

Enhancing GridTcp
GridTcp is an error-recoverable transmission protocol that continuously saves old and in-transit messages for
recovery. The frequency of taking execution snapshots depends on the duration of each func_X in a partitioned
user program or the call frequency of takeSnapshot in an AteamProg user program. Therefore, GridTcp often
maintained too many old messages in memory which resulted in a quick OutOfMemory crash.

To allieviate this problem GridTcp was enhanced to:

 ● Manage its own memory usage by writing any older messages above a specified threshold to disk and
 loading those messages into memory automatically when the threshold is cleared
 ● Use a simple flow control that “pauses” a client sending messages when the server becomes over-
 loaded and “resumes” the client when not

Memory Management

All AgentTeamwork programs have a single GridTcp object that manages multiple GridConnections (the core of
a GridSocket). Each GridConnection maintians multiple queues to organize it’s messages (e.g. - outgoing, in-
coming, forwarding and backup). To allow a GridTcp object to fairly manage memory between all of its GridCon-
nections without continuously polling them and therefore wasting CPU cycles, memory management was de-
signed with Java events. To ensure that on-disk messages are included in snapshots, the DiskVector class was
created. DiskVector behaves like Java’s Vector class with the exception that its elements are stored in files.
DiskVector’s serialization/deserialization methods have been overridden to include these files in memory when a
snapshot is created.

GridTcp

GridConnection GridConnectionGridConnection

Packet
Received

Mem
Change
Event

Send
memory

limit
Send

memory
limit

Send
memory

limit

Add to
appropriate

queue

Write/read packets to/
from disk until mem limit

is cleared/reached

Write/read packets to/
from disk until mem limit

is cleared/reached

Write/read packets to/
from disk until mem limit

is cleared/reached

11..
22..

33..

55..

44..
44..44..

55.. 55..

Flow Control

GridTcp’s flow control simply pauses a client’s message sending when its memory is overloaded and resumes it
when it is not.

Client Server

Data 1

Data 2

Data 3

PAUSE ACK

RESUME ACK

Data 3

Data 4

Data 5

Data 6

ACK 1

ACK 2

PAUSE

PAUSE

RESUME

RESUME

RESUME

ACK 3

ACK 4

ACK 5

ACK 6

TIM
E

FC

FC

Outgoing
Queue

Data 4

Data 5

Data 6

 Key

 Data Packet
 ACK
 Flow Control Packet
 Flow Control Thread FC

Test Results

Testing GridTcp after the modifications were made proved that the enchancements successfully limited the
amount of queued messages to the threshold specified by a user. However, a “memory leak” unrelated to these
modifications was discovered that, over time, ocasionally causes a crash. Due to the time contraints of the proj-
ect and the complexity of locating the leak in AgentTeamwork’s many layers, this problem has been left for a
future project.

Enhancing File I/O

Commander

0,1,6,7,12,
13,18,19,24,

25

2,8,14,20,
26

3,4,5,9,10,
11,15,16,17,
21,22,23,27,

28,29

Virtual File
read(11 – 18)

USER BUFFER

1 2 3 4 5 6 7 80

10

9

19

20 21 22 23 24 25 26 27 28 29

11 15 16 171412 13 18

11 12 13 14 15 16 17 1811 12 13 14 15 16 17 18

 300

 200

 100

 300 250 200 150 100 50 0

tra
ns

fe
r t

im
e

(s
ec

)

file size (Mbytes)

Entire file transfer in 1M blocks
File stripe transfer in 1M blocks

Test Results

The figure below compares this file-stripe transfer with an entire file transfer, both fragmented in 1M-byte parti-
tions. The file-stripe transfer has yielded 1.35 and 4.5 times better performance than the entire file transfer and
Sun NFS respectively when sending a 256 MB random access file. Performance increases with larger file sizes
and a larger amount of nodes in the system.

Originally, the only recoverable file I/O that AgentTeamwork provided to a user program was GridFileInput-
Stream and GridFileOutputStream. These components were limited in that they could only present a user with
a stream of bytes; that is, random access to the bytes was not possible. AgentTeamwork’s RandomAccessFile
was created to remove this restriction.

RandomAccessFile is a recoverable, distributed file where each node in the system receives only a “stripe” of
the whole file yet maintains a virtual view of that file. Ateam’s RandomAccessFile implements both the Java I/O
DataOutput and DataInput interfaces so it can be treated just as if it were the Java API RandomAccessFile. If a
node requests data that it owns locally, it simply reads from that partition. If it requests or submits data remotely,
that data is transferred transparently between nodes. These read/write operations are atomic and to help a user
maintain strict ordering, RandomAccessFile offers a blocking, collective method called barrier.

The striping model (based on the MPI-IO standard’s file view) allows a node to specify the data they will most
likely access the most. This provides quick access to the most heavily used data and significantly reduces the
network bandwidth required to send whole, replicated files to every node in the system.

An example RandomAccessFile striping scheme in a system of three nodes.

Node 0

Node 1

Node 2

Actual
File

A sample RandomAccessFile
read() call in an AgentTeamwork
system.

User Buffer

Sentinel 0 Sentinel 2Sentinel 1

Introducing AgentTeamwork

-A-A

Operating systems

UWAgents mobile agent execution platform

Commander, resource, sentinel, and bookkeeper agents

User program wrapper

GridTcpJava socket

mpiJavampiJava-S mpiJavampiJava-S

mpiJava API

Java user applications

User program wrapper
AteamProg GridTCP

MPJ

User program wrapper
AteamProg

User program wrapper

AteamProg GridTCP

MPJMPJ

User program wrapper
GridTCP AteamProg

MPJ

User program wrapper
GridTCP AteamProg

MPJMPJ

User program wrapper
GridTCPAteamProg

MPJ

User program wrapper
GridTCPAteamProg

User program wrapper

GridTCPAteamProg

MPJ

FTP
Server
FTP

Server

User
A

User
A

User
B

User
B

User
B

User A’s
Process

User A’s
Process

User B’s
Process

TCP
Communication

Commander
Agent

Sentinel
Agent

Sentinel
Agent

Resource
Agent

Sentinel
Agent

Bookkeeper
AgentBookkeeper

Agent

Random
Access

File

Random
Access

FileCommander
Agent

Resource
Agent

MPJ

AgentTeamwork is a grid-computing middleware
system that dispatches a user application with
mobile agents to a collection of remote comput-
ers. User processes running on a different com-
puter are monitored, moved, and resumed by
those mobile agents.

The purpose of this project was to make
AgentTeamwork easier to use and
increase the simplicity, capability, and
efficiency of its I/O components.

AgentTeamwork’s execution layers (left) and system overview
(above). AgentTeamwork components relative to this project
are labled in RED.

Fixing MPJ
● Debugged errors that caused JGF (Java Grande Forum) Benchmark tests to fail.
● Reformatted code to improve maintainability.
● Generated JavaDoc.

Simplifying a User Program
Originally, creating an AgentTeamwork user program was somewhat clumsy. The user was required to define
specific member variables for use by AgentTeamwork’s user program wrapper. Also, Java does not allow
access to a process’s program counter, so for a desiginated mobile agent to truly capture a user program’s ex-
ecution state, it was necessary to partition the program into discreet functions (e.g. - func_0, func_1, etc.). The
user program wrapper would then call each function consecutively after first generating a snapshot.

To simplify AgentTeamwork’s user programs, AteamProg was created: an abstract class that, if extended, sup-
ports a user program by:

 ● Eliminating the need to explicitly define required AgentTeamwork members.
 ● Eliminating the need to partition a user program for snapshots.
 ● Eliminating the need to use specialized I/O classes. GridFile streams and
 GridTcp connections have been wrapped with standard I/O names and methods.
 ● Providing user-initiated snapshots through the takeSnapshot method.
 ● Providing non-member variable serialization/deserialization through the
 registerLocalVar and retrieveLocalVar methods.

import AgentTeamwork.Ateam.*;
public class MyApplication extends AteamProg {
 private int phase; // snapshot management
 private FileInputStream fis; // a user input stream
 private Socket sock; // a user socket
 public MyApplication(Object o){} // system reserved

 public MyApplication() { // user constructor
 phase = 0;
 fis = new FileInputStream(); // create input stream
 sock = new Socket(3,22418); // create socket
 }

 private void compute() { // user computation
 int data = fis.read(); // read a byte of data
 InputStream is = sock.getInputStream(); // create a socket stream
 ateam.takeSnapshot(phase); // check-pointing
 ...;
 fis.close(); // close file stream
 gsock.close(); // close socket
 }

 private boolean userRecovery() {
 phase = ateam.getSnapshotId(); // version check
 }

 public static void main(String[] args) {
 MyApplication program = null;
 if (ateam.isResumed()) { // program resumption
 program = (MyApplication)
 ateam.retrieveLocalVar("program");
 program.userRecovery();
 } else { // program initialization
 MPI.Init(args); // javaMPI invoked
 program = new MyApplication();
 ateam.registerLocalVar("program", program);
 }
 program.compute(); //now go to computation
 }
}

import java.io.*; import AgentTeamwork.Ateam.GridFile.*;
import AgentTeamwork.Ateam.GridTcp.*;
public class MyApplication implements Serializable {
 public GridIpEntry ipEntry[]; // system required
 public int funcId; // system required
 public GridTcp tcp; // system required
 public GridFile gridfile; // system required
 public int nprocess; // system required
 public int rank; // system required
 private GridFileInputStream gfis; // a user input stream
 private GridSocket gsock; // a user socket

 public int func_0(String args[]) { // constructor
 gfis = new GridFileInputStream(gridfile); // create input stream
 gsock = new GridSocket(3,22418, tcp); // create socket
 ...;
 return 1; // calls func_1()
 }

 public int func_1() { // called from func_0
 int data = gfis.read(); // read a byte of data
 InputStream is = gsock.getInputStream(); // create a socket stream
 ...;
 return 2; // calls func_2()
 }

 public int func_2() { // called from func_2,
 gfis.close(); // close file stream
 gsock.close(); // close socket
 ...;
 return -2; // application terminated
 } }

An AgentTeamwork
user program
before AteamProg
(top) and after
(bottom). Note the
partitioning and
specialized member
variables of the old
method.

Using Education
Major Technical Skills Applied:

● Parallel programming
● The MPI API
● Multithreaded modeling, programming, and debugging
● Understanding of network stacks and TCP
● OO Programming: interfaces, abstract classes,
 method overriding, etc.
● Understanding of Java, specificially: Serialization,
I/O, streams, the Virtual Machine, packages,
 compilation, JavaDoc, reflection
● Linux shell scripting
● Technical writing
● Good commenting practices
● Code reading
● Modifying pre-existing, large, complex software
 systems
● Locating performance bottlenecks / algorithm
 optimization

Major Core Competencies used:

● Information Gathering
● Systematic Thinking
● Thoroughness
● Creativity
● Learning by Doing
● Collaboration & Team Building
● Leadership
● Writing
● Speaking
● Listening
● Managing Change & Uncertainty
● Decision-Making

Enhancing Communication and File I/O in AgentTeamworkEnhancing Communication and File I/O in AgentTeamwork

Joshua Phillips (jawsh@u.washington.edu) Dr. Munehiro Fukuda (mfukuda@u.washington.edu)Joshua Phillips (jawsh@u.washington.edu) Dr. Munehiro Fukuda (mfukuda@u.washington.edu)

University of Washington, Bothell Computing and Software Systems 497 Colloquium 2007University of Washington, Bothell Computing and Software Systems 497 Colloquium 2007

