
AgentTeamwork: Enhancing the Resource Agent’s Features

An Interim Report

Undergraduate Research Project (Summer 2004)
Student: Shane Rai
Advisor: Prof M Fukuda

Issues Running Xindice Database Server

From the very beginning of installing Xindice on Medusa, I came across a host of
problems in getting this database server to run. The following is a chronological series of
issues that I faced while trying to get the server up and running.

Xindice uses port 4080
Upon running Xindice for the first time, the following run time errors were generated:

ERROR: Could not start service 'HTTPServer'
Service: 'APIService' started
FATAL ERROR: Service manager could not be started

At first thought, my impression was perhaps port 4080 was not open on Medusa. The
CSS Systems Admin (Doug McLean) was requested to open this port. Turns out that port
4080 was not open on Medusa and the firewall was accordingly adjusted. However, even
after that, this same error persisted leading me to the conclusion that perhaps this was not
a port related issue.

No web server installed on Medusa
After consulting with Doug, we came to the conclusion that the absence of a web server
on Medusa could be responsible for this exception. This conclusion, of course, was made
because of the nature of the exception that was being thrown viz. HTTPServer service
failing to start. In any case, we ended up installing Tomcat on Medusa as the web server
following Prof Fukuda’s suggestion.

Issues in restarting Xindice
After Tomcat was installed, I was able to successfully start Xindice. However, I could not
get the server to shut down the way it was documented to be. When a subsequent restart
was attempted on the server, the same errors as above resurfaced. It turned out that since
Tomcat was running as the web server and Xindice was not shut down properly, the port
that Xindice was using (when it started) was still in use and hence restarting the database
on the same port was resulting in that exception.

No root access to Medusa
It seems that Doug, having root access to Medusa, successfully managed to get Xindice
up and running when he installed the same on Medusa’s root folder (under
/usr/local/xindice). However, since root privileges cannot be given to any of the student
project members, it seemed that there was no way to run Xindice without such access
rights (given these problems). The end result of all this was to consider another native
XML database that would support the requirements of the project.

eXist as the new XML database sever

Eventually, a similar open source native XML database was found that so far has not
resulted in any major exceptions that have proved to be hard to debug. This database is
called eXist. For more information, visit the site: http://exist.sourceforge.net/.

Running the database
eXist offers three ways in which the server can be started. It could be run either as a
standalone server process, embedded into an application (such as Java) or used in
connection with a servlet engine. For the purpose of this project, the last option is not
needed.

Running the server as a standalone process
In this case, the server runs inside its own Java Virtual Machine. The HTTP listener runs
on port 8088 and XMLRPC on port 8081. Clients have access to the server using either
of these protocols.

Starting the server
Follow the steps to start the server as a stand alone process. I assume that the root
folder for the installation is named eXist. Open a terminal window and enter the
following commands.

cd eXist/bin
./server.sh

The server should start and the following lines should be displayed at the end of
the dump:
…………………………………..
…………………………………..
starting HTTP listener at port 8088
starting XMLRPC listener at port 8081

To shutdown the server
Open another terminal window. Enter the following commands:

cd eXist
java -jar start.jar shutdown --uri=xmldb:exist://localhost:8081

The server should shut down. Also look at the other terminal window that was
used to start the server. That window should also print some messages about
shutting down and killing all client threads.

Using the client tool
eXist has a neat little Java client interface to the database. To start this client,
open a terminal window and enter the following commands:

cd eXist/bin

./client.sh

A log in dialog box should appear; leave the password box blank; press OK. The
eXist Admin Client window should open; in the upper pane, you can view the
existing collections in this database; the bottom pane acts like a command line
interface allowing the user to enter some specific commands (check out the online
doc for this syntax).

To exit from this client, type "quit" at this command line to close the client.

NOTE: I have had issues trying to run this client remotely via SSH. I have not
been to conclude the reasons for this.

Running the server as an embedded instance
For this project, the database will be used as an embedded instance. In this case, the
database is started in the same JVM as that of the client application. The database will not
be accessible from outside this client app. This would be the preferred way to running the
server for this project since it does not require any user intervention to start and shutdown
the server (although this process could be handled inside the client app). In any case, the
embedded instance can make use of the XML:DB API to programmatically start and stop
the server.

 The XML:DB API

According to the online documentation, it is suggested that using XML:DB API is
the preferred way to work with the database from client apps. These applications
are to be written in Java.

Quote: “The XML:DB API provides a common interface to native or XML-
enabled databases and supports the development of portable, reusable
applications.” For a quick tour on how to use this API for common database tasks,
visit http://exist.sourceforge.net/devguide.html#N102EE

A Java Client app to access the Database
The following is the complete source of a simple Java client that is used to start an
embedded instance of the database. A test collection was added prior to the
database and is called “Test”. An XML document was also added to this
collection prior. In this example, this same XML document is being retrieved
using its resource ID which was generated when the document was added to the

database. The contents of this XML document are then printed to the standard
output.

This example has been modified from an example that is available in the
installation samples.

/* A demo Java client app instantiating an embedded instance of eXist */

import org.exist.xmldb.DatabaseInstanceManager;
import org.xmldb.api.DatabaseManager;
import org.xmldb.api.base.*;
import org.xmldb.api.modules.*;
import org.xmldb.api.*;
import javax.xml.transform.OutputKeys;
import javax.xml.transform.OutputKeys;
import org.exist.storage.serializers.EXistOutputKeys;

public class Retrieve {

 protected static String driver = "org.exist.xmldb.DatabaseImpl";
 protected static String URI = "xmldb:exist:///db/test";

 public static void main(String args[]) throws Exception {

 // initialize database drivers
 Class cl = Class.forName(driver);
 Database database = (Database) cl.newInstance();
 database.setProperty("create-database", "true");
 DatabaseManager.registerDatabase(database);

 // get the collection
 try {

Collection col = DatabaseManager.getCollection(URI,
"admin", "");

 if (col == null)
 System.out.println("col is null\n");

 col.setProperty(OutputKeys.INDENT, "yes");

col.setProperty(EXistOutputKeys.EXPAND_XINCLUDES
, "no");

 col.setProperty(EXistOutputKeys.PROCESS_XSL_PI,

"yes");

XMLResource res =
(XMLResource)col.getResource("7b44705f.xml");

 if(res == null)
 System.out.println("document not found!");
 else
 System.out.println(res.getContent());

DatabaseInstanceManager manager = (DatabaseInstanceManager)
col.getService("DatabaseInstanceManager", "1.0");

 manager.shutdown();
 }

catch (XMLDBException e) {
 System.err.println("XML:DB Exception occured "

+ e.errorCode);
 }
 }
}

