
AgentTeamwork
Midterm Report

Enhancing Communication and File I/O

Joshua Phillips
0222418

10/09/06 – 12/15/06

 2

Table of Contents

Table of Contents .. 2
Major Accomplishments ... 3

Phase 1 - Message Passing Java’s Debugging/Code Reformatting/Javadoc........................... 3
Figure 1. IRecvThread’s run() method before commenting and after commenting 3

Phase 2 – Ateam/UserProgWrapper Implementation.. 5
Figure 2. AgentTeamwork.Ateam package UML Diagram... 6

Phase 3 – GridTcp Revision ... 6
Figure 3. GridTcp’s Memory Management Data Flow Diagram .. 7
Figure 4. GridTcp Flow Control Time Chart.. 9

Phase 4 – Communication Performance Test .. 9
Skills Used and Developed... 10
Next Steps .. 10
Files Created and Modified... 11

Table 1. Files created or modified in Phases 1 - 4 .. 13
Future Project Recommendations ... 13
Appendix A – JGFPingPongBench Results After Phase 1.. 14
Appendix B – Example Ateam User Program.. 18
Appendix C – Explanation of Source Development Tree .. 19
References ... 20

 3

Major Accomplishments

My contributions to AgentTeamwork are divided into seven discrete phases, four of which have
been completed. Each of those four phases and the major accomplishments they realized are
listed in detail:

Phase 1 - Message Passing Java’s Debugging/Code Reformatting/Javadoc

During this phase my primary goal was to debug MPJ, reformat some of its code, and generate
javadoc. To increase the readability and maintainability of MPJ I started by adding comments
and javadoc tags to the following classes, as well as consistently indenting and aligning brackets:
IRecvThread, ISendThread, Mpjrun, and Request. In addition to increasing readability and
maintainability MPJ this phase provided me a deep understanding of the MPJ package and its
inner intricacies. This understanding proved useful in testing MPJ and may also be useful during
later phases of the project.

To create the most effective javadoc, I have used Sun’s guide to javadoc tags consistently
throughout this and all other phases of my contract 1. In short, that document specifies
standards for where to put the most appropriate javadoc tags.

Figure 1. IRecvThread’s run() method before commenting (above) and after commenting (below)

In addition to reformatting, I debugged the following methods of the Communicator class: Gatherv,
Scatter, Scatterv, Allgather, Allgatherv, Alltoall, Alltoallv, Bcast, Reduce, Allreduce,
Reduce_scatter, Isend, and Irecv. To accomplish this I implemented a very simple but extensive
test class (CommunicatorTest) that uses a master node to pass messages through these
methods to a slave node.

 4

The results of the tests were very promising. Originally, it was thought that there may have been
some very severe bugs within MPJ to cause frequent OutOfMemoryError exceptions, but upon
further research I found that the main issue was merely the default limitations of the Java Virtual
Machine. The JVM can be passed an option to specify the maximum amount of system memory
on the heap it may allocate. This default is set to 64MB. With such a large amount of array
copies and large buffers similar to the ones MPJ uses, the JVM will easily crash. Upon telling the
JVM to allocate all available memory space on its node with the argument –Xmx512MB nearly all
of the OutOfMemoryError exceptions disappeared.

There were, however, a few more bugs that needed attention. I have fixed all but one of these
bugs. The ISend and IRecv had very simple threading bugs that constantly threw
IllegalMonitorStateException exceptions but were easily fixed with careful placement of monitor
locks through the use of Java’s keyword synchronized.

Additionally, while Communicator’s Allgather method was implemented simply by calling Gather
and Bcast, for some reason, Allgatherv had a completely new and separate implementation.
Unfortunately, this implementation included an additional temporary and unnecessary buffer that
for large amounts of data would contribute to consuming all of a node’s system memory. The old
solution might have been devised to increase the algorithm’s speed but I felt that the significant
loss of memory far outweighed the small performance gain from the separate algorithm so I re-
implemented Allgatherv to simply call the Gatherv and Bcast methods in succession.

Lastly, I discovered a significant bug in MPJ’s Reduce method that causes OutOfMemoryError
exceptions but that I was not able to fix due to time constraints and the severity of the problem.
Again, this bug stems from unnecessary temporary buffers. In case of large user-created buffers,
it is absolutely fundamental that no additional buffers of a significant size be allocated. For
example: in a two-node system in which each node uses a 200 MB send buffer, the master node
will have a 400 MB buffer allocated when using the Gather method. Fortunately, the master can
use the same buffer for sending and receiving data. However, with Reduce’s current
implementation, an additional 200 MB buffer is created to copy its send buffer’s data before any
operations are carried out on it. This is done because Reduce allows the user to specify an offset
for its receive buffer. If the user has decided to use the same buffer for sending and receiving
and has specified a receive buffer offset, Reduce will overwrite its send contents (used in
Reduce’s operation) with results of previous operations. To overcome this problem, Reduce’s
author has allocated a temporary buffer to copy all of the send buffer’s contents. Because each
operation in Reduce is completed element-wise, this is unnecessary. I have designed, but not
coded, an algorithm that can overcome this shortfall very simply by starting operations at the
offset point, storing each result at the end of buffer (just after the last element of the send buffer),
and then returning to the beginning of the buffer and performing operations up until the offset
point. This will work because all original send values will be preserved up until they are needed,
and then overwritten. Also, if an offset is specified in the receive buffer, its length must be greater
than or equal to the amount of data sent plus the offset amount. Therefore, there should be
enough space to store the operation results correctly. I have chosen not to implement this
algorithm yet because of MPJ’s architecture. A correct implementation would require me not only
to modify Communicator’s Reduce method, but also each one of Datatype’s (e.g. MPJBool,
MPJByte, etc.) operations (e.g. Sum, Product, etc.). That means I would need to modify roughly
96 functions (8 dataypes * 12 operations).

In conclusion, this phase has been completed with the generation of useful javadoc, increased
readability and maintainability in certain components of MPJ and a successful run of
JGFPingPongBench on 2 processors and successful runs of JGFGatherBench 2, 4, and 8
processors (see Appendix).

 5

Phase 2 – Ateam/UserProgWrapper Implementation

In short, the purpose of Phase 2 was to create a much simpler framework for users of
AgentTeamwork to develop a program within. The answer to this requirement can be summed
up in a single class: Ateam. Ateam is an object that any user program may contain and which
provides an intrinsic and transparent GridFile, GridTcp, GridIpEntry table, rank, and size (number
of hosts). A user program’s Ateam object also supplies the user program with additional
functionality through the following methods: takeSnapshot, isResumed, getSnapshotId,
registerLocalVar, and retrieveLocalVar.

The takeSnapshot method takes a snapshot and stores accepts an ID number to label the
snapshot with, isResumed tests whether the current user program has been crashed and
resumed, and getSnapshotId returns the ID number of the current snapshot. The reason for the
registerLocalVar and retrieveLocalVar methods is slightly complex. Ateam’s ultimate goal is to
make an AgentTeamwork user program as simple and unrestricted as possible. See Appendix B
for an example AgentTeamwork user program. Note that a user program is instantiated within
the user program class’s own static main method. To make AgentTeamwork fully recoverable it
is necessary to be able to serialize all of a user program. However, local variables are not
serialized. To overcome this problem Ateam provides registerLocalVar and retrieveLocalVar that
add and retrieve local variables to a serializable hash table that is stored in every snapshot.

To allow AgentTeamwork to successfully execute an Ateam user program, it was necessary to
heavily modify UserProgWrapper. While I won’t go into specifics, the final result is a user
program wrapper that will launch and create snapshots of an Ateam user program while retaining
the old functionality that supports user programs without the Ateam class (i.e. – a partitioned
program). Halfway through this phase, a new problem arose that required a clever solution. As
stated before, it is paramount that the Ateam package allows a user program to behave as much
like any other java application as possible. To do this, we must allow the user to create their own
static main function. In Java, a non-static variable can not be accessed from a static method. As
seen in example user program provided in the appendix, that means that a user program’s Ateam
member must be declared static. For obvious reasons, static variables are not included in an
object’s serialization. The solution was to create an abstract class called AteamProg that every
AgentTeamwork Ateam user program must extend. This class overrides the default readObject
and writeObject methods that the Serializable interface provides. This way, when the user
program is serialized it first copies the static Ateam member into a non-static member so that it
will be included in a snapshot. When a user program object is deserialized, the reverse operation
takes place and all of this is completely transparent to the user. In fact, the added benefit of the
AteamProg class is that it simplifies the user program even more by only requiring them to extend
from it. There is no need for a user program to declare its own Ateam member or implement
serializable because AteamProg takes care of both of those requirements transparently.

Additionally, I have created Socket and ServerSocket classes in the Ateam package that merely
wrap the GridTcp package’s GridSocket and GridServerSocket classes to provide even more
convenient and seamless user program implementation and/or porting.

 6

AgentTeamwork.Ateam

UserProgWrapper

-writeObject()
-readObject()

+ateam : Ateam
-ateam_serial : Ateam

AteamProg

+takeSnapshot()
+isResumed() : bool
+getSnapshot() : int
+registerLocalVar()
+retrieveLocalVar() : <unspecified>

+gridfile : GridFile
+tcp : GridTcp
+ipTable : GridIpEntry[]
+myRank : int
+nprocess : int
+funcId : int
-m_upw : UserProgWrapper
-m_snapshotId : int
-m_upLocalVars

Ateam

ServerSocket

Socket

ExampleUserProgram

1 1

1

0..*

1

0..*

AgentTeamwork.Ateam.GridTcp

GridTcp

GridServerSocket

GridSocket

1 1

1
1

Figure 2. AgentTeamwork.Ateam package UML Diagram

Lastly, to improve my efficiency and that of other AgentTeamwork contributors, during this phase
I placed each component of AgentTeamwork into its own package, organized all source files into
an easy to understand source-development-tree and created script files to simply the compilation
and javadoc generation of AgentTeamwork. The explanation of this source-development-tree
can be found in Appendix C. Put simply, AgentTeamwork is now divided into the following
packages: UWAgent, MPJ, MPJ.JGF, AgentTeamwork.Agents, AgentTeamwork.Ateam,
AgentTeamwork.Ateam.GridTcp, and AgentTeamwork.Ateam.GridFile. This structure completely
eliminates the need to jar source files and specify complex class-paths when compiling
AgentTeamwork. All compilation can either occur from the root of the source-development-tree
or through the simple scripts in the scripts directory.

Phase 3 – GridTcp Revision

Phase 3’s purpose was to increase the stability of GridTcp by providing flow control and memory
management features to prevent it from causing OutOfMemoryError exceptions. As of the time
this document was written this has implementation has been finished, tested, and shown to work
properly for the most part. Very late in the JGF tests memory errors still occur when the buffer
sizes start to become larger. I am in the process of locating this bug.

Memory Management
Due to its recoverability, GridTcp tends to require large amounts of memory to store all of its
backup packets. This can quickly lead to slow node performance and/or out of memory
exceptions within GridTcp. To overcome this issue, I have modified the GridTcp package to store
older backup packets to disk when memory usage has become too high. Put simply, my solution
uses an event-based model and a custom designed DiskVector class to accomplish this.

 7

A GridConnection has four in-memory queues and two on-disk queues to store and manage its
packets:

• Backup queue:
If rollback is enabled, each time a packet is sent, it is stored here until a commit message
is received

• Forwarding queue:
For forwarding packets through gateways: this queue remains untouched by memory
management

• Incoming queue:
Every time a data packet is received it is stored here until it is read by the user

• Outgoing queue:
Regardless of rollback, each time a packet is sent, it is stored here until the correct ACK
was received. This queue is also used for flow control. If a client has received a PAUSE
message, it will store any outgoing messages here until a RESUME message is received

• Backup disk queue:
Holds older, overflow backup packets when GridTcp has reached its threshold

• Outgoing disk queue:
Holds older, overflow outgoing packets when GridTcp has reached its threshold

Figure 3. GridTcp’s Memory Management Data Flow Diagram

GridTcp manages its memory usage in the following manner:

1. A user set’s its threshold (in bytes) via the setMemThreshold method
2. When a new GridConnection is created, GridTcp subscribes to its memory change event
3. When a GridConnection adds or removes a packet from any queue, it sends a memory

change event to all subscribers, in this case its GridTcp creator
4. Upon receiving this event, GridTcp determines whether or not the collective memory

usage of all of it’s GridConnection’s has surpassed the user-defined threshold
5. If this threshold was previously not reached but is now surpassed it calculates a per

connection memory threshold, passes it to each connection, and tells each connection to
write old packets to disk until the threshold is cleared

 8

6. If this threshold was previously passed but is now cleared it calculates a per connection
memory threshold, passes it to each connection, and tells each connection to read old
packets to disk until the threshold is almost reached

7. If at anytime backup or outgoing packets are deleted and/or accessed (i.e. – if a rollback
is requested, or a commit is received, or a data ACK is received) both in-memory and on-
disk queues are traversed

8. When GridTcp’s disconnect method is called by a user, each GridConnection is forced to
remove any files it has left on disk to minimize disk waste

A few notes about my design:

• Outgoing packets are given in-memory priority over backup packets as it is more likely
that they will be retrieved sooner. Also, outgoing packets are more likely to have their
contents read than backup packets, which are more likely to just be deleted. It is
obviously takes a bigger performance hit to read from disk than it does to read from
memory.

• There is currently no feature to remove old backup files from disk if a node has crashed.
This is a normal situation however, and because all backup packets are stored in the
/tmp folder they can most likely be regularly cleaned by the operating system and or user.

• Using an event-based model adds a small amount of complexity to GridTcp and the
addition of a few classes, but the benefits definitely outweigh the drawbacks. By using
events, we eliminate the need for GridTcp to constantly poll it’s connections for memory
usage, and alternately eliminate a circular dependency (or coupling) of GridTcp and
GridConnection. If GridConnection needed to call a GridTcp method it would require a
reference to GridTcp and these two classes would be useless without each other.
Event’s eliminate this coupling and provide the ability for future classes to receive
notifications of memory changes if need be.

• The previous week’s version of GridTcp’s memory management used a GridConnBackup
file that stored all backed up packets into a single vector on disk. I quickly realized the
fault in this solution: to access the vector you must load it entirely into memory first which
automatically violates the purpose of the memory management. The new version stores
each GridPacket in a separate file on disk, managed by the new DiskVector class.

Flow Control
While GridTcp’s new memory management takes care of backup and outgoing packets becoming
to numerous, a GridConnection’s incoming packets are left unchecked. To alleviate this problem,
I have designed a simple flow-control algorithm that limits a server’s load as well as the network
when its memory becomes to full to accept new packets.

Originally, I started out to design a simple one-to-one packet-to-ACK flow control mechanism that
only sent a new package if the previous ACK was received. While this is easy to implement, its
performance is far less than perfect. So, I have designed a much more ambitious and complex
algorithm that works well but has put me nearly three days behind schedule. This algorithm uses
PAUSE and RESUME messages that allows a client to send packets more aggressively but
refuses packets when its incoming queue becomes to large.

 9

Client Server

Data 1

Data 2

Data 3

PAUSE ACK

RESUME ACK

Data 3

Data 4

Data 5

Data 6

ACK 1

ACK 2

PAUSE

PAUSE

RESUME

RESUME

RESUME

ACK 3

ACK 4

ACK 5

ACK 6

TIM
E

FC

FC

Outgoing
Queue

Data 4

Data 5

Data 6

 Key

 Data Packet
 ACK
 Flow Control Packet
 Flow Control Thread FC

Figure 4. GridTcp Flow Control Time Chart

Phase 4 – Communication Performance Test

Phase 4 was a very short and simple test. The main purpose of this test was to see if an MPJ
benchmark program would execute successfully with the new version of GridTcp as an Ateam
program.

Unfortunately, there were older bugs from the previous version of GridTcp that I discovered
during these tests that caused large time delays in the completion of GridTcp. In it’s current state,
GridTcp will run through most of the AteamJGFPingPongBench test successfully, but throws an
OutOfMemoryError exception when large buffers are used. Please see the appendix for the test
output. The bugs that had already existed in the version of GridTcp before I modified it were
mainly thread synchronization issues. As is known throughout the field, this kind of bug can
prove to be one of the most difficult to fix. In summary, GridTcp had a thread synchronization
error that caused a deadlock when a GridConnection’s incoming que was being dequeued and
enqueued at the same time. If GridTcp’s receive method received a null value from the dequeue
operation it would sleep inside the GridConnection’s monitor and never be woken.

 10

Skills Used and Developed

An important aspect of this project is to develop new skills and use old skills as I prepare for my
career. The following is a list of some of the most important skills I have used and developed so
far (in not particular order):

• Parallel programming
• The MPI API
• Multithreaded programming
• Multithreaded modeling
• Multithreaded debugging
• Knowledge of network stacks and TCP
• Serialization
• Inheritance: interfaces, abstract classes, method overriding, etc.
• Understanding of the Java language
• Understanding of the Java Virtual Machine
• Java packaging
• Java compilation
• Javadoc generation
• Linux shell scripting
• Linux security policies
• Technical writing
• Good commenting practices
• Code reading
• Modifying preexisting, large, complex software systems
• Java reflection
• Input/Output and Streams

Next Steps

The next phases of my project are as follows:

Phase 5: Enhancement/Implementation of File IOs in AgentTeamwork
I will create FileInputStream and FileOutputStream classes that wrap the GridFile classes created
by Jumpei Miyauchi. Also, Jumpei and I will work together to implement RandomAccessFile, a
file wrapper that will allow different nodes to access the same file in parallel albeit different
partitions.

Phase 6: Enhancement of RandomAccessFile
Jumpei and I will work together to port/implement many of the file view features provided by
MPI_IO.

Phase 7: File I/O Performance Evaluation and Conference Paper Submission
I will compare file-I/O performance between AgentTeamwork and NFS-based mpiJava in terms of
the FileInputStream and RandomAccessFile classes. I will then work with Professor Fukuda to
write and submit a paper to the either the PacRim ’07, GCA/PDPTA ’07, or other conference.

 11

Files Created and Modified

The following is a list of files that have been either created or modified throughout the first half of
the project:

File Status Changes/Use Location
All AgentTeamwork source
files

Old Added package statements to
almost every source file to
restructure AgentTeamwork.

Medusa:
/home/uwagent/agentteamwork-dev/

Ateam.java New For user-initiated snapshots.
Added registerLocalVar() and
retrieveLocalVar(). These
methods allow local variables
that are instantiated in main()
to be serialized in a snapshot.

Medusa:
/home/uwagent/agentteamwork-
dev/AgentTeamwork/Ateam/

ATeamException.java New For reporting and describing
errors that occur within
AgentTeamwork

Medusa:
/home/uwagent/agentteamwork-
dev/AgentTeamwork/

AteamProg.java New Allows for the serialization of
a static Ateam member that
can be accessed in a user
program’s static main method

Medusa:
/home/uwagent/agentteamwork-
dev/AgentTeamwork/Ateam/

backupToMedusa.sh Dep. Quickly backs up all files from
local system to medusa

Koblab:
/home/jawsh/tempAgentTeamworkBackup/

cleanMyNodeProcesses.sh New Kills orphan java process on
Medusa’s nodes. This
orphan process sometimes
prevent java sockets from
binding.

Medusa:
/home/uwagent/agentteamwork-
dev/scripts/

Communicator.java Old Fixed simple bugs and added
some documentation.

Medusa:
/home/uwagent/agentteamwork-dev/MPJ/

CommunicatorTest.java New Tests the communication
methods of MPJ as defined in
phase 1 of my statement of
work

Medusa:
/home/uwagent/agentteamwork-dev/tests/

DiskVector.java New A class that extends java’s
AbstractList<E> and provides
a list with the disk as a
backing store. This class
uses generics so it can be
used for many general
purposes.

Medusa:
/home/uwagent/agentteamwork-
dev/AgentTeamwork/Ateam/GridTcp

genJavaDoc.sh New Creates consistent javadoc
with complex command-line
options

Medusa:
/home/uwagent/agentteamwork-
dev/scripts/

GridConnBackup.java Dep. A very simple class that
includes a backup vector and
connection ID’s for
serialization to disk.

Medusa:
/home/uwagent/agentteamwork-
dev/AgentTeamwork/Ateam/GridTcp/

GridConnection.java Old Added a backup mechanism
that writes old backup
messages to disk when a
specified threshold is
reached. Also loads these
persistent backups into
memory when appropriate.
Modified constructors and
init() to allow for re-
instantiation of a
GridConnection with all of the
memory management
members included. Modified
all methods to use DiskVector
instead of GridConnBackup.
Fixed some bugs.

Medusa:
/home/uwagent/agentteamwork-
dev/AgentTeamwork/Ateam/GridTcp/

 12

GridConnMemChangeEvent
.java

New An event that is used by
GridConnection to notify
GridTcp (or other
subscribers) of a change in
memory

Medusa:
/home/uwagent/agentteamwork-
dev/AgentTeamwork/Ateam/GridTcp/

GridConnMemChangeListen
er.java

New An interface that any
subscriber to
GridConnMemChangeEvent
must implement.

Medusa:
/home/uwagent/agentteamwork-
dev/AgentTeamwork/Ateam/GridTcp/

GridFlowControlThread.java New Simply continues to send
PAUSE or RESUME packets
at a specified interval until it
is killed

Medusa:
/home/uwagent/agentteamwork-
dev/AgentTeamwork/Ateam/GridTcp/

All Grid Threads Old Each class that extends from
the Thread class in GridTcp
now sets its “thread name” in
its constructor. This allows
any GridTcp developer or
user to easily determine
which threads are running at
any given time for debugging.

Medusa:
/home/uwagent/agentteamwork-
dev/AgentTeamwork/Ateam/GridTcp/

GridPacket.java Old Added new packet types:
data_ack, pause, resume,
pause_ack, resume_ack

Medusa:
/home/uwagent/agentteamwork-
dev/AgentTeamwork/Ateam/GridTcp/

GridReceiveThread.java Old Added a temporary try/catch
block to catch out of memory
exceptions so that I can
debug GridTcp’s memory
issues.

Medusa:
/home/uwagent/agentteamwork-
dev/AgentTeamwork/Ateam/GridTcp/

GridTcp.java Old Added a backup memory
space threshold that defines
how many bytes a GridTcp
connection may store in
memory before backing up
old messages to persistent
storage. Modified to use new
functions modified in
GridConnection. Modified the
receive function to make
incoming packet dequeing
and sleeping an atomic
operation if the packet
returned is null. This is
necessary because if an
enqueue operation is
occurring at the same time as
a dequeue operation, there
may be a readers-writers
problem.

Medusa:
/home/uwagent/agentteamwork-
dev/AgentTeamwork/Ateam/GridTcp/

GridTcpClientTest.java New Tests changes to GridTcp. Medusa:
/home/uwagent/agentteamwork-dev/tests/

GridTcpServerTest.java New Tests changes to GridTcp. Medusa:
/home/uwagent/agentteamwork-dev/tests/

GridUtil.java Old Added a simple method that
retrieves the logon name of
the current user. This is used
when storing backup
messages to disk. (SINCE
REMOVED) Added a new
function that prints all active
threads currently running
within the JVM for debugging
purposes.

Medusa:
/home/uwagent/agentteamwork-
dev/AgentTeamwork/Ateam/GridTcp/

IRecvThread.java Old Reformatting, comments, and
javadoc

Medusa:
/home/uwagent/agentteamwork-dev/MPJ/

ISendThread.java Old Reformatting, comments, and
javadoc

Medusa:
/home/uwagent/agentteamwork-dev/MPJ/

javadoc New Javadoc for all of
AgentTeamwork

Medusa:
/home/uwagent/agentteamwork-dev/doc/

 13

JGF tests Old Eliminated the use of the
jgfutil package so that it
would run correctly. Also
ported PingPongBench and
AllgatherBench to Ateam
programs.

Medusa:
/home/uwagent/agentteamwork-
dev/MPJ/JGF/

JGFMaster.sh, JGFSlave.sh New Runs JGF tests. Medusa:
/home/uwagent/agentteamwork-dev/JGF/

Misc. Script Files New For backup, javadoc
generation, and compilation
of AgentTeamwork

Medusa:
/home/uwagent/agentteamwork-dev/scripts

Misc. Test Files New For testing serialization and
package compilation issues.

Medusa:
/home/uwagent/agentteamwork-dev/tests/

Mpjrun.java Old Reformatting, comments, and
javadoc. Also changed
parameters parsing to look
for new versions of
parameters. (i.e. –slave
instead of –amslave)

Medusa:
/home/uwagent/agentteamwork-dev/MPJ/

Request.java Old Reformatting, comments, and
javadoc. Fixed Illegal Monitor
State bug.

Medusa:
/home/uwagent/agentteamwork-dev/MPJ/

runCommunicatorTest.sh New Launches CommunicatorTest Medusa:
/home/uwagent/agentteamwork-dev/tests/

ServerSocket.java New Wraps GridServerSocket.java Medusa:
/home/uwagent/agentteamwork-
dev/AgentTeamwork/Ateam/

Socket.java New Wraps GridSocket.java Medusa:
/home/uwagent/agentteamwork-
dev/AgentTeamwork/Ateam/

UPWTest.java New Now tests Ateam by
extending the AteamProg
class.

Medusa:
/home/uwagent/agentteamwork-dev/tests/

UserProgWrapper.java Old Added support for new and
old versions of
AgentTeamwork (i.e.-
partitioned and non-
partitioned). Added support
for AteamProg class as well
as instantiation of GridTcp for
Ateam programs. Added
support for AteamProg class
as well as instantiation of
GridTcp for Ateam programs.
Also added a new parameter
for main that accepts a port
number to use when
instantiating GridTcp.

Medusa:
//home/uwagent/agentteamwork-
dev/AgentTeamwork/Ateam/

Table 1. Files created or modified in Phases 1 - 4

Future Project Recommendations

While working on AgentTeamwork I have compiled a short list of some project recommendations
that future contributers might implement. They are:

• Reformatting and commenting of Communicator.java
• Creation of an MPJException class
• Argument checking and informative exception details for MPJ communication methods.

(e.g. – If the user calls Reduce() and receiveBuffer.length < recvCount + recvOffset, an
MPJException is thrown in which this problem is explained).

 14

• I recommend that at some point, large packets be fragmented. This will alleviate many of
the memory issues that occur within GridTcp. Then, the memory threshold for GridTcp
should automatically adjust to be the closest multiple of this packet size. I don’t think it
would be too difficult to implement.

• It may be possible (further research would be necessary) to provide an additional
memory safeguard in GridTcp that would automatically kick in packet backup to disk
when the available memory nearly reaches 0.

• Much more advanced and deeper testing of GridTcp’s new flow control feature

Appendix A – JGFPingPongBench Results After Phase 1

JGFPingPongBench (2 nodes) Results
[jawsh@medusa JGF]$./JGFPingPongBenchM.sh
Running test as the master node..
Master accepted connection from mnode14
Master trying to read slave rank
Master got slave 1
Java Grande Forum MPJ Benchmark Suite - Version 1.0 - Section 1
Executing on 2 processes

Section1:PingPong:Double 83207.11 (bytes/s) Array Size = 4
Section1:PingPong:Double 146332.38 (bytes/s) Array Size = 7
Section1:PingPong:Double 252203.0 (bytes/s) Array Size = 12
Section1:PingPong:Double 333375.16 (bytes/s) Array Size = 21
Section1:PingPong:Double 498347.03 (bytes/s) Array Size = 37
Section1:PingPong:Double 693280.3 (bytes/s) Array Size = 66
Section1:PingPong:Double 816999.06 (bytes/s) Array Size = 116
Section1:PingPong:Double 988616.2 (bytes/s) Array Size = 203
Section1:PingPong:Double 1335713.1 (bytes/s) Array Size = 357
Section1:PingPong:Double 1725792.4 (bytes/s) Array Size = 626
Section1:PingPong:Double 1999292.2 (bytes/s) Array Size = 1098
Section1:PingPong:Double 2238461.0 (bytes/s) Array Size = 1926
Section1:PingPong:Double 2413363.2 (bytes/s) Array Size = 3377
Section1:PingPong:Double 2518161.8 (bytes/s) Array Size = 5921
Section1:PingPong:Double 2889575.2 (bytes/s) Array Size = 10383
Section1:PingPong:Double 3358602.0 (bytes/s) Array Size = 18205
Section1:PingPong:Double 3627869.5 (bytes/s) Array Size = 31921
Section1:PingPong:Double 3869642.8 (bytes/s) Array Size = 55970
Section1:PingPong:Double 3978632.0 (bytes/s) Array Size = 98137
Section1:PingPong:Double 4068196.5 (bytes/s) Array Size = 172072
Section1:PingPong:Double 3946112.0 (bytes/s) Array Size = 301708
Section1:PingPong:Double 4163896.2 (bytes/s) Array Size = 529010
Section1:PingPong:Double 4154209.0 (bytes/s) Array Size = 927557
Section1:PingPong:Double 4179198.0 (bytes/s) Array Size = 1626361
Section1:PingPong:Double 4176685.5 (bytes/s) Array Size = 2851632
Section1:PingPong:Object 6187.311 (objects/s) Array Size = 4
Section1:PingPong:Object 10753.681 (objects/s) Array Size = 7
Section1:PingPong:Object 15419.026 (objects/s) Array Size = 12
Section1:PingPong:Object 20640.951 (objects/s) Array Size = 21
Section1:PingPong:Object 28508.652 (objects/s) Array Size = 37
Section1:PingPong:Object 34111.797 (objects/s) Array Size = 66
Section1:PingPong:Object 39991.246 (objects/s) Array Size = 116
Section1:PingPong:Object 48919.69 (objects/s) Array Size = 203
Section1:PingPong:Object 56271.53 (objects/s) Array Size = 357
Section1:PingPong:Object 61336.14 (objects/s) Array Size = 626
Section1:PingPong:Object 64845.26 (objects/s) Array Size = 1098
Section1:PingPong:Object 67000.41 (objects/s) Array Size = 1926
Section1:PingPong:Object 59539.395 (objects/s) Array Size = 3377
Section1:PingPong:Object 52296.992 (objects/s) Array Size = 5921
Section1:PingPong:Object 47755.086 (objects/s) Array Size = 10383

 15

Section1:PingPong:Object 46578.715 (objects/s) Array Size = 18205
Section1:PingPong:Object 45867.625 (objects/s) Array Size = 31921
Section1:PingPong:Object 46402.402 (objects/s) Array Size = 55970
Section1:PingPong:Object 40905.33 (objects/s) Array Size = 98137
Section1:PingPong:Object 51487.73 (objects/s) Array Size = 172072
Section1:PingPong:Object 50796.867 (objects/s) Array Size = 301708
Section1:PingPong:Object 48337.902 (objects/s) Array Size = 529010
Section1:PingPong:Object 45955.062 (objects/s) Array Size = 927557
Section1:PingPong:Object 44691.297 (objects/s) Array Size = 1626361
Section1:PingPong:Object 48975.234 (objects/s) Array Size = 2851632
MPJRUN_READERTHREAD_EXIT

JGFGatherBench (2 nodes) Results

[jawsh@medusa JGF]$./JGFMaster.sh JGFGatherBench
Running test as the master node..
Master accepted connection from mnode14
Master trying to read slave rank
Master got slave 1
Java Grande Forum MPJ Benchmark Suite - Version 1.0 - Section 1
Executing on 2 processes

Section1:Gather:Double 117553.36 (bytes/s) Array Size = 4
Section1:Gather:Double 311123.78 (bytes/s) Array Size = 7
Section1:Gather:Double 666044.44 (bytes/s) Array Size = 12
Section1:Gather:Double 269537.0 (bytes/s) Array Size = 21
Section1:Gather:Double 715078.75 (bytes/s) Array Size = 37
Section1:Gather:Double 2072781.1 (bytes/s) Array Size = 66
Section1:Gather:Double 1839607.0 (bytes/s) Array Size = 116
Section1:Gather:Double 1987719.8 (bytes/s) Array Size = 203
Section1:Gather:Double 3118889.8 (bytes/s) Array Size = 357
Section1:Gather:Double 3510056.2 (bytes/s) Array Size = 626
Section1:Gather:Double 2622013.0 (bytes/s) Array Size = 1098
Section1:Gather:Double 4705224.0 (bytes/s) Array Size = 1926
Section1:Gather:Double 4990868.5 (bytes/s) Array Size = 3377
Section1:Gather:Double 5192403.0 (bytes/s) Array Size = 5921
Section1:Gather:Double 5792531.5 (bytes/s) Array Size = 10383
Section1:Gather:Double 6576213.0 (bytes/s) Array Size = 18205
Section1:Gather:Double 7094325.5 (bytes/s) Array Size = 31921
Section1:Gather:Double 7452962.5 (bytes/s) Array Size = 55970
Section1:Gather:Double 7635612.0 (bytes/s) Array Size = 98137
Section1:Gather:Double 7756723.5 (bytes/s) Array Size = 172072
Section1:Gather:Double 7679949.0 (bytes/s) Array Size = 301708
Section1:Gather:Double 7894291.0 (bytes/s) Array Size = 529010
Section1:Gather:Double 7897252.5 (bytes/s) Array Size = 927557
Section1:Gather:Double 7902749.0 (bytes/s) Array Size = 1626361
Section1:Gather:Double 7903362.5 (bytes/s) Array Size = 2851632
Section1:Gather:Object 13875.927 (objects/s) Array Size = 4
Section1:Gather:Object 24349.895 (objects/s) Array Size = 7
Section1:Gather:Object 8909.189 (objects/s) Array Size = 12
Section1:Gather:Object 28181.178 (objects/s) Array Size = 21
Section1:Gather:Object 72765.336 (objects/s) Array Size = 37
Section1:Gather:Object 85820.95 (objects/s) Array Size = 66
Section1:Gather:Object 91725.09 (objects/s) Array Size = 116
Section1:Gather:Object 114695.91 (objects/s) Array Size = 203
Section1:Gather:Object 133492.06 (objects/s) Array Size = 357
Section1:Gather:Object 132060.98 (objects/s) Array Size = 626
Section1:Gather:Object 153035.53 (objects/s) Array Size = 1098
Section1:Gather:Object 160932.19 (objects/s) Array Size = 1926
Section1:Gather:Object 162548.1 (objects/s) Array Size = 3377
Section1:Gather:Object 161381.53 (objects/s) Array Size = 5921
Section1:Gather:Object 157935.11 (objects/s) Array Size = 10383
Section1:Gather:Object 162510.64 (objects/s) Array Size = 18205
Section1:Gather:Object 160659.33 (objects/s) Array Size = 31921
Section1:Gather:Object 159316.84 (objects/s) Array Size = 55970
Section1:Gather:Object 148523.64 (objects/s) Array Size = 98137
Section1:Gather:Object 126302.96 (objects/s) Array Size = 172072
Section1:Gather:Object 115342.83 (objects/s) Array Size = 301708

 16

Section1:Gather:Object 121131.15 (objects/s) Array Size = 529010
Section1:Gather:Object 118280.67 (objects/s) Array Size = 927557
Section1:Gather:Object 98501.664 (objects/s) Array Size = 1626361
Section1:Gather:Object 108741.305 (objects/s) Array Size = 2851632
MPJRUN_READERTHREAD_EXIT

JGFGatherBench (4 nodes) Results

[jawsh@medusa JGF]$./JGFMaster.sh JGFGatherBench 4
Running test as the master node..
Master accepted connection from mnode14
Master trying to read slave rank
Master got slave 1
Master accepted connection from mnode15
Master trying to read slave rank
Master got slave 2
Master accepted connection from mnode16
Master trying to read slave rank
Master got slave 3
Java Grande Forum MPJ Benchmark Suite - Version 1.0 - Section 1
Executing on 4 processes

Section1:Gather:Double 118096.18 (bytes/s) Array Size = 4
Section1:Gather:Double 243305.22 (bytes/s) Array Size = 7
Section1:Gather:Double 165251.52 (bytes/s) Array Size = 12
Section1:Gather:Double 347451.66 (bytes/s) Array Size = 21
Section1:Gather:Double 595562.3 (bytes/s) Array Size = 37
Section1:Gather:Double 1214481.5 (bytes/s) Array Size = 66
Section1:Gather:Double 1433020.9 (bytes/s) Array Size = 116
Section1:Gather:Double 1226722.8 (bytes/s) Array Size = 203
Section1:Gather:Double 1779596.2 (bytes/s) Array Size = 357
Section1:Gather:Double 1914933.5 (bytes/s) Array Size = 626
Section1:Gather:Double 1514023.9 (bytes/s) Array Size = 1098
Section1:Gather:Double 1985502.0 (bytes/s) Array Size = 1926
Section1:Gather:Double 1021957.3 (bytes/s) Array Size = 3377
Section1:Gather:Double 1782479.5 (bytes/s) Array Size = 5921
Section1:Gather:Double 1386385.8 (bytes/s) Array Size = 10383
Section1:Gather:Double 1801151.8 (bytes/s) Array Size = 18205
Section1:Gather:Double 1170490.0 (bytes/s) Array Size = 31921
Section1:Gather:Double 2097236.5 (bytes/s) Array Size = 55970
Section1:Gather:Double 1842948.4 (bytes/s) Array Size = 98137
Section1:Gather:Double 2228483.5 (bytes/s) Array Size = 172072
Section1:Gather:Double 2042881.1 (bytes/s) Array Size = 301708
Section1:Gather:Double 2272562.8 (bytes/s) Array Size = 529010
Section1:Gather:Double 2453246.0 (bytes/s) Array Size = 927557
Section1:Gather:Double 2528841.2 (bytes/s) Array Size = 1626361
Section1:Gather:Double 2564129.0 (bytes/s) Array Size = 2851632
Section1:Gather:Object 6839.4907 (objects/s) Array Size = 4
Section1:Gather:Object 11314.917 (objects/s) Array Size = 7
Section1:Gather:Object 15542.135 (objects/s) Array Size = 12
Section1:Gather:Object 27213.795 (objects/s) Array Size = 21
Section1:Gather:Object 35794.047 (objects/s) Array Size = 37
Section1:Gather:Object 41825.016 (objects/s) Array Size = 66
Section1:Gather:Object 45528.555 (objects/s) Array Size = 116
Section1:Gather:Object 54836.64 (objects/s) Array Size = 203
Section1:Gather:Object 59466.125 (objects/s) Array Size = 357
Section1:Gather:Object 58890.582 (objects/s) Array Size = 626
Section1:Gather:Object 51947.516 (objects/s) Array Size = 1098
Section1:Gather:Object 43178.562 (objects/s) Array Size = 1926
Section1:Gather:Object 42033.938 (objects/s) Array Size = 3377
Section1:Gather:Object 59493.523 (objects/s) Array Size = 5921
Section1:Gather:Object 62220.227 (objects/s) Array Size = 10383
Section1:Gather:Object 57851.043 (objects/s) Array Size = 18205
Section1:Gather:Object 59429.37 (objects/s) Array Size = 31921
Section1:Gather:Object 62483.953 (objects/s) Array Size = 55970
Section1:Gather:Object 59571.742 (objects/s) Array Size = 98137
Section1:Gather:Object 56177.605 (objects/s) Array Size = 172072

 17

Section1:Gather:Object 52466.395 (objects/s) Array Size = 301708
Section1:Gather:Object 50729.766 (objects/s) Array Size = 529010
Section1:Gather:Object 49981.516 (objects/s) Array Size = 927557
Section1:Gather:Object 47647.76 (objects/s) Array Size = 1626361
Section1:Gather:Object 49024.066 (objects/s) Array Size = 2851632
MPJRUN_READERTHREAD_EXIT

JGFGatherBench (8 nodes) Results

[jawsh@medusa JGF]$./JGFMaster.sh JGFGatherBench 8
Running test as the master node..
Master accepted connection from mnode14
Master trying to read slave rank
Master got slave 1
Master accepted connection from mnode15
Master trying to read slave rank
Master got slave 2
Master accepted connection from mnode16
Master trying to read slave rank
Master got slave 3
Master accepted connection from mnode17
Master trying to read slave rank
Master got slave 4
Master accepted connection from mnode18
Master trying to read slave rank
Master got slave 5
Master accepted connection from mnode19
Master trying to read slave rank
Master got slave 6
Master accepted connection from mnode20
Master trying to read slave rank
Master got slave 7
Java Grande Forum MPJ Benchmark Suite - Version 1.0 - Section 1
Executing on 8 processes

Section1:Gather:Double 90068.375 (bytes/s) Array Size = 4
Section1:Gather:Double 110184.22 (bytes/s) Array Size = 7
Section1:Gather:Double 124140.805 (bytes/s) Array Size = 12
Section1:Gather:Double 415160.2 (bytes/s) Array Size = 21
Section1:Gather:Double 381863.3 (bytes/s) Array Size = 37
Section1:Gather:Double 597840.5 (bytes/s) Array Size = 66
Section1:Gather:Double 709489.1 (bytes/s) Array Size = 116
Section1:Gather:Double 567956.3 (bytes/s) Array Size = 203
Section1:Gather:Double 939461.6 (bytes/s) Array Size = 357
Section1:Gather:Double 186737.75 (bytes/s) Array Size = 626
Section1:Gather:Double 153171.03 (bytes/s) Array Size = 1098
Section1:Gather:Double 230507.72 (bytes/s) Array Size = 1926
Section1:Gather:Double 148007.53 (bytes/s) Array Size = 3377
Section1:Gather:Double 282767.66 (bytes/s) Array Size = 5921
Section1:Gather:Double 309813.84 (bytes/s) Array Size = 10383
Section1:Gather:Double 500400.5 (bytes/s) Array Size = 18205
Section1:Gather:Double 577960.0 (bytes/s) Array Size = 31921
Section1:Gather:Double 748840.8 (bytes/s) Array Size = 55970
Section1:Gather:Double 766976.2 (bytes/s) Array Size = 98137
Section1:Gather:Double 885756.3 (bytes/s) Array Size = 172072
Section1:Gather:Double 954961.0 (bytes/s) Array Size = 301708
Section1:Gather:Double 1024158.75 (bytes/s) Array Size = 529010
Section1:Gather:Double 1061126.2 (bytes/s) Array Size = 927557
Section1:Gather:Double 1083789.1 (bytes/s) Array Size = 1626361
Section1:Gather:Double 1106624.1 (bytes/s) Array Size = 2851632
Section1:Gather:Object 2466.9126 (objects/s) Array Size = 4
Section1:Gather:Object 5086.8447 (objects/s) Array Size = 7
Section1:Gather:Object 7473.316 (objects/s) Array Size = 12
Section1:Gather:Object 9353.632 (objects/s) Array Size = 21
Section1:Gather:Object 16525.133 (objects/s) Array Size = 37
Section1:Gather:Object 22362.146 (objects/s) Array Size = 66

 18

Section1:Gather:Object 23542.562 (objects/s) Array Size = 116
Section1:Gather:Object 26687.893 (objects/s) Array Size = 203
Section1:Gather:Object 7295.019 (objects/s) Array Size = 357
Section1:Gather:Object 8786.446 (objects/s) Array Size = 626
Section1:Gather:Object 9501.994 (objects/s) Array Size = 1098
Section1:Gather:Object 10912.182 (objects/s) Array Size = 1926
Section1:Gather:Object 15238.525 (objects/s) Array Size = 3377
Section1:Gather:Object 18621.326 (objects/s) Array Size = 5921
Section1:Gather:Object 23887.842 (objects/s) Array Size = 10383
Section1:Gather:Object 26324.447 (objects/s) Array Size = 18205
Section1:Gather:Object 22733.73 (objects/s) Array Size = 31921
Section1:Gather:Object 22161.947 (objects/s) Array Size = 55970
Section1:Gather:Object 23164.64 (objects/s) Array Size = 98137
Section1:Gather:Object 23616.799 (objects/s) Array Size = 172072
Section1:Gather:Object 22535.703 (objects/s) Array Size = 301708
Section1:Gather:Object 23192.021 (objects/s) Array Size = 529010
Section1:Gather:Object 23427.297 (objects/s) Array Size = 927557
Section1:Gather:Object 23066.332 (objects/s) Array Size = 1626361
Section1:Gather:Object 23336.35 (objects/s) Array Size = 2851632
MPJRUN_READERTHREAD_EXIT

Appendix B – Example Ateam User Program

import AgentTeamwork.Ateam.*;

public class UPWTest extends AteamProg {

 private int phase;
 public int[] intBuf;
 public int x;

 // blank const for Ateam
 public UPWTest(Object o) { }

 public UPWTest() {
 phase = 0;
 x = 0;
 }

 private void userRecovery() {
 try {
 phase = ateam.getSnapshotId();
 } catch (Exception e) {
 e.printStackTrace();
 System.exit(1);
 }
 }

 // does nothing but change the values of an array, and take a
 // snapshot after each change
 private void compute() {
 try {
 intBuf = new int[100];
 for(int i = phase; i < 100; i++) {
 for(int j = 0; j < intBuf.length; j++) {
 intBuf[j] = i;
 x++;
 }
 System.out.println("Taking a snapshot");
 ateam.takeSnapshot(i);
 }
 System.out.println("Finished execution!");
 } catch (Exception e) {
 e.printStackTrace();
 System.exit(1);
 }
 }

 public static void main(String[] args) {
 UPWTest program = null;
 if (ateam.isResumed()) {

 19

 program = (UPWTest) ateam.retrieveLocalVar("program");
 program.userRecovery();
 } else {
 program = new UPWTest();
 ateam.registerLocalVar("program", program);
 }
 program.compute();
 }
}

Appendix C – Explanation of Source Development
Tree

+---+
| AGENT TEAMWORK DEVELOPMENT TREE |
| A detailed explanation |
| |
| Author - Joshua Phillips (jawsh@u.washington.edu) |
| Version - 11/02/2006 |
+---+

This is the root directory of the AgentTeamwork Development tree. All source
code should be compiled from this directory. This will allow the java compiler
to easily find all imported packages.

---- DIRECTORY STRUCTURE ----

Note that MPJ and UWAgent packages reside outside of the AgentTeamwork package
because they can be used as stand-alone packages.

The structure of this development tree is as follows:

agentteamwork-dev
 |
 +----AgentTeamwork
 | |
 | +----Agents
 | |
 | +----Ateam
 | |
 | +----GridFile
 | |
 | +----GridTcp
 |
 +----MPJ
 | |
 | +----JGF
 |
 +----UWAgent
 |
 +----jars
 |
 +----tests
 |
 +----scripts

Each package directory (e.g. AgentTeamwork/Ateam/GridFile is organized in the following
manner:

 * package source files (NOTE: Nothing but SOURCE files and DIRECTORIES should be
 placed in a package directory)
 * "other" directory - contains scripts, backups, and documentation

---- PACKAGES ----

AgentTeamwork.Agents:

Contains all agents: Commander, Sentinel, Bookkeeper, etc.
AgentTeamwork.Ateam.GridFile:
 Contains the GridFile classes for an error recoverable file.

 20

AgentTeamwork.Ateam.GridTcp:
Contains the GridTcp classes for an error recoverable TCP connection.

MPJ:
Contains all classes for MPJ (Message Passing Java).

UWAgent:
 Contains all classes for UWAgent, the mobile agents that AgentTeamwork relies on.

---- OTHER ----

Please note that all tests should be placed in the "tests" folder, NOT in source
directories.
The "jars" folder contains all of the compiled and archived packages.
The "scripts" folder can contain backup scripts and compiling scripts.

---- SCRIPTS ----
Within the scripts folder are maintenance scripts for backup, compilation, archiving, and
cleaning of the AgentTeamwork development tree. There are scripts for compiling specific
packages and for the entire dev tree:

 - compileAndPack********.sh
 Compiles that specific package, places all class files into a jar
 file the /agentteamworrk-dev/jars directory and cleans the package
 directory by removing class files.
 - compileAndPackAllPackages.sh
 Compiles, packs, and cleans every package in the AgentTeamwork dev-
 tree. All package jar files are placed in the /agentteamwork-
 dev/jars directory.

References

1. Sun’s Javadoc Guide

[http://java.sun.com/j2se/javadoc/writingdoccomments]

