

AgentTeamwork
Final Report

Enhancing Communication and File I/O

Joshua Phillips
University of Washington, Bothell &

愛媛大学 (Ehime University)
0222418

12/16/06 – 02/28/07

 2

Table of Contents

Table of Contents .. 2
Major Accomplishments ... 3

Phase 5 - Enhancement/Implementation of File I/O in AgentTeamwork 3
Figure 1. Version 1 of Ateam’s RandomAccessFile and an example read. 4

Phase 6 – Enhancement of RandomAccessFile.java ... 4
Figure 2. A sample RAFPartitionInfo. .. 5
Figure 3. An example of RandomAccessFile’s partitioning scheme with a 7 byte filetype and
4 nodes. .. 6
Figure 4. An example of RandomAccessFile’s partitioning scheme utilizing an initial
displacement... 6
Figure 5. Temporary data structure for fast file-partitioning... 7
Figure 6. The read local partition algorithm pseudo-code. .. 8

Phase 7 – File I/O Performance Evaluation and Conference Paper Submission....................... 8
Figure 7. The comparison of transferring a whole file and transferring a partitioned file in
Agent Teamwork... 9

Skills Used and Developed... 9
Next Steps .. 10
Files Created and Modified... 10

Table 1. Files created or modified in Phases 1 - 7 .. 13
Future Project Recommendations ... 13
Appendix A – RandomAccessFile Functionality Test 1 ... 14
Appendix B – RandomAccessFile Functionality Test 2 ... 16
References ... 17

 3

Major Accomplishments

My contributions to AgentTeamwork are divided into seven discrete phases, four of which have
been completely detailed in my midterm report and the final three which are described in this
document. Each of those three phases and the major accomplishments they realized are listed in
detail:

Phase 5 - Enhancement/Implementation of File I/O in AgentTeamwork

Phase 5 was split into three small parts. The first task was to merely create simple wrapper
classes for GridInputStream and GridOutputStream in the Ateam package that mimic the Socket
and ServerSocket wrapper classes: they simply simplify user programs and porting by allowing a
user to instantiate AgentTeamwork’s I/O classes while still using the names and methods found in
the Java API. This was accomplished by simply extending the AgentTeamwork versions and
creating a constructor that accessed the user program’s GridTcp and GridFile objects via
AteamProg’s static Ateam member. With the exception of the user program extending from
AteamProg this is all transparent to the user.

The second task was modify AgentTeamwork’s GUI to allow a user to specify which file should be
delivered to each MPI rank. My only contribution was creating the algorithm that partitions the file
according to the user’s specification; Jumpei implemented the actual transfer algorithm.

Thirdly, I created the first implementation of AgentTeamwork’s specialized RandomAccessFile.
Ateam’s RandomAccessFile is a distributed file where each node in the system receives only a
partition of the whole file yet maintains a virtual view of the whole file. Ateam’s
RandomAccessFile implements both the Java I/O DataOutput and DataInput interfaces so it can
be treated just as if it were the Java I/O RandomAccessFile. If a node requests data that it owns
locally, it simply reads from that partition, but if it requests or submits data remotely, that data is
transferred transparently between nodes. It is important to note that while these read/write
operations are atomic there is no protocol for ordering; the user program must develop its own
mechanism for ensuring that network delays do not alter the order of read/writes.

 I mentioned that this was only the first implementation of RandomAccessFile. In fact, two
versions were implemented (the second of which is described in Phase 6). The only major
difference between these two versions is the method used to partition the data. In this first
implementation, the file is distributed in contiguous chunks as opposed to the second version’s far
more complicated stripes.

 4

Figure 1. Version 1 of Ateam’s RandomAccessFile and an example read.

The most difficult aspect of implementing this distributed RandomAccessFile was synchronization.
To be able to perform local requests as well as accept incoming requests, RandomAccessFile
spawns a thread upon instantiation that continually processes read/write requests from other
nodes in an AgentTeamwork system. To create atomic read/write requests and prevent deadlock,
meticulous planning and use of Java monitors was required.

This version of RandomAccessFile provides better performance (especially when comparing
sending a whole files to all files in a system and just sending the partitions) but severely limits the
flexibility a user has in sending only the data that a specific node needs. To overcome this
problem, we looked towards the MPI-IO standards view on parallel file sharing and specifically
implemented and modified version of its file view model described in Phase 6.

Phase 6 – Enhancement of RandomAccessFile.java

The second version of RandomAccessFile included a few minor enhancements and one major
upgrade that was significantly difficult to implement correctly and efficiently.

The minor additions included a barrier method: simply a blocking call that waits for all nodes in a
system to call the exact same method before returning. This allows a user, for example, to allow
one node to wait on a read until another node finishes a write. I also fully fleshed out all of the
DataInput and DataOutput operations so that RandomAccessFile is fully capable of reading and
writing Java data types.

The real meat of Phase 6 was the change in RandomAccessFile’s partitioning scheme, based off
of the MPI-IO standard’s file view, but slightly different. Our version of RandomAccessFile is still
100% byte-based while the MPI-IO file read and write operations are etype based. In better
terms, MPI-IO will only read and write fully defined data types at a time (such as an integer) while
AgentTeamwork’s RandomAccessFile can do that, via the DataInput and DataOutput interfaces,
as well as behave normally and access only bytes. In fact, the real change (to the user) is just
how the data is partitioned to the user nodes. The internals of RandomAccessFile are
complicated but the external interactions are intentionally simple.

 5

I have created three separate classes that in cooperation make up a RandomAccessFile:
RAFPartitionInfo, RandomAccessFile, and RandomAccessFileCommThread.

At the most basic level is RAFPartitionInfo: merely a “card” that provides the information about a
partition. This card is used in all of RandomAccessFile’s algorithms to turn a virtual file pointer
into a rank, and local file pointer.

Figure 2. A sample RAFPartitionInfo.

Next, we have RandomAccessFile itself. This class provides the interface for the user that allows
byte-reads, byte-writes, data-type-reads, data-type-writes, closing, resizing, creating partitions
and synchronizing.

Finally, there is RandomAccessFileCommThread. This class continually polls an InputStream for
each of the other nodes in the system and waits for incoming requests. To eliminate
synchronization problems (note: ordering is still left to the user), RandomAccessFile contains a
dummy Object member that is merely used as a monitor. This monitor is requested anytime the
virtual file pointer is modified or a file’s local contents are viewed or updated.

There are three separate algorithms that make RandomAccessFile work as well and efficiently as
it does: the partition-creation algorithm, the rank-lookup algorithm, and the read/write algorithms.

Partition Creation

RandomAccessFile includes a static method called createPartitionFiles that accepts a file called
wholeFile, a vector of RAFPartitionInfo’s and returns a Vector of files. As seen above, a
RAFPartitionInfo contains the data the shows RandomAccessFile how the data is partitioned.
The partitioning scheme can be better described visually.

 6

Figure 3. An example of RandomAccessFile’s partitioning scheme with a 7 byte filetype and 4 nodes.

Figure 4. An example of RandomAccessFile’s partitioning scheme utilizing an initial displacement.

For a more detailed description of the file partitioning scheme, please see “MPI-IO Standard” in
the references section.

Once the partitioning scheme is understood, it is possible to explain the algorithm that
accomplishes this task, and why it is different from the other algorithms within RandomAccessFile.
Originally, the partition-creation algorithm was implemented to create one partition file at a time in
the same manner that read and write operations occur. However, upon testing, even an 8MB file
that was partitioned between 24 nodes with each node receiving just one byte in a filetype,
proved to be tremendously slow. In fact, a 256 MB at first took around 52 minutes just to create
the partition files, without sending or reading the files. The source of this problem was the
number of disk seeks being made on the whole file. To reduce the use of such a heavy operation,
I designed a three-dimensional matrix that is only used within createPartition’s scope and is
pictured below.

 7

Figure 5. Temporary data structure for fast file-partitioning.

The reason this algorithm (and therefore the data structure) differs from those found in the read
and write algorithms stem from the limitations of read and write. Parsing and partitioning a large
file must be done sequentially to eliminate gross amounts of expensive disk seeks. However, if
the read/write algorithms work sequentially the number of network requests is huge. As
explained below, the read and write algorithms actually only send one network request but at the
cost of potentially many disk seeks. Due to the fact that an average read/write involves a
relatively small range of bytes the seek times are not nearly as noticeable as and much faster
than sending and waiting for responses over the network. The data structure illustrated in Figure
5 allows createPartitionFiles to find the owning ranks of any byte with only a few light calculations
and two direct array accesses.

Rank Lookup

The rank lookup algorithm is used by the read and write algorithms to locate the node(s) that any
given byte of the virtual file resides on. Each byte in the given range is traversed. Starting with
the local partition (which, due to user-defined partitioning, is the most likely to contain the data in
question, each rank’s RAFPartitionInfo is processed and it’s file type table is cross-referenced
with the virtual byte position in question. A binary search is then used to find the closest
displacement within RAFPartitionInfo’s file type displacement table, if it exists. To increase
efficiency, if a match is found, the corresponding etype is completely skipped over. (i.e. – if a
long is found where the byte exists, all 8 bytes are skipped so that the remaining 7 bytes are not
checked needlessly.) Once all bytes have been processed (or skipped) a set of the owning ranks
is returned.

Read/Write

The core of RandomAccessFile is the read and write algorithms that present to the user a
distributed file as completely locally owned. As mentioned before, the read/write algorithms are
designed to reduce the number of network requests. They work by sending each node that
shares ownership the range of bytes in question. Each node then constructs an array of its bytes
(without holes) by looking at each displacement in a rank’s filetype and determining if it is within
the specified range. If it is, each repetition of that filetype’s displacement is copied into the buffer
and then the next displacement is processed (see Figure 3 to see how a filetype is repeated).

 8

The alternate method is to search each byte sequentially and separately for the owning rank
which can only be accomplished by performing a binary search through each rank’s filetype table.
This is an extremely slow solution. To illustrate how the more efficient version works, I will
describe the read local algorithm in more detail.

1. Using getOwningRanks, retrieve the ranks that share ownership in the range specified by the

current virtual file pointer and the length parameter passed to read
2. For every rank retrieved

2.1. For every displacement listed in that rank’s filetype table
2.2. Convert the virtual file pointer into an offset within the filetype
2.3. Convert the current filetype displacement into a virtual index
2.4. If the virtual index is less than the virtual file pointer, adjust the index to the virtual file

pointer and save the number of bytes skipped in the adjustment
2.5. While the adjusted index is less than the end byte of the read range

2.5.1. Calculate the bytes to read as the etype length associated with the current
displacement with the previous adjustment subtracted

2.5.2. If the bytes to read is 0 or less
2.5.2.1. update the index to next repetition of the filetype
2.5.2.2. return

2.5.3. If the bytes to read plus the current index is greater than the end byte of the range
2.5.3.1. Reduce the bytes to read to the end byte minus the index

2.5.4. Convert the current virtual index into a local partition index
2.5.5. Seek to local partition to the local partition index
2.5.6. Read (bytes to read) number of bytes into the user buffer

Figure 6. The read local partition algorithm pseudo-code.

Note that although the read local, write local, read remote, and write remote algorithms are
essentially the same, what they do in the end is different. This made it too difficult to generalize
the algorithm into a single method that could be shared by all operations.

Phase 7 – File I/O Performance Evaluation and Conference Paper Submission

The final phase of my research was to compare the performance of the new, partitioned
RandomAccessFile to that of the old, un-partitioned RandomAccessFile. Due to tight time
constraints around the deadline of our conference paper that discusses these comparisons,
Jumpei Miyauchi of Ehime University carried out the bulk of this performance evaluation while I
offered only modest assistance. The most important discovery of this phase was the severe
performance time of partitioning the whole file into stripped files. This, in turn, led to the
development and use of the data structure illustrated in Phase 6, Figure 3.

While Jumpei completed the testing, I optimized the algorithms to increase performance. Jumpei
has measured the time elapsed for the following sequence of random-access file transfer: (1) a
commander agent reads 24 stripes of a given file, each to be delivered to a different sentinel; (2)
the commander starts sending them in 1M-byte partitions; (3) agents at each tree level relays file
partitions as regrouping them or further dividing them; and (4) all agents send an
acknowledgment to the commander when accepting their allocated file stripe. These times are
show below in Figure 7.

 9

Figure 7. The comparison of transferring a whole file and transferring a partitioned file in Agent Teamwork.

Figure 7 compares this file-stripe transfer with an entire file transfer, both fragmented in 1M-byte
partitions. The file-stripe transfer has yielded 1.35 and 4.5 times better performance than the
entire file trnasfer and Sun NFS respectively when sending a 256M-byte random access file.
Although a commander agent still needs to send 256 messages, (each with 1M-byte file partition)
as in sending an entire file, each agent at the bottom of a hierarchy receives only 11 messages.
Obviously, the more user processes the better this transfer performs.

Also, functionality tests of RandomAccessFile have been included in appendices A and B.

Skills Used and Developed

An important aspect of this project is to develop new skills and use old skills as I prepare for my
career. The following is a cumulative list of some of the most important skills I have used and
developed so far (in not particular order):

• Parallel programming
• The MPI API
• Multithreaded programming
• Multithreaded modeling
• Multithreaded debugging
• Knowledge of network stacks and TCP
• Serialization
• Inheritance: interfaces, abstract classes, method overriding, etc.

 10

• Understanding of the Java language
• Understanding of the Java Virtual Machine
• Java packaging
• Java compilation
• Javadoc generation
• Linux shell scripting
• Linux security policies
• Technical writing
• Good commenting practices
• Code reading
• Modifying preexisting, large, complex software systems
• Java reflection
• Input/Output and Streams
• Understanding of performance bottlenecks
• Algorithm optimization

Next Steps

The final steps of my research are to work with Professor Fukuda to wrap up any unfinished work
and to present my research at the CSS 2007 Spring Colloquium.

Files Created and Modified

The following is a cumulative list of files that have been either created or modified throughout the
first half of the project:

File Status Changes/Use Location
All AgentTeamwork source
files

Old Added package statements to
almost every source file to
restructure AgentTeamwork.

Medusa:
/home/uwagent/agentteamwork-dev/

Ateam.java New For user-initiated snapshots.
Added registerLocalVar() and
retrieveLocalVar(). These
methods allow local variables
that are instantiated in main()
to be serialized in a snapshot.

Medusa:
/home/uwagent/agentteamwork-
dev/AgentTeamwork/Ateam/

ATeamException.java New For reporting and describing
errors that occur within
AgentTeamwork

Medusa:
/home/uwagent/agentteamwork-
dev/AgentTeamwork/

AteamProg.java New Allows for the serialization of
a static Ateam member that
can be accessed in a user
program’s static main method

Medusa:
/home/uwagent/agentteamwork-
dev/AgentTeamwork/Ateam/

backupToMedusa.sh Dep. Quickly backs up all files from
local system to medusa

Koblab:
/home/jawsh/tempAgentTeamworkBackup/

ByteFileMaker.java New Creates a 256 byte file with
data 0 through 255 for testing
RandomAccessFile

Medusa:
/home/uwagent/agentteamwork-dev/tests/

ByteFileReads.java New Displays the contents of a
byte file in integer form for
testing RandomAccessFile

Medusa:
/home/uwagent/agentteamwork-dev/tests/

cleanMyNodeProcesses.sh New Kills orphan java process on
Medusa’s nodes. This

Medusa:
/home/uwagent/agentteamwork-

 11

orphan process sometimes
prevent java sockets from
binding.

dev/scripts/

Communicator.java Old Fixed simple bugs and added
some documentation.

Medusa:
/home/uwagent/agentteamwork-dev/MPJ/

CommunicatorTest.java New Tests the communication
methods of MPJ as defined in
phase 1 of my statement of
work

Medusa:
/home/uwagent/agentteamwork-dev/tests/

DiskVector.java New A class that extends java’s
AbstractList<E> and provides
a list with the disk as a
backing store. This class
uses generics so it can be
used for many general
purposes.

Medusa:
/home/uwagent/agentteamwork-
dev/AgentTeamwork/Ateam/GridTcp

FileCopyTest.java New Measures the time it takes to
copy a whole file in Java one
byte at a time. Used for
RandomAccessFile’s
performance comparison.

Medusa:
/home/uwagent/agentteamwork-dev/tests/

FileInputStream.java New Wraps
GridFileInputStream.java

Medusa:
/home/uwagent/agentteamwork-
dev/AgentTeamwork/Ateam

FileOutputStream.java New Wraps
GridFileOutputStream.java

Medusa:
/home/uwagent/agentteamwork-
dev/AgentTeamwork/Ateam

FileSplitterTest.java New Splits a file into partition files
meant for four nodes. Used
for testing
RandomAccessFile

Medusa:
/home/uwagent/agentteamwork-dev/tests/

genJavaDoc.sh New Creates consistent javadoc
with complex command-line
options

Medusa:
/home/uwagent/agentteamwork-
dev/scripts/

GridConnBackup.java Dep. A very simple class that
includes a backup vector and
connection ID’s for
serialization to disk.

Medusa:
/home/uwagent/agentteamwork-
dev/AgentTeamwork/Ateam/GridTcp/

GridConnection.java Old Added a backup mechanism
that writes old backup
messages to disk when a
specified threshold is
reached. Also loads these
persistent backups into
memory when appropriate.
Modified constructors and
init() to allow for re-
instantiation of a
GridConnection with all of the
memory management
members included. Modified
all methods to use DiskVector
instead of GridConnBackup.
Fixed some bugs.

Medusa:
/home/uwagent/agentteamwork-
dev/AgentTeamwork/Ateam/GridTcp/

GridConnMemChangeEvent
.java

New An event that is used by
GridConnection to notify
GridTcp (or other
subscribers) of a change in
memory

Medusa:
/home/uwagent/agentteamwork-
dev/AgentTeamwork/Ateam/GridTcp/

GridConnMemChangeListen
er.java

New An interface that any
subscriber to
GridConnMemChangeEvent
must implement.

Medusa:
/home/uwagent/agentteamwork-
dev/AgentTeamwork/Ateam/GridTcp/

GridFlowControlThread.java New Simply continues to send
PAUSE or RESUME packets
at a specified interval until it
is killed

Medusa:
/home/uwagent/agentteamwork-
dev/AgentTeamwork/Ateam/GridTcp/

All Grid Threads Old Each class that extends from
the Thread class in GridTcp

Medusa:
/home/uwagent/agentteamwork-

 12

now sets its “thread name” in
its constructor. This allows
any GridTcp developer or
user to easily determine
which threads are running at
any given time for debugging.

dev/AgentTeamwork/Ateam/GridTcp/

GridPacket.java Old Added new packet types:
data_ack, pause, resume,
pause_ack, resume_ack

Medusa:
/home/uwagent/agentteamwork-
dev/AgentTeamwork/Ateam/GridTcp/

GridReceiveThread.java Old Added a temporary try/catch
block to catch out of memory
exceptions so that I can
debug GridTcp’s memory
issues.

Medusa:
/home/uwagent/agentteamwork-
dev/AgentTeamwork/Ateam/GridTcp/

GridTcp.java Old Added a backup memory
space threshold that defines
how many bytes a GridTcp
connection may store in
memory before backing up
old messages to persistent
storage. Modified to use new
functions modified in
GridConnection. Modified the
receive function to make
incoming packet dequeing
and sleeping an atomic
operation if the packet
returned is null. This is
necessary because if an
enqueue operation is
occurring at the same time as
a dequeue operation, there
may be a readers-writers
problem.

Medusa:
/home/uwagent/agentteamwork-
dev/AgentTeamwork/Ateam/GridTcp/

GridTcpClientTest.java New Tests changes to GridTcp. Medusa:
/home/uwagent/agentteamwork-dev/tests/

GridTcpServerTest.java New Tests changes to GridTcp. Medusa:
/home/uwagent/agentteamwork-dev/tests/

GridUtil.java Old Added a simple method that
retrieves the logon name of
the current user. This is used
when storing backup
messages to disk. (SINCE
REMOVED) Added a new
function that prints all active
threads currently running
within the JVM for debugging
purposes.

Medusa:
/home/uwagent/agentteamwork-
dev/AgentTeamwork/Ateam/GridTcp/

IRecvThread.java Old Reformatting, comments, and
javadoc

Medusa:
/home/uwagent/agentteamwork-dev/MPJ/

ISendThread.java Old Reformatting, comments, and
javadoc

Medusa:
/home/uwagent/agentteamwork-dev/MPJ/

javadoc New Javadoc for all of
AgentTeamwork

Medusa:
/home/uwagent/agentteamwork-dev/doc/

JGF tests Old Eliminated the use of the
jgfutil package so that it
would run correctly. Also
ported PingPongBench and
AllgatherBench to Ateam
programs.

Medusa:
/home/uwagent/agentteamwork-
dev/MPJ/JGF/

JGFMaster.sh, JGFSlave.sh New Runs JGF tests. Medusa:
/home/uwagent/agentteamwork-dev/JGF/

Misc. Script Files New For backup, javadoc
generation, and compilation
of AgentTeamwork

Medusa:
/home/uwagent/agentteamwork-dev/scripts

Misc. Test Files New For testing serialization and
package compilation issues.

Medusa:
/home/uwagent/agentteamwork-dev/tests/

Mpjrun.java Old Reformatting, comments, and
javadoc. Also changed

Medusa:
/home/uwagent/agentteamwork-dev/MPJ/

 13

parameters parsing to look
for new versions of
parameters. (i.e. –slave
instead of –amslave)

RAFPartitionInfo.java New Contains information about a
file partition used in Ateam’s
RandomAcessFile

Medusa:
/home/uwagent/agentteamwork-
dev/AgentTeamwork/Ateam/

RandomAccessFile.java New A partitioned, distributed
RandomAccessFile that uses
Ateam for communication.

Medusa:
/home/uwagent/agentteamwork-
dev/AgentTeamwork/Ateam/

RandomAccessFileCommTh
read.java

New Aids in communication
between nodes that share a
RandomAccessFile

Medusa:
/home/uwagent/agentteamwork-
dev/AgentTeamwork/Ateam/

Request.java Old Reformatting, comments, and
javadoc. Fixed Illegal Monitor
State bug.

Medusa:
/home/uwagent/agentteamwork-dev/MPJ/

runCommunicatorTest.sh New Launches CommunicatorTest Medusa:
/home/uwagent/agentteamwork-dev/tests/

ServerSocket.java New Wraps GridServerSocket.java Medusa:
/home/uwagent/agentteamwork-
dev/AgentTeamwork/Ateam/

Socket.java New Wraps GridSocket.java Medusa:
/home/uwagent/agentteamwork-
dev/AgentTeamwork/Ateam/

UPWTest.java New Now tests Ateam by
extending the AteamProg
class.

Medusa:
/home/uwagent/agentteamwork-dev/tests/

UserProgWrapper.java Old Added support for new and
old versions of
AgentTeamwork (i.e.-
partitioned and non-
partitioned). Added support
for AteamProg class as well
as instantiation of GridTcp for
Ateam programs. Added
support for AteamProg class
as well as instantiation of
GridTcp for Ateam programs.
Also added a new parameter
for main that accepts a port
number to use when
instantiating GridTcp.

Medusa:
//home/uwagent/agentteamwork-
dev/AgentTeamwork/Ateam/

Table 1. Files created or modified in Phases 1 - 7

Future Project Recommendations

While working on AgentTeamwork I have compiled a short cumulative list of some project
recommendations that future contributers might implement. They are:

• Reformatting and commenting of Communicator.java
• Creation of an MPJException class
• Argument checking and informative exception details for MPJ communication methods.

(e.g. – If the user calls Reduce() and receiveBuffer.length < recvCount + recvOffset, an
MPJException is thrown in which this problem is explained).

• I recommend that at some point, large packets be fragmented. This will alleviate many of
the memory issues that occur within GridTcp. Then, the memory threshold for GridTcp
should automatically adjust to be the closest multiple of this packet size. I don’t think it
would be too difficult to implement.

 14

• It may be possible (further research would be necessary) to provide an additional
memory safeguard in GridTcp that would automatically kick in packet backup to disk
when the available memory nearly reaches 0.

• Much more advanced and deeper testing of GridTcp’s new flow control feature
• Implementation of more advanced synchronization features for Ateam’s

RandomAccessFile

Appendix A – RandomAccessFile Functionality

Test 1

This is test was run between four nodes and runs almost all RandomAccessFile operations on a
256 byte file. Note that the exceptions depicted are caused by a bug in GridTcp. The filetype
used in this test is simply four bytes where bytes 0, 4, 8, … 252 are given to node 0, bytes 1, 5, 9,
… 253 are given to node 1, bytes 2, 6, 10, … 254 are given to node 2 and bytes 3, 7, 11, … 255
are given to node 3.

Medusa

UPW: rank=0 dest=medusa gtwy=null
UPW: rank=1 dest=mnode14 gtwy=null
UPW: rank=2 dest=mnode15 gtwy=null
UPW: rank=3 dest=mnode16 gtwy=null
UPW: starts user program main
Completed constructor
Test 1: File length: 256
Test 2: Read local partition data
0:4:8:12:16:20:24:28:32:36:40:44:48:52:56:60:64:68:72:76:80:84:88:92:96:100:104:108:112:1
16:120:124:128:132:136:140:144:148:152:156:160:164:168:172:176:180:184:188:192:196:200:20
4:208:212:216:220:224:228:232:236:240:244:248:252:
Test 3: Read the whole file
0:1:2:3:4:5:6:7:8:9:10:11:12:13:14:15:16:17:18:19:20:21:22:23:24:25:26:27:28:29:30:31:32:
33:34:35:36:37:38:39:40:41:42:43:44:45:46:47:48:49:50:51:52:53:54:55:56:57:58:59:60:61:62
:63:64:65:66:67:68:69:70:71:72:73:74:75:76:77:78:79:80:81:82:83:84:85:86:87:88:89:90:91:9
2:93:94:95:96:97:98:99:100:101:102:103:104:105:106:107:108:109:110:111:112:113:114:115:11
6:117:118:119:120:121:122:123:124:125:126:127:128:129:130:131:132:133:134:135:136:137:138
:139:140:141:142:143:144:145:146:147:148:149:150:151:152:153:154:155:156:157:158:159:160:
161:162:163:164:165:166:167:168:169:170:171:172:173:174:175:176:177:178:179:180:181:182:1
83:184:185:186:187:188:189:190:191:192:193:194:195:196:197:198:199:200:201:202:203:204:20
5:206:207:208:209:210:211:212:213:214:215:216:217:218:219:220:221:222:223:224:225:226:227
:228:229:230:231:232:233:234:235:236:237:238:239:240:241:242:243:244:245:246:247:248:249:
250:251:252:253:254:255:
Test 4: Write local partition data
Test 5: Read local partition data
0:0
:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:
Test 6: Read the whole file
0:1:2:3:0:1:2:3:0:1:2:3:0:1:2:3:0:1:2:3:0:1:2:3:0:1:2:3:0:1:2:3:0:1:2:3:0:1:2:3:0:1:2:3:0
:1:2:3:0:1:2:3:0:1:2:3:0:1:2:3:0:1:2:3:0:1:2:3:0:1:2:3:0:1:2:3:0:1:2:3:0:1:2:3:0:1:2:3:0:
1:2:3:0:1:2:3:0:1:2:3:0:1:2:3:0:1:2:3:0:1:2:3:0:1:2:3:0:1:2:3:0:1:2:3:0:1:2:3:0:1:2:3:0:1
:2:3:0:1:2:3:0:1:2:3:0:1:2:3:0:1:2:3:0:1:2:3:0:1:2:3:0:1:2:3:0:1:2:3:0:1:2:3:0:1:2:3:0:1:
2:3:0:1:2:3:0:1:2:3:0:1:2:3:0:1:2:3:0:1:2:3:0:1:2:3:0:1:2:3:0:1:2:3:0:1:2:3:0:1:2:3:0:1:2
:3:0:1:2:3:0:1:2:3:0:1:2:3:0:1:2:3:0:1:2:3:0:1:2:3:0:1:2:3:0:1:2:3:
Test 7: Write whole file
Test 8: Read the whole file
0:1:2:3:4:5:6:7:8:9:10:11:12:13:14:15:16:17:18:19:20:21:22:23:24:25:26:27:28:29:30:31:32:
33:34:35:36:37:38:39:40:41:42:43:44:45:46:47:48:49:50:51:52:53:54:55:56:57:58:59:60:61:62
:63:64:65:66:67:68:69:70:71:72:73:74:75:76:77:78:79:80:81:82:83:84:85:86:87:88:89:90:91:9
2:93:94:95:96:97:98:99:100:101:102:103:104:105:106:107:108:109:110:111:112:113:114:115:11
6:117:118:119:120:121:122:123:124:125:126:127:128:129:130:131:132:133:134:135:136:137:138
:139:140:141:142:143:144:145:146:147:148:149:150:151:152:153:154:155:156:157:158:159:160:
161:162:163:164:165:166:167:168:169:170:171:172:173:174:175:176:177:178:179:180:181:182:1
83:184:185:186:187:188:189:190:191:192:193:194:195:196:197:198:199:200:201:202:203:204:20
5:206:207:208:209:210:211:212:213:214:215:216:217:218:219:220:221:222:223:224:225:226:227

 15

:228:229:230:231:232:233:234:235:236:237:238:239:240:241:242:243:244:245:246:247:248:249:
250:251:252:253:254:255:
Test 9: Truncate the fileLength = 20
Test 10: Read the whole file
0:1:2:3:4:5:6:7:8:9:10:11:12:13:14:15:16:17:18:19:
Test 11: Extend the file size
Length = 256
Test 12: Write whole file
Test 13: Read the whole file
0:1:2:3:4:5:6:7:8:9:10:11:12:13:14:15:16:17:18:19:20:21:22:23:24:25:26:27:28:29:30:31:32:
33:34:35:36:37:38:39:40:41:42:43:44:45:46:47:48:49:50:51:52:53:54:55:56:57:58:59:60:61:62
:63:64:65:66:67:68:69:70:71:72:73:74:75:76:77:78:79:80:81:82:83:84:85:86:87:88:89:90:91:9
2:93:94:95:96:97:98:99:100:101:102:103:104:105:106:107:108:109:110:111:112:113:114:115:11
6:117:118:119:120:121:122:123:124:125:126:127:128:129:130:131:132:133:134:135:136:137:138
:139:140:141:142:143:144:145:146:147:148:149:150:151:152:153:154:155:156:157:158:159:160:
161:162:163:164:165:166:167:168:169:170:171:172:173:174:175:176:177:178:179:180:181:182:1
83:184:185:186:187:188:189:190:191:192:193:194:195:196:197:198:199:200:201:202:203:204:20
5:206:207:208:209:210:211:212:213:214:215:216:217:218:219:220:221:222:223:224:225:226:227
:228:229:230:231:232:233:234:235:236:237:238:239:240:241:242:243:244:245:246:247:248:249:
250:251:252:253:254:255:
Test 14: Append an extra twenty bytes
Test 15: Read the whole file
0:1:2:3:4:5:6:7:8:9:10:11:12:13:14:15:16:17:18:19:20:21:22:23:24:25:26:27:28:29:30:31:32:
33:34:35:36:37:38:39:40:41:42:43:44:45:46:47:48:49:50:51:52:53:54:55:56:57:58:59:60:61:62
:63:64:65:66:67:68:69:70:71:72:73:74:75:76:77:78:79:80:81:82:83:84:85:86:87:88:89:90:91:9
2:93:94:95:96:97:98:99:100:101:102:103:104:105:106:107:108:109:110:111:112:113:114:115:11
6:117:118:119:120:121:122:123:124:125:126:127:128:129:130:131:132:133:134:135:136:137:138
:139:140:141:142:143:144:145:146:147:148:149:150:151:152:153:154:155:156:157:158:159:160:
161:162:163:164:165:166:167:168:169:170:171:172:173:174:175:176:177:178:179:180:181:182:1
83:184:185:186:187:188:189:190:191:192:193:194:195:196:197:198:199:200:201:202:203:204:20
5:206:207:208:209:210:211:212:213:214:215:216:217:218:219:220:221:222:223:224:225:226:227
:228:229:230:231:232:233:234:235:236:237:238:239:240:241:242:243:244:245:246:247:248:249:
250:251:252:253:254:255:0:1:2:3:4:5:6:7:8:9:10:11:12:13:14:15:16:17:18:19:
UPW.launchUserProgMain : java.lang.reflect.InvocationTargetException
Cause : java.lang.NullPointerException
If this is InvocationTargetException a user program itself caused an exception
UPW.main : java.lang.NullPointerException
Cause : null
UPW.main: end

Mnode 14, Mnode 15, Mnode 16

UPW: rank=1 dest=mnode14 gtwy=null
UPW: rank=0 dest=medusa gtwy=null
UPW: rank=2 dest=mnode15 gtwy=null
UPW: rank=3 dest=mnode16 gtwy=null
UPW: starts user program main
Completed constructor
Test 1: Read local partition data
1:5:9:13:17:21:25:29:33:37:41:45:49:53:57:61:65:69:73:77:81:85:89:93:97:101:105:109:113:1
17:121:125:129:133:137:141:145:149:153:157:161:165:169:173:177:181:185:189:193:197:201:20
5:209:213:217:221:225:229:233:237:241:245:249:253:
Test 4: Write local partition data
Test 5: Read local partition data
1:1
:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:
Test 8: Read the whole file
0:1:2:3:4:5:6:7:8:9:10:11:12:13:14:15:16:17:18:19:20:21:22:23:24:25:26:27:28:29:30:31:32:
33:34:35:36:37:38:39:40:41:42:43:44:45:46:47:48:49:50:51:52:53:54:55:56:57:58:59:60:61:62
:63:64:65:66:67:68:69:70:71:72:73:74:75:76:77:78:79:80:81:82:83:84:85:86:87:88:89:90:91:9
2:93:94:95:96:97:98:99:100:101:102:103:104:105:106:107:108:109:110:111:112:113:114:115:11
6:117:118:119:120:121:122:123:124:125:126:127:128:129:130:131:132:133:134:135:136:137:138
:139:140:141:142:143:144:145:146:147:148:149:150:151:152:153:154:155:156:157:158:159:160:
161:162:163:164:165:166:167:168:169:170:171:172:173:174:175:176:177:178:179:180:181:182:1
83:184:185:186:187:188:189:190:191:192:193:194:195:196:197:198:199:200:201:202:203:204:20
5:206:207:208:209:210:211:212:213:214:215:216:217:218:219:220:221:222:223:224:225:226:227
:228:229:230:231:232:233:234:235:236:237:238:239:240:241:242:243:244:245:246:247:248:249:
250:251:252:253:254:255:
Test 9: Truncate the fileLength = 20
Test 13: Extend the file size
Length = 256
Test 15: Read the whole file

0:1:2:3:4:5:6:7:8:9:10:11:12:13:14:15:16:17:18:19:20:21:22:23:24:25:26:27:28:29:30:31:32:
33:34:35:36:37:38:39:40:41:42:43:44:45:46:47:48:49:50:51:52:53:54:55:56:57:58:59:60:61:62
:63:64:65:66:67:68:69:70:71:72:73:74:75:76:77:78:79:80:81:82:83:84:85:86:87:88:89:90:91:9
2:93:94:95:96:97:98:99:100:101:102:103:104:105:106:107:108:109:110:111:112:113:114:115:11
6:117:118:119:120:121:122:123:124:125:126:127:128:129:130:131:132:133:134:135:136:137:138

 16

:139:140:141:142:143:144:145:146:147:148:149:150:151:152:153:154:155:156:157:158:159:160:
161:162:163:164:165:166:167:168:169:170:171:172:173:174:175:176:177:178:179:180:181:182:1
83:184:185:186:187:188:189:190:191:192:193:194:195:196:197:198:199:200:201:202:203:204:20
5:206:207:208:209:210:211:212:213:214:215:216:217:218:219:220:221:222:223:224:225:226:227
:228:229:230:231:232:233:234:235:236:237:238:239:240:241:242:243:244:245:246:247:248:249:
250:251:252:253:254:255:0:1:2:3:4:5:6:7:8:9:10:11:12:13:14:15:16:17:18:19:
UPW.launchUserProgMain : java.lang.reflect.InvocationTargetException
Cause : java.lang.NullPointerException
If this is InvocationTargetException a user program itself caused an exception
UPW.main : java.lang.NullPointerException
Cause : null
UPW.main: end
AgentTeamwork.Ateam.RandomAccessFile: Error occured in communication thread.

Appendix B – RandomAccessFile Functionality

Test 2

This test was run between four nodes. A master node calls all of RandomAccessFile’s
DataOutput methods (i.e. – writeLong) while the three slave nodes read the data in the same
order written (via readLong). To ensure that a slave node does not read before the master node
has completed writing, RandomAccessFile’s barrier method is used extensively. The filetype
used in this test is simply four bytes where bytes 0, 4, 8, … 252 are given to node 0, bytes 1, 5, 9,
… 253 are given to node 1, bytes 2, 6, 10, … 254 are given to node 2 and bytes 3, 7, 11, … 255
are given to node 3.

Medusa

UPW: rank=0 dest=medusa gtwy=null
UPW: rank=1 dest=mnode14 gtwy=null
UPW: rank=2 dest=mnode15 gtwy=null
UPW: rank=3 dest=mnode16 gtwy=null
UPW: starts user program main
Completed constructor
Test 1: writing boolean: true
Test 2: writing byte: -101
Test 3: writing char: Q
Test 4: writing double: 0.00939
Test 5: writing float: 0.134
Test 6: writing int: 345
Test 7: writing long: 3838308
Test 8: writing short: 500
Test 9: writing unsigned byte: 230
Test 10: writing unsigned short: 709
Test 11: writing UTF: test
Test 12: writing string as bytes: woohoo

Test 13: writing 10 bytes of: 12
UPW.launchUserProgMain : java.lang.reflect.InvocationTargetException
Cause : java.lang.NullPointerException
If this is InvocationTargetException a user program itself caused an exception
UPW.main : java.lang.NullPointerException
Cause : null
UPW.main: end

Mnode 14, Mnode 15, Mnode 16

UPW: rank=1 dest=mnode14 gtwy=null
UPW: rank=0 dest=medusa gtwy=null
UPW: rank=2 dest=mnode15 gtwy=null
UPW: rank=3 dest=mnode16 gtwy=null
UPW: starts user program main
Completed constructor
Test 1: reading boolean: true
Test 2: reading byte: -101
Test 3: reading char: Q
Test 4: reading double: 0.00939

 17

Test 5: reading float: 0.134
Test 6: reading int: 345
Test 7: reading long: 3838308
Test 8: reading short: 500
Test 9: reading unsigned byte: 230
Test 10: reading unsigned short: 709
Test 11: reading UTF: test
Test 12: reading line: woohoo
Test 13: reading 10 bytes fully: 12121212121212121212

References

1. MPI-IO Standard

 [http://www.mhpcc.edu/training/workshop2/mpi_io/MAIN.html]
2. Java I/O RandomAccessFile

 [http://java.sun.com/j2se/1.4.2/docs/api/java/io/RandomAccessFile.html]

