
 1 

CSS499 Undergraduate Research Spring Quarterly Report 
An Enhancement of AgentTeamwork’s Job 

Resumption/Migration Components 
 
Fumitaka Kawasaki 
June 8, 2007 
 
My assignment of the research project is divided into six phases, and three of which have 
been completed in the spring quarter. Each of those phases is described in this report.  
 
Phase 1 – GridTcp Re-Design 
The major goal of this phase is to redesign GridTcp for the purpose of memory saving 
and thread-incurred overheads mitigation. To realize the goal, I implemented barrier 
synchronization in the GridTcp module. The barrier synchronization ensures all user 
processes to synchronize their executions when they call takeSnapshot() function; 
therefore, we can exclude rollback messages from snapshot because rollback messages 
before synchronization are no more needed. However, there are some differences 
between my implementation and original re-design requirement. They are summarized 
below. 

 
As the table indicates, my implementation uses more memory than the original re-design 
requirement because it saves rollback messages in memory. However, the memory less 
likely grow larger because it can be flushed when every barrier synchronization.  
 
On the other hand, my implementation has two advantages in performance. First, it does 
not require all user processes to restart their execution from the previous barrier 
synchronization when connection error. Second, it does not need to maintain snapshot at 
the local/temp directory. 
 
Modifications of GridTcp 
 

1. Made backupQue transient so that we exclude it from snapshot. 
2. Implement barrier synchronization  

• After sending commitment messages to all partner connections, the user 
process waits until receiving all corresponding commitments from partners.  

• To synchronize each node with commitment, a function id is added to the 
commitment message. The function id is saved in the communication node 

Original re-design requirement My implementation

Save rollback messages in memory No Yes- however, they can be flushed at 

barrier synchronization. 

Snapshot contains rollback messages No No

Handle connection error. All user processes must restart their 

execution from the previous barrier 

synchronization when connection error.

Only the broken process has to restart 

its execution from the previous barrier 

synchronization when connection 

Maintain snapshot at the local/temp 

directory

Yes No



 2 

when it received the commitment message, and it is compared with the id of 
the function that issues the takeSnapshot().   

 
3. Modified rollback process 

• Clear the backuQue when commitment message is received. (Previously 
we only cleared messages whose sequence number is less than confirmSeq 
that is included in received commitment message.) 

• The backupQue is cleared at barrier synchronization, and it is not saved in 
snapshot. This means the backupQue is used only when rollback process; 
therefore, existsInBackup( ) (which is called from send(), sendCommit(), 
and sendEof() ) was eliminated.  

• Rollback all messages in the backupQue. (Previously we need a sequence 
number that is a parameter of rollback() function. When rolling back 
messages, only messages whose sequence number is greater than the 
sequence number is sent.) 

• Added commitment message to the backupQue to make sure commitment 
is sent when rolling back. 

 
4. Modified commitment message handling 

• Added error check after sending commitment message. 
 



 3 

Phase 2 – Sentinel Agent Modification 
There are three work items of modification: 

1. IP Caching: IP cashing was already implemented in the current sentinel code. 
2. Direct snapshot transfer by the wrapper: eliminate the thread for calling 

sendSnapshot() function so that a user program wrapper directly calls the 
function. 

3. Faster TCP error correction: eliminate the thread for TCP error correction. 
Modified sentinel agent to handle TCP error correction directly when 
“restart_userprogram” is received from a resumed process.  

 



 4 

Phase 3 – Job Resumption Test and Debugging 
1. Intra-cluster job resumption test 

• Number of nodes: 4, number of bookkeepers: 1, number of extra nodes: 2, 
test applications: MasterSlaveAteam.java, HeartBeat.java, Bcast.java, and 
AllReduce.java – confirmed that crashed sentinels (up to two sentinels) 
can be resumed.  

• CommanderAgent argument: 
 

java -Xmx512M UWAgent.UWInject -p 54321 localhost AgentTeamwork.Agents.CommanderAgent -m 4 -j 
jars/Agents.jar,benchmark/Benchmark.jar -u AgentTeamwork/Agents/ -up benchmark/ 
S_medusa_mnode0_mnode1_mnode2_mnode3 B_mnode6 E_mnode4_mnode5 U_$1_10000_20000_3 
C_Timer AP_60002 

 
2. Inter-cluster job resumption test 

• Number of nodes: 4, number of gateways: 2, number of bookkeepers: 2, 
test applications: MasterSlaveAteam.java – confirmed that crashed 
sentinels (up to two sentinels) can be resumed except gateways.  

• CommanderAgent argument: 
 

java -Xmx512M UWAgent.UWInject -p 54321 localhost AgentTeamwork.Agents.CommanderAgent -m 4 -j 
jars/Agents.jar,benchmark/Benchmark.jar -u AgentTeamwork/Agents/ -up benchmark/ S_perseus 
CL_mnode3_mnode3_mnode0_mnode1 CL_priam_priam_uw1-320-00_uw1-320-01 
ECL_mnode3_mnode3_mnode20_mnode21 ECL_priam_priam_uw1-320-20_uw1-320-21 
ECL_mnode22_mnode22_mnode23_mnode24 E_mnode10 B_phoebe_uw1-320-31 U_$1_10000_20000_3 
C_Timer AP_60004 

 
3. Current issues 

• When the second sentinel node is killed at the same execution cycle of the 
first killed sentinel node, the resumption of the second sentinel will fail. 
The reason of this problem is that the second resumed sentinel node cannot 
get the first resumed node name. To fix this problem, we need to main the 
IP-table in the commander agent. 

• When a gateway node is killed, the resumption of the gateway and its 
cluster nodes will fail. 

 
The following list is the brief description of modifications/bug fixes about resumption 
process. 
 
Changed the start index of wrapperArgs from 1 to 2 because port number was added to 
wrapperArgs. (resume() in SentinelAgent.java) 
 
Inherit previous Ateam instance when resumption. (initUser() in UserProgWrapper.java) 
 
Added resumption check at MPJ.Init() to skip GridConnection initialization when restart. 
 
Modified GridErrorhandler so that it can handle multiple connection errors 
simultaneously.  
 
Set ‘-‘ to wrapperArgs when gateName() returns null. (updateAgentLocation() in 
AgentUtil.java) 



 5 

 
Delete space from gateway name. (run() in UWPlace.java) 
 
Fixed calculation of bookkeeper id from rank. (mapSentinelRanktoBookkeeperId() in 
AgentUtil.java) 
 
Handle commitment message in gateway. (GridGatewayThread.java) 
 
Fixed  calculation of rank from id. (calculateSentinelRankFromId()) 
 
Ignore second search snapshot until restartUserProg() is called. 
 
Fixed calculation of child sentinel id. (resume() in SentinelAgent.java()) 
 
Reset ping timer when resumption. (Make lastPingTime transient in AgentUtil.java)  
 
Continue to send restart user program messages after error. (broadcastRestartUserProg()) 
 
 
 
 
 
 
 
 
 
 


