
1

AgentTeamwork
Enhancing Communication and File I/O

Joshua Phillips (University of Washington, Bothell)
Advisor: Professor Munehiro Fukuda

2007

•Name
•Sponsor
•Title and project
•Japan for 5 months
•Disclaimer about random photos

2

Outline
1. AgentTeamwork Background
2. Fixing MPJ
3. Simplifying a User Program
4. Enhancing GridTcp
5. GridTcp Performance
6. Enhancing File I/O
7. File I/O Performance
8. Conclusions

•7 things to cover today
•Roughly 6 phases

3

AgentTeamwork Background
• AgentTeamwork is a grid-computing

middleware system that dispatches a user
application with mobile agents to a collection of
remote computers. User processes running on
a different computer are monitored, moved,
and resumed by those mobile agents.

•Grid-computing middleware
•Uses mobile agents to run, manage, and recover jobs
•100% java
•NSF funded
•UW Sponsored
•Developed in collaboration with Ehime University

4

AgentTeamwork Background (cont)

Operating systems

UWAgents mobile agent execution platform

Commander, resource, sentinel, and bookkeeper agents

User program wrapper

GridTcpJava socket

mpiJava-AmpiJava-S

mpiJava API

Java user applications

AgentTeamwork Execution Layers

•Execution layers
•See the parts I worked on in red

5

User program wrapper
AteamProg GridTCP

MPJ

User program wrapper
GridTCP AteamProg

MPJ

User program wrapper
GridTCPAteamProg

MPJ

AgentTeamwork Background (cont)

FTP
Server

User
A

User
B

snapshotsnapshot

snapshots snapshots

snapshot

User A’s
Process

User A’s
Process

User B’s
Process

TCP
Communication

Commander
Agent

Commander
Agent

Sentinel
Agent

Sentinel
Agent

Resource
Agent

Sentinel
Agent

Resource
Agent

Bookkeeper
Agent

Bookkeeper
Agent

ResultsResults

Components relevant to my work are labeled in RED.

Random
Access

File

Random
Access

File

Random
Access

File

•An ftp server and
•7 hosts make up our system
•A commander agent is launched from the user machine
•Which then spawns a resource agent to locate the best host
•The commander agent then spawns sentinel agents on those hosts
•And bookkeeper agents to manage snapshots on other hosts
•Any files are then split appropriately and sent to the correct nodes
•The user processes are launched
•A snapshot is periodically generated
•And sent to the bookkeeper agents
•Any results are generated and returned to the user

6

Fixing MPJ
• Debugged errors that caused JGF Benchmark

tests to fail
• Reformatted code to improve maintainability
• Generated JavaDoc

7

Fixing MPJ (cont)

Before

After

Top: Code before reformatting
Bottom: Code after reformatting

8

Fixing MPJ (cont)

JavaDoc

9

Simplifying a User Program
• A user program now must only extend AteamProg
• No need to explicitly define required AgentTeamwork

members
• No need to partition a user program into functions.

Just call takeSnapshot()
• No need to use specialized I/O classes. GridFile

streams and GridTcp connections have been wrapped
with standard I/O names and methods.

•By extending AteamProg, a user program:
•Does not have to explicitly define required AgentTeamwork members
•Does not need to partition a user program for check-pointing. They can just
call takeSnapshot
•Does not need to use specialized I/O classes, “Standard” classes can be used

10

Simplifying a User Program (cont)

A user program
before AteamProg

Before ateam prog:
Note:
•the heavy amount of “system required” members
•And the partitioning

11

Simplifying a User Program (cont)

A user program
after AteamProg

No partitioning, no member variables,

However, There must be a system reserved constructor: this allows the User Program
Wrapper to instantiate the necessary members before a user attempts to use them in
his/her constructor

12

Enhancing GridTcp
• Memory Management:

Because GridTcp is error recoverable it often contains
a large amount of backup data. This data can easily
cause OutOfMemoryErrors if left unchecked. The new
version of GridTcp automatically limits the amount of
in memory messages.

• Flow Control:
To prevent a GridTcp
object from becoming too
overloaded, I have
implemented simple
flow control.

•Two major aspects of grid tcp enhancement:
•Memory mangement:

•if a user takes a snapshot frequently, a large amount of saved
messages can quickly fill up memory, so now we write them to disk

•Flow control:
•Prevent a gridtcp object from becoming too overloaded client requests

13

Enhancing GridTcp (cont)
GridTcp Memory Management
Flowchart

•Every user program has a single GridTcp object that manages many gridconnections
•to fairly manage memory between all grid connections and eliminate wasteful
polling, java events were used
•When a packet is received :
•It is added to the appropriate queue (incoming, forwarding, backup)
•A memory change event is then generated
•GridTcp calculates the individual thresholds for each connection
•Passes them this limit
•The grid connections then write the oldest packets to disk until the threshold is
cleared
•To simplify this procedure and ensure the on-disk messages are recoverable, I created
DiskVector:

•A List class that uses a disk for a backing store and overwrites
serialization/deserialization methods to include on disk files

14

Enhancing GridTcp (cont)
Client Server

Data 1

Data 2

Data 3

PAUSE ACK

RESUME ACK

Data 3

Data 4

Data 5

Data 6

ACK 1

ACK 2

PAUSE

PAUSE

RESUME

RESUME

RESUME

ACK 3

ACK 4

ACK 5

ACK 6

FC

FC

Outgoing
Queue

Data 4

Data 5

Data 6

 Key

 Data Packet
 ACK
 Flow Control Packet
 Flow Control Thread FC

GridTcp Flow Control
Timechart

•Very simple flow control that pauses a client when the server is overloaded, and
resumes it when it’s not

15

GridTcp Performance
• In testing the changes to

GridTcp I found that
memory usage shrank
significantly. However,
through the use of JProfiler,
I have determined that
there is a memory leak
unrelated to my changes.

• Even though Java is a
managed language, if a
reference to an object does
not get removed, it’s
memory is not freed.

•Message management was successful, but there is still an unrelated memory leak in
GridTcp which can cause it to crash
•Java is a managed language, but if references to an object are not removed, the
Garbage collector cannot free that memory
•I used JProfiler (profiling tool) to discover the memory leak but the layers are too
complicated in AgentTeamwork and I did not have time to locate the leak

16

Enhancing File I/O
• Implemented a serializable, distributed

RandomAccessFile
• Behaves exactly like the Java API’s

RandomAccessFile
• Each node in a

system owns a
user-defined
stripe of the file
but has a
transparent
virtual view of
thewhole file

•Previously, Ateam’s recoverable I/O was limited to a stream
•Now we have a RAF that behaves just like the Java API version.
•Each node owns a user-defined “stripe”
•But maintains a virtual view of the whole file
•If data is requested that does not reside locally, it is transparently transferred

17

Enhancing File I/O (cont)

Sentinel 1 Sentinel 2 Sentinel 3

Commander

0,1,6,7,12,
13,18,19,24,

25

2,8,14,20,
26

3,4,5,9,10,
11,15,16,17,
21,22,23,27,

28,29

Virtual File

read(11 – 18)

USER BUFFER

1 2 3 4 5 6 7 80

10

9

19

20 21 22 23 24 25 26 27 28 29

11 15 16 171412 13 18

11 15 16 171412 13 18

11 12 13 14 15 16 17 18

A sample
RandomAccessFile
read() call

18

File I/O Performance
• Comparison of a file-stripe transfer with an entire file

transfer
• The file-stripe transfer has yielded 1.35 and 4.5 times

better performance than the entire file transfer when
sending a
256MB file

•left graph is the performance difference in an entire file transfer and file-stripe
transfer within AgentTeamwork
•Right graph is the performance difference between SUNFS file transfer and
AgentTeamwork file transfer

19

Conclusions
• AgentTeamwork is now easier to use and I/O is

significantly simpler, more capable and more
efficient

• Major skills developed/used:
• Multithreaded

programming/debugging
• Serialization
• Object-oriented fundamentals

(polymorphism/inheritance)
• Knowledge of network stacks

and TCP
• Java reflection
• Algorithm optimization

20

Questions
• Thank you!
• Any questions?

