programmers to create 
an environment with parallel programming and shared memory.  MPI is able to use some 
programming languages, FORTRAN, C/C++, and Java, for the implementations.  The 
current implementations in Java (mpiJava) are actually Java wrappers around native C code.  
However, it has some disadvantages with the portability and is not suitable to the concept of 
AgentTeamwork [Refer to 2.1.1.].  In other words, the original MPI has no check-pointing 
feature.  
 
Therefore, the AgentTeamwork project has developed its own version of Message Passing 
Java (MPJ) as a middleware between the user program and various communications 
protocols.  Currently, MPJ supports GridTcp sockets as well as Java sockets. The objective 
is to provide a set of communication functionalities supporting distributed computing.  The 
most remarkable function in MPJ is a snapshot algorithm.  It will take snapshots using some 
computer nodes over the Internet during the operations. 

 
 

 
 
 

 
This report describes the design, implementation, and performance results of the project. 

 
 
 

P0 P1

P2 P3

User 
Program.  
SPMD 

MPI

Figure1: The MPI data flow as a distributed program 
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2. Algorithm and Design 

2.1. AgentTeamwork 
MPJ is used on top of the AgentTeamwork system.  The UWB Distributed Systems 
Laboratory has been developing the AgentTeamwork grid-computing middleware.  
AgentTeamwork coordinates remote grid-computing jobs using mobile agents.  A 
user requests AgentTeamwork for some computing nodes.  AgentTeamwork manages 
the resources for better performance and fault tolerance automatically. 

 

 
 
 

A mobile agent is assigned to each process and moves to a low-loading machine.  It 
also monitors each process and takes its periodical execution snapshot supported by 
user program wrapper and GridTcp.  If a machine is crashed, the agent recovers the 
system with the latest snapshot.  Thus the system can restore broken processes 
involved in the same job.  The key feature in MPJ is to allow those agents to migrate 
or to resume a user program to a new idle computer if their current computer are 
overloaded or even powered off. 

 
 

 

AgentTeamwork 

Figure2: The basic concept of AgentTeamwork 

Figure3: AgentTeamwork Snapshot Algorithm 
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2.2. MPJ 

Table1 shows the main structure of AgentTeamwork and MPJ: 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
AgentTeamwork’s MPJ distinguishes two different sockets.  One is mpiJavaSocket 
[mpiJava-S] using a regular Java Socket, and the other is mpiJavaAteam [mpiJava-A] 
that uses a check-pointing error-recoverable GridTcp Socket for the message passing. 

 
2.2.1. mpiJava-S – Java Socket 

mpiJava-S uses the regular Java Socket to implement MPJ functions.  For 
convenience, there is a class which automatically opens SSH windows, executes 
commands, and creates processes at once.  The class is called mpjrun and helps 
less typing for command executions.   
 

2.2.2. mpiJava-A – GridTcp 
mpiJava-A extends TCP by adding message-saving and check-pointing features.  
It automatically saves messages and performs a checkpoint (or takes a snapshot) 
of a program execution.  It allows programs to recover from errors, if their 
current computing node crashes. 

User Applications in Java 
mpiJava MPJ API 

mpjrun User Program Wrapper 
mpiJavaSocket mpiJavaAteam 

GridTcp 
Java Socket 

Java Socket 
AgentTeamwork 

Java Virtual Machine 
Operating Systems 

Hardware 
Table1: Regular MPI and the main frame of MPJ Project  
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2.3. MPJ Architecture 

2.3.1. Class Diagram 
The major classes shown in Diagram1 are the implemented classes of MPJ. 

 
MPJ is the main application. It contains a communicator of either JavaComm or 
GridComm, depending on the type of socket used. It also contains various data 
types supported by MPJ. In addition, MPJ provides initialization and finalization 
methods for the network connections. 
 
JavaComm and GridComm hold Java sockets and GridTcp sockets, respectively. 
These two classes do not provide any major functionality other than maintaining 
the input and output streams of their respective sockets. 
Communicator is the class that provides the primary communications 
capabilities of MPJ.  As of the writing of this report, Communicator contains the 
major functions like Send(), Recv(), Barrier(), Bcast(), Pack() and Unpack(). 
 
MPJMessage is a wrapper around each message received by the Recv() 
functions. It holds the message’s status and the actual message itself. 
The various Datatype subclasses provide serialization and deserialization of their 
respective types for Communicator. 
Various Operation classes are wrappers around operations that are implemented 
in the Datatype subclasses. 

 

MPJ 

Datatypes 

Communicator 

JavaComm 

GridComm 

MPJMessage

Op 

Other classes

2.2.2. MPJ Data Types 

2.2.3. MPJ Operators 

Diagram1: Class Hierarchy in MPJ 

♦ UserProgWrapper

♦ mpjrun 



 5

 
2.3.2. MPJ Data Types [ Datatype] 

Datatype has nine major data types and provides serialization and deserialization 
services.  In addition, each data type calls and implements Op functions inside 
the class. 

 
Data Type Description 
MPJBool Boolean (true/false) 
MPJByte Byte 
MPJChar Character 
MPJDouble Double 
MPJFloat Float 
MPJInt Integer 
MPJObject Object 
MPJShort Short 

 Table2: Data types in MPJ 
 
2.3.3. MPJ Operators  [Op ] 

Op has 12 different operation types.  Valid arguments for the op parameter are 
the following: 

 
Op Name Description 
MPJBAND Bitwise And 
MPJBOR Bitwise Or 
MPJBXOR Bitwise Exclusive Or 
MPJLAND Logical And 
MPJLOR Logical Or 
MPJLXOR Logical Exclusive Or 
MPJMAXLOC Maximum and Location of Maximum 
MPJMAX Maximum 
MPJMINLOC Minimum and Location of Minimum 
MPJMIN Minimum 
MPJPROD Product 
MPJSUM Sum 

  Table3: Operators in MPJ  
 

* MAX/MIN LOC operations require a DataLoc array as the root’s buffer.   
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2.4. Functions and Syntax 

2.4.1. MPJ 
MPJ contains main MPI operations.  Traditional Init(string[]) initializes Java 
socket-based connections.  Another Init(string[], IpTable, GridTcp) initializes 
connections with GridTCP.  It also provides Rank(), Size(), Finalize(), etc. 
 

 

 
 
2.4.1.1. Init(String[] args): for Java Socket 
 

This Init() function establishes all to all connections using Java sockets. 
First, MPJ receives initialization commands such as rank, amslave, 
master node, number of processes, etc. Such arguments are mainly 
used to identify each process. 
 
On the master process, Init() creates a ServerSocket and accepts 
connections from slaves until the number of connections equals to the 
number of processes. Following each connection, the master process 
reads the connecting process’s rank and identifies each connection 
with that rank, storing the rank-connection information in JavaComm. 
Then, the master broadcasts the ranks and their corresponding 
hostname to all slave processes. At this point, the master process’s 
Init() is complete. 
 
For the slave processes, they first connect to the master process, send 
their rank, and then receive a table with other slaves’ ranks and their 
hostnames. Once such information is exchanged with the master, the 
slaves will connect with each other. First, all of the slaves except for 
the highest ranking slave will create ServerSockets. Afterwards, the 
lowest ranking slave will accept connections from higher ranking 
slaves. The lowest ranking slave will then receive a rank from the 
connection it received and update its rank connection table (much like 
the master). When the lowest ranking slave has received all 
connections, its Init() is complete. The second lowest ranking slave 
then accepts connections from higher ranking slaves, and the process 
repeats until the second highest ranking slave has accepted a 
connection from the highest ranking slave, indicating all slaves are 
connected to all other slaves. At this point, the Init() process is 
complete for Java sockets. 
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2.4.1.2. Init(String[] args, IpTableEntry[] ipTable, GridTcp):  

 for GridTcp 
 
This Init() function establishes all to all connections for GridTcp 
sockets. The algorithm for this case is very similar to the Init() for Java 
sockets (Section 2.4.1.1). However, the difference is that since the 
UserProgWrapper of GridTcp pre-initializes an ipTable corresponding 
to each of the hosts, all processes have already known each other. Thus, 
the process simply utilizes the connection algorithm described in 
Section 2.3.1.1 without distinguishing between the master and slaves 
(and also no broadcast of rank-connection information by the master). 
Each process simply connects to all lower ranking processes while 
accepting connections from higher ranking processes. 

 
 

2.4.2. Communicator [ JavaComm & GridComm ] 
 

Communicator provides all communications functions.  A basic communication 
algorithm for MPJ is to receive and send messages between [or among] processes.  
Point-to-point communication is one of the key mechanisms in MPJ.  Blocking 
communications such as Send(), IRecv() allow to .  On the other hand, Isend() 
and Recv() are used for NonBlocking communications.   Collective 
communications are able to carry out some operations over a group of processes.  
Gather(), Scatter(), Reduce() are collective communication related functions. 
 
Communicator class is extended by two classes: JavaComm and GridComm.  
JavaComm is designed for communication using Java Sockets and SocketServers.  
GridComm is for GridTcp Sockets and requires GridTcp object and IpTable.  
Both JavaComm and GridComm allow socket communications using bytes and 
need InputStreamForRank[] and OutputStreamForRank[] to accomplish the 
connections.  The interface between the two layers is clean and well-organized 
since same communication algorithms can be used for both JavaSocket and 
GridTcp Communications. 
   

 

  
 

2.4.2.1. Send(Object[] buf, int offset, int count, Datatype type, int dest, int 
tag) – Blocking Communication 
 
The Send() function takes in various parameters describing the 
datatype, the send count, the send buffer, the offset, the destination 
rank, and the message tag. The send buffer must be an array. The 
datatype is actually a Datatype object from MPJ, such as MPJ.SHORT. 
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Before sending a message, the Send() function first creates a header 
for the message, including the message’s type, size in bytes, count, and 
the tag. Send() then serializes the message using the Datatype 
specified in the function parameters, and writes the header along with 
the serialized message to the output stream corresponding to the 
destination rank. 

 
 
2.4.2.2. Recv(Object[] buf, int offset, int count, Datatype type, int src, int 

tag) – Blocking Communication 
  

When a user calls the Recv() function, Recv() will perform a blocking 
read operation on the input stream corresponding to the source rank. 
First, Recv() reads 16 bytes of the message header and then reads the 
rest of the body with respect to the size defined in the header. Then, 
Recv() will deserialize the message using the correct Datatype. The 
completed message is stored in an MPJMessage, which is then 
checked against the parameters of Recv(). If the tag or datatype does 
not match, the message is stored in a message queue, and Recv() will 
read again for a new message. 
 
If MPJ.ANY_SOURCE is specified, Recv() will poll each socket and 
read from the first socket with available data, and then check the tag. 
 
If MPJ.ANY_TAG is specified, then Recv() will return the message if 
the datatype matches the parameter. 
 
Recv() will crash if the count parameter is smaller than the actual 
message’s count. 
 

 
2.4.2.3. Pack(Object[] inbuf, int offset, int incount, Datatype type, 
 byte[] outbuf, int position) 
 

Pack() is similar to Send(). It uses the Datatype to serialize the 
message into the provided output buffer, and then returns the updated 
position. If the Datatype is an MPJ.OBJECT, each object is serialized 
individually (rather than as a buffer), so they can be deserialized or 
extracted individually. 

 
2.4.2.4. Unpack(byte[] inbuf, int position, java.lang.Object outbuf, int 

offset, int outcount, Datatype datatype) 
 

Unpack() performs the opposite of the Pack() operation. It will 
deserialize the input buffer into the output buffer using the 
corresponding Datatype’s deserialize operation. 
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2.4.2.5. Barrier() 
 

Barrier() is simple.  Rank 0 will receive a message from all other ranks 
and broadcast another message once it has received from all other 
ranks. Thus, each process is blocked until all processes have called 
Barrier(). 

 
2.4.2.6. Bcast(Object[] buf, int offset, int count, Datatype type, int root) 
 

Bcast() will broadcast the message specified in buffer from rank root 
to all other processes.  Bcast currently follows a tree-structured 
algorithm, which reduces the number of send stages to log2(n). Such 
an algorithm should be much better performance when broadcasting 
large messages. Bcast() on the root process will send the buffer to all 
other processes in the communicator, while the non-root processes will 
receive. 

 

 
 
 

2.4.2.7. Reduce() 
 

Reduce() is a collective communication call, meaning all processes 
within the communicator are involved. Reduce() will perform an 
operation defined by the op parameter. Operations are done element-
wise on every send buffer, and the result is stored in the root’s buffer. 
 
Example with MPJ.SUM as the operation: 
 

send[0]  send[1]  send[2]  send[3] 
p0       1      2       3       4 
p1       1       2       3       4 
p2        1       2       3       4 
 
recvbuf [0] = 3, [1] = 6, [2] = 9, [3] = 12 
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2.4.3. Other Communication Functions 

Other communications algorithms are compatible with the standard mpiJava.  
All of these functions require an array as the input and output buffers (even 
though the function prototype may just require an Object, this is type-casted into 
an array of appropriate type later).  Their documentation can be found at 
http://www.hpjava.org/mpiJava.html.  Please see online examples or the 
provided example code on how to use the following functions: 

 
2.4.3.1. Isend( Object buf, int offset, int count,  
   Datatype type,  int dest, int tag ) 

 
 Spawns a thread to send a message, like send() 

 
 
2.4.3.2. Irecv( Object buf, int offset, int count,  

   Datatype type, int src, int tag ) 
 

 Spawns a thread to recieve a message, like recv() 
 
  
2.4.3.3. Gather( Object sendbuf, int sendoffset, int sendcount,  
   Datatype sendtype, Object recvbuf, int recvoffset,  
   int recvcount, Datatype recvtype, int root ) 
 

Gathers all data in the inbuffers at all the processes to the outbuf of the 
root in rank order 

 

 
 
 
2.4.3.4. Gatherv( Object sendbuf, Object sendbuf, int sendoffset,  
   int sendcount, Datatype sendtype, Object recvbuf,  
   int[] recvcounts, int[] displs, Datatype recvtype,  
   int root )  
 

Variation of Gather(), where different displaced input elements are 
allowed 
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2.4.3.5. AllGather( Object sendbuf, int sendoffset, int sendcount,  
   Datatype sendtype, Object recvbuf, int recvoffset,  
   int recvcount, Datatype recvtype ) 

 
 Like Gather(), but result of outbuf is sent to all processes 

 
 
2.4.3.6. AllGatherv( Object sendbuf, int sendoffset, int sendcount,  
   Datatype sendtype, Object recvbuf, int recvoffset,  
   int[] recvcounts, int[] displs, Datatype recvtype ) 
 
 Like Gatherv(), but result of outbuf is sent to all processes 
  
 
2.4.3.7. Scatter( Object sendbuf, int sendoffset, int sendcount,  
   Datatype sendtype, Object recvbuf, int recvoffset,  
   int recvcount, Datatype recvtype, int root ) 
 

Opposite of Gather(). Scatter the buffer on the root to all processes in 
rank order 

 
 
2.4.3.8. Scatterv( Object sendbuf, int sendoffset, int[] sendcounts,  
   int[] displs, Datatype sendtype, Object recvbuf,  
   int recvoffset, int recvcount, Datatype recvtype,  
   int root ) 

 
Variation of Scatter() where differently displaced input elements are 
allowed 

 
 
2.4.3.9. AllToAll( Object sendbuf, int sendoffset, int sendcount, 
   Datatype sendtype, Object recvbuf, int recvoffset,  
   int recvcount, Datatype recvtype ) 
 

Sends each element of inbuf to the corresponding ranking process. 
Does on all processes, and stores in rank order 

 
 
2.4.3.10. AllToAllv( Object sendbuf, int sendoffset, int[] sendcount,  
   int[] sdispls, Datatype sendtype, Object recvbuf,  
   int recvoffset, int[] recvcount, int[] rdispls,  
   Datatype recvtype ) 
 

Variation of AllToAll() where differently displaced input elements are 
allowed 
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2.4.3.11. SetBufferSize(int numbytes) 
 

MPJ uses permanent buffers to help serialization and deserialization 
performance.  As such, Communicator has a SetBufferSize(int 
numbytes) function. 
 
Example: 
MPJ.COMM_WORLD.SetBufferSize(655365); 
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3. Initialization and Usage 

MPJ files are currently not in any sort of package, so the users will need to either put their 
program files into a folder with MPJ files or use the –classpath to point to a folder 
containing MPJ files. 

   
3.1. How to create MPJ programs 

3.1.1. mpiJava-S: Java Socket 
e.g.) MyApplication_S.java 

 
 

This is a simple program example of mpjJava-S and will be run on Java sockets.  For 
mpiJava-S, the code must have a main() in the code as well as a regular Java program.  
The MPJ program first invokes its MPJ instance using Init() function.  The master sends 
a message, which is an array, to all other slave nodes.  Each slave receives the message.  
At last, it finishes the MPJ operation using Finalize().   

public class MyApplication_S { 
    
  public int rank; 
  public int nProcesses; 
 
  public static void main (String[] args){ 
 
    MPJ.Init(args); 
    rank = MPJ.COMM_WORLD.Rank(); 
    nProcesses = MPJ.COMM_WORLD.Size(); 
    char message[] = new char[] { 'H', 'e', 'l', 'l', 'o', '!' }; 
    int i, j; 
 
    if(rank == 0){   //master 
 
 MPJ.COMM_WORLD.Send(message, 0, message.length, MPJ.CHAR, 1, 1); 
 System.out.println(“Master sending: “);     
  
 for(i=0; i<message.length; i++) 
         System.out.print(message[i]); 
 
  ……………    //more statements will be inserted 
 
    } 
    else{             //slaves 
 
 for(j=1; j<nProcesses; j++){ 
    MPJ.COMM_WORLD.Recv(message, 0, message.length, MPJ.CHAR, 0, 1); 
     System.out.println("Slave " + j + " Received: "); 
    for(i=0; i<message.length; i++) 
        System.out.println(message[i]); 
     } 
  

……………    //more statements will be inserted 
    } 
 
    MPJ.Finalize(); 
  } 
} 
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3.1.2. mpiJava-A: GridTcp 
e.g.) MyApplication_A.java 

 
 mpiJava-A is run on GridTcp sockets using UserProgWrapper class.  UserProgWrapper 

creates a byte-presented stream as an execution snapshot.  To serialize a program 
counter and stack which Java does not support, mpiJava-A uses a collection of methods.  
Each method is named “func_n” (n is an integer starting from 0) and returns the index 
of the next methods.  The User Program Wrapper saves the index value and retrieves the 
last index from the corresponding snapshot if a process crushes.   

 
Program statements are partitioned into those functions (func_0 to func_n).  Init() is 
called to invoke mpiJava-A inside the first function, “func_0”.  The last function returns 
“-2” to terminate MPJ.  After that, the program calls Finalize() and finishes the 
mpiJava-A operations.

public class MyApplication_A { 
 
  public GridIpEntry ipEntry[];            // used by the GridTcp socket library 
  public int funcId;                       // used by the user program wrapper  
  public GridTcp tcp;                        // the GridTcp error-recoverable socket
  public int nprocess;                     // #processors 
  public int rank;                         // processor id ( or mpi rank) 
  
  public int func_0( String args[] ) {     // constructor 
    MPJ.Init( args, ipEntry, tcp );        // invoke mpiJava-A 
    .....;                                 // more statements to be inserted 
    return 1;                              // calls func_1( ) 
  } 
 
  public int func_1( ) {                   // called from func_0 
    if ( MPJ.COMM_WORLD.Rank()== 0 ) 
      MPJ.COMM_WORLD.Send( ... ); 
    else 
      MPJ.COMM_WORLD.Recv( ... ); 
    .....;                                 // more statements to be inserted 
    return 2;                              // calls func_2( ) 
  } 
 
  public int func_2( ) {                   // called from func_2, the last function 
    .....;                                 // more statements to be inserted 
    MPJ.Finalize( );                       // stops mpiJava-A 
    return -2;                             // application terminated 
  } 
} 
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3.2. How to use 

 
3.2.1. Create links to MPJ.jar and GridTcp.jar 

 
Users may use “MPJ.jar:GridTcp.jar:.” as a class path for the following 
execution [3.2.2. and 3.2.3], if they create links above in the same folder with a 
MPJ program file. 
 

3.2.2. mpiJavaS - MPJ  
  

3.2.2.1. Java Socket 
< Master > 
java [–cp classPath] programName masterHostName [port#] [progArgs]  
–np #ofProcessors   
 
< Slave > 
java [–cp classPath] programName masterHostName [port#] -amslave 
-yourrank rank -yourname yourHostName -np #ofProcessors 
 
e.g.) Master: machine name - medusa 

 
e.g.) Slave: machine name – mnode0 

 

[me@medusa mydir] $ java –cp 
~uwagent/MA/MPJ.new/MPJ.jar:~uwagent/MA/GridTcp/GridTcp.jar:. 
myMPJProg medusa 12345 –np 2  
 

[me@mnode0 mydir] $ java –cp 
~uwagent/MA/MPJ.new/MPJ.jar:~uwagent/MA/GridTcp/GridTcp.jar:. 
myMPJProg medusa 12345 –amslave –yourrank 1 –yourname mnode0 –np 
2 

[me@medusa mydir] $ ln –s ~uwagent/MA/MPJ.new/MPJ.jar MPJ.jar 
[me@medusa mydir] $ ln –s ~uwagent/MA/GridTcp/GridTcp.jar GridTcp.jar
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3.2.2.2. Java Socket with mpjrun 
mpjrun performs automatic initialization of MPJ programs.  The drawback to 
using mpjrun is that it requires multiple threads per process to monitor stderr and 
stdout. 
  
• Create a machine file:  
[me@medusa mydir]$ vi hostfile 
e.g.) hostfile:     

A machine file may not include a host name for a master.  mpjrun will be run 
from the master machine (“medusa” in this example). 
 
• Run a program using mpjrun: 
java [–classpath pathForMPJrun] mpjrun [programName] [-port port#] [-np 
#ofProcessors] [-machinefile machineFileName] [-cp classPath]  

  
 e.g )Run a MPJ program  (on a master node only): 

 
This will automatically open new SSH windows and run the program using 
commands for Java sockets [Refer to 3.2.1.1].  Before executing, the system 
might ask users a password for authentication per processor.  The drawback to 
using mpjrun is that it requires multiple threads per process to monitor stderr and 
stdout.  This will result in significant performance hits. 
 

mnode0 
mnode1 
mnode2 
mnode3 
mnode4 
mnode5 

[me@medusa mydir]$ java –classpath ~uwagent/MA/MPJ.new/MPJ.jar:. 
mpjrun myMPJProg -port 12345 -np 4 -machinefile hostfile –cp 
/home/uwagent/MA/MPJ/MPJ.jar:/home/uwagent/MA/GridTcp/GridTcp.jar
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3.2.3. mpiJavaA - GridTcp 

3.2.3.1. GridTcp Socket with UserProgWrapper 
< Master > 
java [–cp classPath] UserProgWrapper - #ofProcessors  
masterRank masterHostName - slaveRank slaveHostName - programName 
masterHostName [port#] -np #ofProcessors 
 
< Slave > 
java [–cp classPath] UserProgWrapper - #ofProcessors  
slaveRank slaveHostName - masterRank masterHostName - programName 
masterHostName [port#] -np #ofProcessors –yourrank slaveRank –yourname 
slaveHostName  
 
e.g.) Master: machine name - medusa 

 
e.g.) Slave: machine name – mnode0 

  

[me@medusa mydir] $ java -cp 
~uwagent/MA/MPJ.new/MPJ.jar:~uwagent/MA/GridTcp/GridTcp.jar:. 
UserProgWrapper - 2 0 medusa - 1 mnode0 - myGridProg  
medusa 12345 -np 2    

[me@mnode0 mydir] $ java -cp 
~uwagent/MA/MPJ.new/MPJ.jar:~uwagent/MA/GridTcp/GridTcp.jar:. 
UserProgWrapper - 2 1 mnode0 – 0 medusa - myGridProg  
medusa 12345 -np 2 -yourrank 1 -yourname mnode0
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4. Performance Evaluation 

Though our AgentTeamWork project including MPJ is still on-going, we have observed 
GridTcp library and mpiJava-A API and compared it with original mpiJava.  The 
performance has been evaluated with our own test programs as well as with the Java Grande 
Forum MPJ Benchmark Suite produced by the University of Edinburgh.   
 
For Java Sockets, performance of MPJ seems very reasonable.  The performance should be 
considered as the optimal mpiJava performance, and no data conversion is needed.  When 
data conversion is required, MPJ performance with Java sockets drops to slower levels than 
the original mpiJava.  Unfortunately this means that when dealing with data that needs to be 
serialized, mpiJava-A (GridTcp) runs even slower.   
 
Java byte arrays/buffers are very expensive to create and discard and greatly reduce the 
performance if they are created every Send() and Recv() pair, especially buffers greater than 
512kb.  To achieve the best performance with Java sockets, permanent send and receive 
buffers are used for serialization. 
 
Object serialization and de-serialization is done using Object IO streams.  Any user objects 
should overload the default serialization methods if object serialization performance is 
critical as the default methods provided by java are very slow.  However, object 
serialization in mpiJava-S (Java socket) is still 20-30% faster than mpiJava object 
serialization. 
 
Even after some turning of primitive serializations, the performance cost to convert into 
buffer is still very expensive.  This is due to the high number of instructions needed to 
serialize a piece of data.  Look at the following Java code for example. 
 

 
Like an example above, to serialize a single integer, there needs to be extra storage and 
quite a few instructions including assignment, cast, and shift used multiple times.  In C/C++, 
this operation would be simply a pointer to the int followed by the number of bytes of the 
int. 
 
This creates a major problem with collective communications where multiple Send() and 
Recv() pairs may be needed.  There is a trade off between creating byte buffers and 
repeatedly serializing/de-serializing into the user’s buffers.  They are extremely slow.    

int x;                                                       //for just 1 integer 
byte[] arr[4];                                          //extra memory cost 
arr[3] = (byte) (x);                   
arr[2] = (byte) (x >>> 8);                      //shift, cast, copy 
arr[1] = (byte) (x >>> 16);                    //repeat 
arr[0] = (byte) (x >>> 24); 
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4.1. PingPong Performance 

 << Java Sockets >> 
Optimal: 
loop = 25, msgSize = 512bytes, elapsedTime=8msec 
transfer rate = 25.6Mbps 
loop = 25, msgSize = 1024bytes, elapsedTime=8msec 
transfer rate = 51.2Mbps 
loop = 25, msgSize = 2048bytes, elapsedTime=9msec 
transfer rate = 91.02222222222223Mbps 
loop = 25, msgSize = 4096bytes, elapsedTime=9msec 
transfer rate = 182.04444444444445Mbps 
loop = 25, msgSize = 8192bytes, elapsedTime=11msec 
transfer rate = 297.89090909090913Mbps 
loop = 25, msgSize = 16384bytes, elapsedTime=10msec 
transfer rate = 655.36Mbps 
loop = 25, msgSize = 32768bytes, elapsedTime=18msec 
transfer rate = 728.1777777777778Mbps 
loop = 25, msgSize = 65536bytes, elapsedTime=38msec 
transfer rate = 689.8526315789475Mbps 
loop = 25, msgSize = 131072bytes, elapsedTime=58msec 
transfer rate = 903.944827586207Mbps 
loop = 25, msgSize = 262144bytes, elapsedTime=98msec 
transfer rate = 1069.9755102040817Mbps 
loop = 25, msgSize = 524288bytes, elapsedTime=174msec 
transfer rate = 1205.2597701149425Mbps 
loop = 25, msgSize = 1048576bytes, elapsedTime=309msec 
transfer rate = 1357.3799352750812Mbps 
 
MPJ: 
loop = 25, msgSize = 512bytes, elapsedTime=26msec 
transfer rate = 7.8769230769230765Mbps 
loop = 25, msgSize = 1024bytes, elapsedTime=9msec 
transfer rate = 45.51111111111111Mbps 
loop = 25, msgSize = 2048bytes, elapsedTime=9msec 
transfer rate = 91.02222222222223Mbps 
loop = 25, msgSize = 4096bytes, elapsedTime=9msec 
transfer rate = 182.04444444444445Mbps 
loop = 25, msgSize = 8192bytes, elapsedTime=10msec 
transfer rate = 327.68Mbps 
loop = 25, msgSize = 16384bytes, elapsedTime=15msec 
transfer rate = 436.9066666666667Mbps 
loop = 25, msgSize = 32768bytes, elapsedTime=20msec 
transfer rate = 655.36Mbps 
loop = 25, msgSize = 65536bytes, elapsedTime=36msec 
transfer rate = 728.1777777777778Mbps 
loop = 25, msgSize = 131072bytes, elapsedTime=56msec 
transfer rate = 936.2285714285714Mbps 
loop = 25, msgSize = 262144bytes, elapsedTime=109msec 
transfer rate = 961.9963302752293Mbps 
loop = 25, msgSize = 524288bytes, elapsedTime=188msec 
transfer rate = 1115.5063829787234Mbps 
loop = 25, msgSize = 1048576bytes, elapsedTime=337msec 
transfer rate = 1244.60059347181Mbps 
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<< GridTcp >> 
Optimal: 
loop = 25, msgSize = 512bytes, elapsedTime=1789msec 
transfer rate = 0.1144773616545556Mbps 
loop = 25, msgSize = 1024bytes, elapsedTime=1749msec 
transfer rate = 0.23419096626643798Mbps 
loop = 25, msgSize = 2048bytes, elapsedTime=1789msec 
transfer rate = 0.4579094466182224Mbps 
loop = 25, msgSize = 4096bytes, elapsedTime=1743msec 
transfer rate = 0.9399885255306942Mbps 
loop = 25, msgSize = 8192bytes, elapsedTime=1758msec 
transfer rate = 1.8639362912400457Mbps 
loop = 25, msgSize = 16384bytes, elapsedTime=22msec 
transfer rate = 297.89090909090913Mbps 
loop = 25, msgSize = 32768bytes, elapsedTime=22msec 
transfer rate = 595.7818181818183Mbps 
loop = 25, msgSize = 65536bytes, elapsedTime=41msec 
transfer rate = 639.3756097560976Mbps 
loop = 25, msgSize = 131072bytes, elapsedTime=61msec 
transfer rate = 859.4885245901639Mbps 
loop = 25, msgSize = 262144bytes, elapsedTime=128msec 
transfer rate = 819.2Mbps 
loop = 25, msgSize = 524288bytes, elapsedTime=864msec 
transfer rate = 242.7259259259259Mbps 
loop = 25, msgSize = 1048576bytes, elapsedTime=1045msec 
transfer rate = 401.3688038277512Mbps 
 
MPJ: 
loop = 25, msgSize = 512bytes, elapsedTime=1815msec 
transfer rate = 0.1128374655647383Mbps 
loop = 25, msgSize = 1024bytes, elapsedTime=1755msec 
transfer rate = 0.2333903133903134Mbps 
loop = 25, msgSize = 2048bytes, elapsedTime=1759msec 
transfer rate = 0.46571915861284824Mbps 
loop = 25, msgSize = 4096bytes, elapsedTime=1798msec 
transfer rate = 0.9112347052280311Mbps 
loop = 25, msgSize = 8192bytes, elapsedTime=1747msec 
transfer rate = 1.875672581568403Mbps 
loop = 25, msgSize = 16384bytes, elapsedTime=31msec 
transfer rate = 211.40645161290325Mbps 
loop = 25, msgSize = 32768bytes, elapsedTime=71msec 
transfer rate = 184.60845070422536Mbps 
loop = 25, msgSize = 65536bytes, elapsedTime=76msec 
transfer rate = 344.92631578947373Mbps 
loop = 25, msgSize = 131072bytes, elapsedTime=148msec 
transfer rate = 354.2486486486486Mbps 
loop = 25, msgSize = 262144bytes, elapsedTime=285msec 
transfer rate = 367.9214035087719Mbps 
loop = 25, msgSize = 524288bytes, elapsedTime=458msec 
transfer rate = 457.8934497816594Mbps 
loop = 25, msgSize = 1048576bytes, elapsedTime=793msec 

             transfer rate = 528.9160151324086Mbps 
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PingPong (send and recv) - Doubles 

 
  
 Ping Pong – Objects 

  
 

PingPong of Doubles

0

5

10

15

20

25

30

35

40

4 12 37 11
6

35
7

10
98

33
77

10
38

3
31

92
1

98
13

7

30
17

08

92
75

57

28
51

63
2

Number of Doubles

M
B

yt
es

/s

mpiJavaS (mpj)
mpiJava

PingPong Objects

0

20000

40000

60000

80000

100000

120000

140000

160000

4 12 37 11
6

35
7

10
98

33
77

10
38

3
31

92
1

98
13

7

30
17

08

Number of Objects

O
bj

ec
ts

/s

mpiJavaS (mpj)
mpiJava



 22

 Bcast – 8 Processes: Doubles 

  
 Bcast – 8 Processes: Objectes 
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5. Summary and Known Bugs 

Next step is to develop a tool to automatically parse a user program into GridTcp functions 
for the best performance such as automating user job distribution, management, and error 
recovery using UserProgWrapper class. 

 
Table4 shows the result of running several different test programs using mpjrun. 
Unfortunately, MPJ has memory issues and causes out of memory errors when collective 
communications, such as Gather(), has been used.  Some of the test programs fail with the 
certain array size when it is run on a certain number of processors. 

 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
In addition, mpiJava-A results in “out of memory” as well.  Also, GridPP class stops and 
hangs there during the middle of the execution.  Further observation will be needed to 
evaluate the performance of mpiJava-A using UserProgWrapper. 
 
Future improvements include fixing the problems above and implementing an 
MPJException class to handle various exceptions.  We are also planning to implement 
additional communications algorithms and expand the parallel operations of MPJ. 

  2 4 8 16 32 

PingPong ○ - - - - 

JGFPingPong 
×

(529010<) 
- - - - 

JGFReduceBench ○ ○ ○ ○ ○ 

JGFAlltoallBench ○ 
×

(288539<) 

×

(288539<) 

×

(154991<) 

× 

(83255<) 

JGFGatherBench 
×

(1626361<) 

×

( 927577<) 

×

(529010<) 

×

( 301708<) 

×

(172072<) 

JGFBarrierBench ○ ○ ○ ○ ○ 

      

○ -> Passed more than 5 times     

△ -> Failed a few times out of 5 times or more     

× -> None succeeded(Array Size: passed)    

Table4: test result of MPJ-S using mpjrun 


